1
|
Lahtinen J, Ronni P, Subramaniyam NP, Koulouri A, Wolters C, Pursiainen S. Standardized Kalman filtering for dynamical source localization of concurrent subcortical and cortical brain activity. Clin Neurophysiol 2024; 168:15-24. [PMID: 39423516 DOI: 10.1016/j.clinph.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE We introduce standardized Kalman filtering (SKF) as a new spatiotemporal method for tracking brain activity. Via the Kalman filtering scheme, the computational workload is low, and by spatiotemporal standardization, we reduce the depth bias of non-standardized Kalman filtering (KF). METHODS We describe the standardized KF methodology for spatiotemporal tracking from the Bayesian perspective. We construct a realistic simulation setup that resembles activity due to somatosensory evoked potential (SEP) to validate the proposed methodology before we run our tests using real SEP data. RESULTS In the experiments, SKF was compared with standardized low-resolution brain electromagnetic tomography (sLORETA) and the non-standardized KF. SKF localized the cortical and subcortical SEP originators appropriately and tracked P20/N20 originators for investigated signal-to-noise ratios (25, 15, and 5 dB). sLORETA distinguished those for 25 and 15 dB suppressing the subcortical originators. KF tracked only the evolution of cortical activity but mislocalized it. CONCLUSIONS The numerical results suggest that SKF inherits the estimation accuracy of sLORETA and traceability of KF while producing focal estimates for SEP originators. SIGNIFICANCE SKF could help study time-evolving brain activities and localize landmarks with a deep contributor or when there is no prior knowledge of evolution.
Collapse
Affiliation(s)
- Joonas Lahtinen
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| | - Paavo Ronni
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland
| | | | - Alexandra Koulouri
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| | - Carsten Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster 48149, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany.
| | - Sampsa Pursiainen
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere 33720, Finland.
| |
Collapse
|
2
|
Kida T, Kaneda T, Nishihira Y. ERP evidence of attentional somatosensory processing and stimulus-response coupling under different hand and arm postures. Front Hum Neurosci 2023; 17:1252686. [PMID: 38021238 PMCID: PMC10676239 DOI: 10.3389/fnhum.2023.1252686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
We investigated (1) the effects of divided and focused attention on event-related brain potentials (ERPs) elicited by somatosensory stimulation under different response modes, (2) the effects of hand position (closely-placed vs. separated hands) and arm posture (crossed vs. uncrossed forearms) on the attentional modulation of somatosensory ERPs, and (3) changes in the coupling of stimulus- and response-related processes by somatosensory attention using a single-trial analysis of P300 latency and reaction times. Electrocutaneous stimulation was presented randomly to the thumb or middle finger of the left or right hand at random interstimulus intervals (700-900 ms). Subjects attended unilaterally or bilaterally to stimuli in order to detect target stimuli by a motor response or counting. The effects of unilaterally-focused attention were also tested under different hand and arm positions. The amplitude of N140 in the divided attention condition was intermediate between unilaterally attended and unattended stimuli in the unilaterally-focused attention condition in both the mental counting and motor response tasks. Attended infrequent (target) stimuli elicited greater P300 in the unilaterally attention condition than in the divided attention condition. P300 latency was longer in the divided attention condition than in the unilaterally-focused attention condition in the motor response task, but remained unchanged in the counting task. Closely locating the hands had no impact, whereas crossing the forearms decreased the attentional enhancement in N140 amplitude. In contrast, these two manipulations uniformly decreased P300 amplitude and increased P300 latency. The correlation between single-trial P300 latency and RT was decreased by crossed forearms, but not by divided attention or closely-placed hands. Therefore, the present results indicate that focused and divided attention differently affected middle latency and late processing, and that hand position and arm posture also differently affected attentional processes and stimulus-response coupling.
Collapse
Affiliation(s)
- Tetsuo Kida
- Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | | | - Yoshiaki Nishihira
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Hussein M, Fathy W, Abdelaleem EA, Nasser M, Yehia A, Elanwar R. The Impact of Micro RNA-320a Serum Level on Severity of Symptoms and Cerebral Processing of Pain in Patients with Fibromyalgia. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:2061-2072. [PMID: 35587745 DOI: 10.1093/pm/pnac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The aim of this work was to explore the expression of miR-320a level in fibromyalgia patients in comparison to healthy controls, and to clarify its impact on the severity of symptoms and the cerebral processing of pain assessed by middle latency somatosensory evoked potentials (SSEPs). DESIGN Case-control study. SETTING Rheumatology and Neurology outpatient clinics. SUBJECTS Seventy-four fibromyalgia patients and seventy-four normal healthy controls. METHODS The included patients were subjected to detailed history taking, assessment of severity of fibromyalgia symptoms using the Fibromyalgia Impact Questionnaire Revised (FIQR), assessment of pain intensity using the Neuropathic Pain Symptom Inventory (NPSI), measurement of the serum level of miR-320a in addition to of measurement peak latencies and amplitudes of middle latency SSEPs. RESULTS Fibromyalgia patients had significantly higher micro-RNA-320a levels (0.907 ± 0.022) in comparison to controls (0.874 ± 0.015) (P-value < .001). The mean values of micro-RNA-320a levels were significantly higher in fibromyalgia patients with insomnia, chronic fatigue syndrome, persistent depressive disorder, and primary headache disorder than those without (P-value = .024, <.001, .006, .036 respectively). There were statistically significant positive correlations between micro-RNA-320a levels, and disease duration, FIQR, and NPSI total scores (P-value <0.001, 0.003, 0.002 respectively). There were no statistically significant correlations between micro-RNA-320a levels and middle latency SSEPs. DISCUSSION Micro-RNA-320a level is significantly upregulated in fibromyalgia patient. It has a crucial impact on the severity of symptoms but not related to the cerebral processing of pain.
Collapse
Affiliation(s)
- Mona Hussein
- Department of Neurology, Beni-Suef University, Beni-Suef, Egypt
| | - Wael Fathy
- Department of Anaesthesia, Surgical ICU and Pain management, Beni-Suef University, Beni-Suef, Egypt
| | - Enas A Abdelaleem
- Department of Rheumatology and Rehabilitation, Beni-Suef University, Beni-Suef, Egypt
| | - Mona Nasser
- Department of Clinical and Chemical pathology, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Yehia
- Department of Internal medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Elanwar
- Neuro diagnostic research center, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Hewitt D, Newton-Fenner A, Henderson J, Fallon NB, Brown C, Stancak A. Intensity-dependent modulation of cortical somatosensory processing during external, low-frequency peripheral nerve stimulation in humans. J Neurophysiol 2022; 127:1629-1641. [PMID: 35611988 PMCID: PMC9190739 DOI: 10.1152/jn.00511.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
External low-frequency peripheral nerve stimulation (LFS) has been proposed as a novel method for neuropathic pain relief. Previous studies have reported that LFS elicits long-term depression-like effects on human pain perception when delivered at noxious intensities, whereas lower intensities are ineffective. To shed light on cortical regions mediating the effects of LFS, we investigated changes in somatosensory-evoked potentials (SEPs) during four LFS intensities. LFS was applied to the radial nerve (600 pulses, 1 Hz) of 24 healthy participants at perception (1 times), low (5 times), medium (10 times), and high intensities (15 times detection threshold). SEPs were recorded during LFS, and averaged SEPs in 10 consecutive 1-min epochs of LFS were analyzed using source dipole modeling. Changes in resting electroencephalography (EEG) were investigated after each LFS block. Source activity in the midcingulate cortex (MCC) decreased linearly during LFS, with greater attenuation at stronger LFS intensities, and in the ipsilateral operculo-insular cortex during the two lowest LFS stimulus intensities. Increased LFS intensities resulted in greater augmentation of contralateral primary sensorimotor cortex (SI/MI) activity. Stronger LFS intensities were followed by increased α (alpha, 9-11 Hz) band power in SI/MI and decreased θ (theta, 3-5 Hz) band power in MCC. Intensity-dependent attenuation of MCC activity with LFS is consistent with a state of long-term depression. Sustained increases in contralateral SI/MI activity suggests that effects of LFS on somatosensory processing may also be dependent on satiation of SI/MI. Further research could clarify if the activation of SI/MI during LFS competes with nociceptive processing in neuropathic pain.NEW & NOTEWORTHY Somatosensory-evoked potentials during low-frequency stimulation of peripheral nerves were examined at graded stimulus intensities. Low-frequency stimulation was associated with decreased responsiveness in the midcingulate cortex and increased responsiveness in primary sensorimotor cortex. Greater intensities were associated with increased midcingulate cortex θ band power and decreased sensorimotor cortex α band power. Results further previous evidence of an inhibition of somatosensory processing during and after low-frequency stimulation and point toward a potential augmentation of activity in somatosensory processing regions.
Collapse
Affiliation(s)
- Danielle Hewitt
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Alice Newton-Fenner
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| | - Jessica Henderson
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Nicholas B. Fallon
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Christopher Brown
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Andrej Stancak
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Mahmutoglu MA, Baumgärtner U, Rupp A. Posterior insular activity contributes to the late laser-evoked potential component in EEG recordings. Clin Neurophysiol 2021; 132:770-781. [PMID: 33571885 DOI: 10.1016/j.clinph.2020.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nociceptive activity in some brain areas has concordantly been reported in EEG source models, such as the anterior/mid-cingulate cortex and the parasylvian area. Whereas the posterior insula has been constantly reported to be active in intracortical and fMRI studies, non-invasive EEG and MEG recordings mostly failed to detect activity in this region. This study aimed to determine an appropriate inverse modeling approach in EEG recordings to model posterior insular activity, assuming the late LEP (laser evoked potential) time window to yield a better separation from other ongoing cortical activity. METHODS In 12 healthy volunteers, nociceptive stimuli of three intensities were applied. LEP were recorded using 32-channel EEG recordings. Source analysis was performed in specific time windows defined in the grand-average dataset. Two distinct dipole-pairs located close to the operculo-insular area were compared. RESULTS Our results show that posterior insular activity yields a substantial contribution to the latest part (positive component) of the LEP. CONCLUSIONS Even though the initial insular activity onset is in the early LEP time window,modelingthe insular activity in the late LEP time window might result in better separation from other ongoing cortical activity. SIGNIFICANCE Modeling the late LEP activity might enable to distinguish posterior insular activity.
Collapse
Affiliation(s)
- Mustafa Ahmed Mahmutoglu
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany; Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Ulf Baumgärtner
- Chair of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Physiology/Physics, University of Applied Sciences and Medical University, Medical School Hamburg, Hamburg, Germany
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Lelic D, Valeriani M, Fischer IWD, Dahan A, Drewes AM. Venlafaxine and oxycodone have different effects on spinal and supraspinal activity in man: a somatosensory evoked potential study. Br J Clin Pharmacol 2017; 83:764-776. [PMID: 27808426 DOI: 10.1111/bcp.13177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS Opioids and antidepressants that inhibit serotonin and norepinephrine reuptake (SNRI) are recognized as analgesics to treat severe and moderate pain, but their mechanisms of action in humans remain unclear. The present study aimed to explore how oxycodone (an opioid) and venlafaxine (an SNRI) modulate spinal and supraspinal sensory processing. METHODS Twenty volunteers were included in a randomized, double-blinded, three-way (placebo, oxycodone, venlafaxine), crossover study. Spinal and full scalp cortical evoked potentials (EPs) to median nerve stimulation were recorded before and after 5 days of treatment. Assessment of the central effects of the three treatments involved: (i) amplitudes and latencies of spinal EPs (spinal level); (ii) amplitudes and latencies of the P14 potential (subcortical level); (iii) amplitudes and latencies of early and late cortical EPs (cortical level); (iv) brain sources underlying early cortical Eps; and (v) brain networks underlying the late cortical EPs. RESULTS In the venlafaxine arm, the spinal P11 and the late cortical N60-80 latencies were reduced by 1.8% [95% confidence interval (CI) 1.7%, 1.9%) and 5.7% (95% CI 5.3%, 6.1%), whereas the early cortical P25 amplitude was decreased by 7.1% (95%CI 6.1%, 8.7%). Oxycodone increased the subcortical P14 [+25% (95% CI 22.2%, 28.6%)], early cortical N30 [+12.9% (95% CI 12.5%, 13.2%)] amplitudes and the late cortical N60-80 latency [+2.9% (95% CI 1.9%, 4.0%)]. The brainstem and primary somatosensory cortex source strengths were increased by 66.7% (95% CI 62.5%, 75.0%) and 28.8% (95% CI 27.5%, 29.6%) in the oxycodone arm, whereas the primary somatosensory cortex strength was decreased in the venlafaxine arm by 18.3% (95% CI 12.0%, 28.1%). CONCLUSIONS Opioids and SNRI drugs exert different central effects. The present study contributed to the much-needed human models of the mechanisms of action of drugs with effects on the central nervous system.
Collapse
Affiliation(s)
- Dina Lelic
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Massimiliano Valeriani
- Division of Neurology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Iben W D Fischer
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study. Neural Plast 2016; 2016:3704964. [PMID: 27047694 PMCID: PMC4800094 DOI: 10.1155/2016/3704964] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/28/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives. Studies have shown decreases in N30 somatosensory evoked potential (SEP) peak amplitudes following spinal manipulation (SM) of dysfunctional segments in subclinical pain (SCP) populations. This study sought to verify these findings and to investigate underlying brain sources that may be responsible for such changes. Methods. Nineteen SCP volunteers attended two experimental sessions, SM and control in random order. SEPs from 62-channel EEG cap were recorded following median nerve stimulation (1000 stimuli at 2.3 Hz) before and after either intervention. Peak-to-peak amplitude and latency analysis was completed for different SEPs peak. Dipolar models of underlying brain sources were built by using the brain electrical source analysis. Two-way repeated measures ANOVA was used to assessed differences in N30 amplitudes, dipole locations, and dipole strengths. Results. SM decreased the N30 amplitude by 16.9 ± 31.3% (P = 0.02), while no differences were seen following the control intervention (P = 0.4). Brain source modeling revealed a 4-source model but only the prefrontal source showed reduced activity by 20.2 ± 12.2% (P = 0.03) following SM. Conclusion. A single session of spinal manipulation of dysfunctional segments in subclinical pain patients alters somatosensory processing at the cortical level, particularly within the prefrontal cortex.
Collapse
|
8
|
Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception. PLoS Biol 2016; 14:e1002345. [PMID: 26734726 PMCID: PMC4703221 DOI: 10.1371/journal.pbio.1002345] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022] Open
Abstract
The insula, particularly its posterior portion, is often regarded as a primary cortex for pain. However, this interpretation is largely based on reverse inference, and a specific involvement of the insula in pain has never been demonstrated. Taking advantage of the high spatiotemporal resolution of direct intracerebral recordings, we investigated whether the human insula exhibits local field potentials (LFPs) specific for pain. Forty-seven insular sites were investigated. Participants received brief stimuli belonging to four different modalities (nociceptive, vibrotactile, auditory, and visual). Both nociceptive stimuli and non-nociceptive vibrotactile, auditory, and visual stimuli elicited consistent LFPs in the posterior and anterior insula, with matching spatial distributions. Furthermore, a blind source separation procedure showed that nociceptive LFPs are largely explained by multimodal neural activity also contributing to non-nociceptive LFPs. By revealing that LFPs elicited by nociceptive stimuli reflect activity unrelated to nociception and pain, our results confute the widespread assumption that these brain responses are a signature for pain perception and its modulation. Local field potentials elicited in the human insular cortex by painful stimuli reflect cortical activity that is unrelated to pain perception and so cannot be used as an objective measure of pain. A widely accepted notion is that the insula, especially its posterior portion, plays a specific role in the perception of pain. This has led a number of researchers to consider activity recorded from this so-called “ouch zone” as an objective correlate of pain perception. We provide compelling evidence to the contrary. Using direct intracerebral recordings, we demonstrate that painful and nonpainful stimuli elicit very similar responses throughout the human insula. This observation argues against the notion that these responses reflect the brain activity through which pain emerges from nociception in the human brain. These findings have implications for basic theories, as well as for the development of diagnostic tests and the identification of therapeutic targets for the treatment of chronic pain. They question the use of these insular responses to assess the effects of pharmacological treatment or to assess pain in patients unable to communicate. Furthermore, they have legal implications, as they contradict the proposal that these responses could be used to determine unequivocally whether plaintiffs are truly experiencing the pain for which they are seeking redress. Finally, they undermine the rationale for neurosurgical procedures aiming at alleviating pain by targeting the posterior insula.
Collapse
|
9
|
Somatosensory input to non-primary motor areas is enhanced during preparation of cued contraterlateral finger sequence movements. Behav Brain Res 2015; 286:166-74. [DOI: 10.1016/j.bbr.2015.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/31/2022]
|
10
|
Nevalainen P, Rahkonen P, Pihko E, Lano A, Vanhatalo S, Andersson S, Autti T, Valanne L, Metsäranta M, Lauronen L. Evaluation of somatosensory cortical processing in extremely preterm infants at term with MEG and EEG. Clin Neurophysiol 2015; 126:275-83. [DOI: 10.1016/j.clinph.2014.05.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
|
11
|
Baumgärtner U, Greffrath W, Treede RD. Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials: Merits and limitations for basic science and clinical use. Neurophysiol Clin 2012; 42:267-80. [DOI: 10.1016/j.neucli.2012.06.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 06/05/2012] [Accepted: 06/25/2012] [Indexed: 12/13/2022] Open
|
12
|
Lelic D, Mørch C, Hennings K, Andersen O, Drewes A. Differences in perception and brain activation following stimulation by large versus small area cutaneous surface electrodes. Eur J Pain 2011; 16:827-37. [DOI: 10.1002/j.1532-2149.2011.00063.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2011] [Indexed: 11/05/2022]
Affiliation(s)
- D. Lelic
- Mech-Sense; Department of Gastroenterology; Aalborg Hospital, Aarhus University; Aalborg; Denmark
| | - C.D. Mørch
- Integrative Neuroscience Group; Centre for Sensory-Motor Interactions (SMI); Aalborg University; Aalborg; Denmark
| | - K. Hennings
- Integrative Neuroscience Group; Centre for Sensory-Motor Interactions (SMI); Aalborg University; Aalborg; Denmark
| | - O.K. Andersen
- Integrative Neuroscience Group; Centre for Sensory-Motor Interactions (SMI); Aalborg University; Aalborg; Denmark
| | | |
Collapse
|
13
|
de Tommaso M, Santostasi R, Devitofrancesco V, Franco G, Vecchio E, Delussi M, Livrea P, Katzarava Z. A comparative study of cortical responses evoked by transcutaneous electrical vs CO2 laser stimulation. Clin Neurophysiol 2011; 122:2482-7. [DOI: 10.1016/j.clinph.2011.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 11/16/2022]
|
14
|
Valeriani M. How much does the neurophysiological assessment of the nociceptive pathways cost? Clin Neurophysiol 2011; 122:2334-5. [PMID: 21703924 DOI: 10.1016/j.clinph.2011.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 11/18/2022]
|
15
|
Multichannel matching pursuit validation and clustering—A simulation and empirical study. J Neurosci Methods 2011; 196:190-200. [DOI: 10.1016/j.jneumeth.2010.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/21/2022]
|
16
|
Abstract
BACKGROUND AND AIM Hepatic encephalopathy (HE) is a severe and frequent complication of liver cirrhosis characterized by abnormal cerebral function. Little is known about the underlying neural mechanisms in HE and human data are sparse. Electrophysiological methods such as evoked brain potentials after somatic stimuli can be combined with inverse modeling of the underlying brain activity. Thereby, information on neuronal dynamics and brain activity can be studied in vivo. The aim of this study was to investigate the sensory brain processing in patients with HE. PATIENTS AND METHODS Twelve patients with minimal or overt HE and 26 healthy volunteers were included in the study. Cerebral sensory processing was investigated as (i) an auditory reaction time task; (ii) visual and somatosensory evoked brain potentials, and (iii) reconstruction of the underlying brain activity. RESULTS Somatosensory evoked potentials were reproducible (all P>0.05), whereas flash evoked potentials were not reproducible (all P<0.05). Compared with healthy volunteers, the patient group had a prolonged reaction time index (P=0.03) along with increasing prolongation of latencies of median nerve evoked potentials (P<0.03). Reconstruction of the underlying brain sources showed a lateral shift in source localization of the P45 (P<0.001) and N60 components (P=0.02). A correlation between the psychometric hepatic encephalopathy score and the dipole shift corresponding to the N60 (P=0.003) component was seen. CONCLUSION HE patients have evidence of prolonged intracerebral nerve conduction, along with lateralization of brain activity following median nerve stimulation. This possibly represents cortical reorganization and may be important in our understanding of this condition.
Collapse
|
17
|
Caetano G, Olausson H, Cole J, Jousmäki V, Hari R. Cortical responses to Aδ-fiber stimulation: magnetoencephalographic recordings in a subject lacking large myelinated afferents. Cereb Cortex 2009; 20:1898-903. [PMID: 19959562 PMCID: PMC2901021 DOI: 10.1093/cercor/bhp260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Controversy persists over the role of the primary somatosensory cortex (SI) in processing small-fiber peripheral afferent input. We therefore examined subject I.W, who, due to sensory neuronopathy syndrome, has no large-fiber afferents below C3 level. Cortical evoked responses were recorded with a whole-scalp neuromagnetometer to high-intensity electrical stimulation of the distal right radial, median, and tibial nerves and skin over the forearm and mechanical stimulation of (neurologically intact) lip. The responses to electrical stimulation in the Aβ-denervated limbs peaked at 110–140 ms in contralateral SI and at 140–220 ms in contralateral secondary somatosensory cortex (SII), consistent with Aδ-mediated input. I.W. was able to localize pin-prick stimuli with 4 cm accuracy. Responses to laser stimuli on the radial dorsum of the hand peaked in contralateral SII cortex at 215 ms, also compatible with Aδ-mediated input. These results support the role of the SI cortex in processing the sensory discriminative aspects of Aδ-mediated input.
Collapse
Affiliation(s)
- Gina Caetano
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 Espoo, Finland
| | | | | | | | | |
Collapse
|
18
|
de Tommaso M, Calabrese R, Vecchio E, De Vito Francesco V, Lancioni G, Livrea P. Effects of affective pictures on pain sensitivity and cortical responses induced by laser stimuli in healthy subjects and migraine patients. Int J Psychophysiol 2009; 74:139-48. [DOI: 10.1016/j.ijpsycho.2009.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/25/2009] [Accepted: 08/17/2009] [Indexed: 12/24/2022]
|
19
|
Lelic D, Gratkowski M, Valeriani M, Arendt-Nielsen L, Drewes AM. Inverse modeling on decomposed electroencephalographic data: a way forward? J Clin Neurophysiol 2009; 26:227-35. [PMID: 19584750 DOI: 10.1097/wnp.0b013e3181aed1a1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inverse modeling is typically applied to instantaneous electroencephalogram signals. However, this approach has several shortcomings including its instability to model multiple and deep located dipole sources and the interference of background noise may hamper the sensitivity, stability, and precision of the estimated dipoles. This article validates different dipole estimation techniques to find the most optimal combination of different analysis principles using both simulations and recordings. Electroencephalogram data were simulated with six known source locations. First, a dataset was simulated with sources chosen to mimic somatosensory-evoked potentials to electrical stimuli. Additionally, 20 further datasets were simulated each containing six randomly located and oriented sources. The simulated sources included superficial, deep, and simultaneously active sources. Furthermore, somatosensory-evoked potentials to median nerve stimuli were recorded from one subject. On both simulated and recorded evoked potential data, three different methods of signal decomposition were compared: independent component analysis (ICA), second-order blind identification (SOBI), and multichannel matching pursuit (MMP). For inverse modeling of the brain sources, the DIPFIT function of the EEGLAB software was used on raw and decomposed data. MMP was able to separate all simulated components that corresponded to superficial, deep, and simultaneously active sources. ICA and SOBI were only able to find components that corresponded to superficial sources. For the 20 randomized simulations, the results from the evoked potential simulation were reproduced. Inverse modeling on MMP components (atoms) was better than on ICA or SOBI components (P < 0.001). DIPFIT on MMP atoms localized 99.2% of the simulated dipoles in correct areas with their correct time/frequency distribution. DIPFIT on ICA and SOBI components localized 35% and 39.6%, respectively of the simulated dipoles in correct areas. As for the real-evoked potentials recorded in one subject, DIPFIT on MMP atoms allowed us to build a dipole model closer to the current physiological knowledge than dipole modeling of ICA and SOBI components. The results show that using MMP before inverse modeling is a reliable way to noninvasively estimate cortical activation.
Collapse
Affiliation(s)
- Dina Lelic
- Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Aarhus University, Aalborg, Denmark
| | | | | | | | | |
Collapse
|
20
|
Ding L, He B. Sparse source imaging in electroencephalography with accurate field modeling. Hum Brain Mapp 2009; 29:1053-67. [PMID: 17894400 PMCID: PMC2612127 DOI: 10.1002/hbm.20448] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have developed a new L1-norm based generalized minimum norm estimate (GMNE) and have fully characterized the concept of sparseness regularization inherited in the proposed algorithm, which is termed as sparse source imaging (SSI). The new SSI algorithm corrects inaccurate source field modeling in previously reported L1-norm GMNEs and proposes that sparseness a priori should only be applied to the regularization term, not to the data term in the formulation of the regularized inverse problem. A new solver to the newly developed SSI has been adopted and known as the second-order cone programming. The new SSI is assessed by a series of simulations and then evaluated using somatosensory evoked potential (SEP) data with both scalp and subdural recordings in a human subject. The performance of SSI is compared with other L1-norm GMNEs and L2-norm GMNEs using three evaluation metrics, i.e., localization error, orientation error, and strength percentage. The present simulation results indicate that the new SSI has significantly improved performance in all evaluation metrics, especially in the metric of orientation error. L2-norm GMNEs show large orientation errors because of the smooth regularization. The previously reported L1-norm GMNEs show large orientation errors due to the inaccurate source field modeling. The SEP source imaging results indicate that SSI has the best accuracy in the prediction of subdural potential field as validated by direct subdural recordings. The new SSI algorithm is also applicable to MEG source imaging.
Collapse
Affiliation(s)
- Lei Ding
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
21
|
Nir RR, Lev R, Moont R, Granovsky Y, Sprecher E, Yarnitsky D. Neurophysiology of the cortical pain network: revisiting the role of S1 in subjective pain perception via standardized low-resolution brain electromagnetic tomography (sLORETA). THE JOURNAL OF PAIN 2008; 9:1058-69. [PMID: 18708299 DOI: 10.1016/j.jpain.2008.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/10/2008] [Accepted: 06/17/2008] [Indexed: 11/15/2022]
Abstract
UNLABELLED Multiple studies have supported the usefulness of standardized low-resolution brain electromagnetic tomography (sLORETA) in localizing generators of scalp-recorded potentials. The current study implemented sLORETA on pain event-related potentials, primarily aiming at validating this technique for pain research by identifying well-known pain-related regions. Subsequently, we pointed at investigating the still-debated and ambiguous topic of pain intensity coding at these regions, focusing on their relative impact on subjective pain perception. sLORETA revealed significant activations of the bilateral primary somatosensory (SI) and anterior cingulate cortices and of the contralateral operculoinsular and dorsolateral prefrontal (DLPFC) cortices (P < .05 for each). Activity of these regions, excluding DLPFC, correlated with subjective numerical pain scores (P < .05 for each). However, a multivariate regression analysis (R = .80; P = .024) distinguished the contralateral SI as the only region whose activation magnitude significantly predicted the subjective perception of noxious stimuli (P = .020), further substantiated by a reduced regression model (R = .75, P = .008). Based on (1) correspondence of the pain-activated regions identified by sLORETA with the acknowledged imaging-based pain-network and (2) the contralateral SI proving to be the most contributing region in pain intensity coding, we found sLORETA to be an appropriate tool for relevant pain research and further substantiated the role of SI in pain perception. PERSPECTIVE Because the literature of pain intensity coding offers inconsistent findings, the current article used a novel tool for revisiting this controversial issue. Results suggest that it is the activation magnitude of SI, which solely establishes the significant correlation with subjective pain ratings, in accordance with the classical clinical thinking, relating SI lesions to diminished perception of pain. Although this study cannot support a causal relation between SI activation magnitude and pain perception, such relation might be insinuated.
Collapse
Affiliation(s)
- Rony-Reuven Nir
- Laboratory of Clinical Neurophysiology, Department of Neurology, Rambam Health Care Campus, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Barba C, Valeriani M, Colicchio G, Mauguière F. New depth short-latency somatosensory evoked potential (SEP) component recorded in human SI area. Neurosci Lett 2008; 432:179-83. [PMID: 18226449 DOI: 10.1016/j.neulet.2007.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/01/2007] [Accepted: 12/11/2007] [Indexed: 11/25/2022]
Abstract
To analyse short and long-latency (SEPs) recorded by chronically stereotactically electrodes implanted in SI area of two epileptic patients. Two drug-resistant epileptic patients (2 females, 38 and 15 years, respectively) suffering from left temporal and right frontal epilepsy respectively, were investigated by an electrode-chronically implanted in SI area. Short and long latency somatosensory evoked potentials were recorded by depth electrodes 10 days after implantation. This is the first study to describe a depth N36 response by an intracerebral recording electrode in the SI area, probably generated by a radially oriented generator, located in area 1. Furthermore, we confirmed a role of SI in the genesis of N60 component. Finally, our present data suggest that the SI area is still active at 120 ms after the stimulus, since in one patient (no. 2) we identified a N120 potential, reaching its maximal amplitude at the same depth as the N20 response.
Collapse
Affiliation(s)
- C Barba
- Neurosciences Department, Pediatric Hospital Meyer, Via Luca Giordano 13, Florence, Italy.
| | | | | | | |
Collapse
|
23
|
Hauck M, Lorenz J, Engel AK. Role of Synchronized Oscillatory Brain Activity for Human Pain Perception. Rev Neurosci 2008; 19:441-50. [DOI: 10.1515/revneuro.2008.19.6.441] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Valeriani M, Tonali P, De Armas L, Mariani S, Vigevano F, Le Pera D. Nociceptive contribution to the evoked potentials after painful intramuscular electrical stimulation. Neurosci Res 2007; 60:170-5. [PMID: 18068249 DOI: 10.1016/j.neures.2007.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/01/2007] [Accepted: 10/22/2007] [Indexed: 11/18/2022]
Abstract
Our study aimed at investigating the nociceptive contribution to the somatosensory evoked potentials after electrical intramuscular stimulation (mSEPs) at painful intensity. Scalp mSEPs were recorded in 10 healthy subjects after electrical stimulation of the left brachioradialis muscle at three intensities: non-painful (I2), slightly painful (I4) and moderately painful (I6). For each intensity, mSEPs were recorded in a neutral condition (NC) in which subjects did not have any task, and in an attention condition (AC) in which subjects were asked to count the number of stimuli. In both NC and AC, the N120 and P220 amplitudes were significantly higher at I6 than at I2. While the N120 amplitude did not vary between NC and AC, the P220 amplitude was significantly higher in AC than in NC at all stimulus intensities. Our results suggest that nociceptive inputs contribute to the N120 amplitude increase at painful stimulus intensity, while the P220 amplitude is more sensitive to changes of subjects' attention level. Therefore, the N120 amplitude increase to moderately painful stimuli, as compared to non-painful stimuli, may represent a marker of the activation of the muscular thin myelinated afferents.
Collapse
Affiliation(s)
- Massimiliano Valeriani
- Division of Neurology, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Polácek H, Kozák J, Vrba I, Vrána J, Stancák A. Effects of spinal cord stimulation on the cortical somatosensory evoked potentials in failed back surgery syndrome patients. Clin Neurophysiol 2007; 118:1291-302. [PMID: 17452003 DOI: 10.1016/j.clinph.2007.02.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the functional activation of the somatosensory cortical regions in neuropathic pain patients during therapeutic spinal cord stimulation (SCS). METHODS In nine failed back surgery syndrome patients, the left tibial and the left sural nerves were stimulated in two sessions with intensities at motor and pain thresholds, respectively. The cortical somatosensory evoked potentials were analyzed using source dipole analysis based on 111 EEG signals. RESULTS The short-latency components of the source located in the right primary somatosensory cortex (SI: 43, 54 and 65ms) after tibial nerve stimulation, the mid-latency SI component (87ms) after sural nerve stimulation, and the mid-latency components in the right (approximately 161ms) and left (approximately 168ms) secondary somatosensory cortices (SII) were smaller in the presence of SCS than in absence of SCS. The long-latency source component arising from the mid-cingulate cortex (approximately 313ms) was smaller for tibial and larger for sural nerve stimuli during SCS periods compared to periods without SCS. CONCLUSIONS SCS attenuates the somatosensory processing in the SI and SII. In the mid-cingulate cortex, the effect of SCS depends on the type of stimulation and nerve fibers involved. SIGNIFICANCE Results suggest that the effects of SCS on cortical somatosensory processing may contribute to a reduction of allodynia during SCS.
Collapse
Affiliation(s)
- Hubert Polácek
- Charles University Prague, Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Ke Karlovu 4, Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
26
|
Godinho F, Magnin M, Frot M, Perchet C, Garcia-Larrea L. Emotional modulation of pain: is it the sensation or what we recall? J Neurosci 2006; 26:11454-61. [PMID: 17079675 PMCID: PMC6674534 DOI: 10.1523/jneurosci.2260-06.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/30/2006] [Accepted: 08/30/2006] [Indexed: 11/21/2022] Open
Abstract
Emotions modulate pain perception, although the mechanisms underlying this phenomenon remain unclear. In this study, we show that intensity reports significantly increased when painful stimuli were concomitant to images showing human pain, whereas pictures with identical emotional values but without somatic content failed to modulate pain. Early somatosensory responses (<200 ms) remained unmodified by emotions. Conversely, late responses showed a significant enhancement associated with increased pain ratings, localized to the right prefrontal, right temporo-occipital junction, and right temporal pole. In contrast to selective attention, which enhances pain ratings by increasing sensory gain, emotions triggered by seeing other people's pain did not alter processing in SI-SII (primary and second somatosensory areas), but may have biased the transfer to, and the representation of pain in short-term memory buffers (prefrontal), as well as the affective assignment to this representation (temporal pole). Memory encoding and recall, rather than sensory processing, appear to be modulated by empathy with others' physical suffering.
Collapse
Affiliation(s)
- Fabio Godinho
- Equipe Mixte INSERM 342, Central Integration of Pain, Hôpital Neurologique Pierre Wertheimer, 69003 Lyon, France.
| | | | | | | | | |
Collapse
|
27
|
Pleger B, Ragert P, Schwenkreis P, Förster AF, Wilimzig C, Dinse H, Nicolas V, Maier C, Tegenthoff M. Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. Neuroimage 2006; 32:503-10. [PMID: 16753306 DOI: 10.1016/j.neuroimage.2006.03.045] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/22/2006] [Accepted: 03/21/2006] [Indexed: 11/25/2022] Open
Abstract
In the complex regional pain syndrome (CRPS), several theories proposed the existence of pathophysiological mechanisms of central origin. Recent studies highlighted a smaller representation of the CRPS-affected hand on the primary somatosensory cortex (SI) during non-painful stimulation of the affected side. We addressed the question whether reorganizational changes can also be found in the secondary somatosensory cortex (SII). Moreover, we investigated whether cortical changes might be accompanied by perceptual changes within associated skin territories. Seventeen patients with CRPS of one upper limb without the presence of peripheral nerve injuries (type I) were subjected to functional magnetic resonance imaging (fMRI) during electrical stimulation of both index fingers (IFs) in order to assess hemodynamic signals of the IF representation in SI and SII. As a marker of tactile perception, we tested 2-point discrimination thresholds on the tip of both IFs. Cortical signals within SI and SII were significantly reduced contralateral to the CRPS-affected IF as compared to the ipsilateral side and to the representation of age- and sex-matched healthy controls. In parallel, discrimination thresholds of the CRPS-affected IF were significantly higher, giving rise to an impairment of tactile perception within the corresponding skin territory. Mean sustained, but not current pain levels were correlated with the amount of sensory impairment and the reduction in signal strength. We conclude that patterns of cortical reorganization in SI and SII seem to parallel impaired tactile discrimination. Furthermore, the amount of reorganization and tactile impairment appeared to be linked to characteristics of CRPS pain.
Collapse
Affiliation(s)
- Burkhard Pleger
- Department of Neurology, BG-Kliniken Bergmannsheil, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany; University College London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Insola A, Mazzone P, Valeriani M. Somatosensory evoked potential and clinical changes after electrode implant in basal ganglia of parkinsonian patients. Muscle Nerve 2006; 32:791-7. [PMID: 16124001 DOI: 10.1002/mus.20430] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Median nerve somatosensory evoked potentials (SEPs) were recorded in three parkinsonian patients who underwent electrode implant in the subthalamic nucleus and/or globus pallidus for chronic deep brain stimulation (DBS). SEPs were evoked before surgery, in a medication-free condition, and after the functional stereotactic procedure, before beginning DBS. In order to evaluate the timing of the SEP changes after the electrode implant, in three further patients SEPs were recorded within the operating theater, before and immediately after the implantation. Patients' symptoms improved immediately after the electrode implant, and both N20 and N30 amplitudes increased in the postsurgical SEP recording. The clinical and neurophysiological effects observed after surgery, before commencing DBS, can be explained by microdamage in the target nucleus following the electrode implant. They occurred also in the patients studied in the operating theater, thus suggesting that they occur immediately after the stereotactic procedure. Our results suggest that the circuitries between the basal ganglia and the primary sensorimotor cortex may be modified not only by DBS but also by microdamage due to surgery and that they exert an important influence on SEP amplitude.
Collapse
Affiliation(s)
- Angelo Insola
- Unità Operativa di Neurofisiopatologia, Centro Traumatologico Ortopedico, Rome, Italy
| | | | | |
Collapse
|
29
|
Niddam DM, Chen LF, Wu YT, Hsieh JC. Spatiotemporal brain dynamics in response to muscle stimulation. Neuroimage 2005; 25:942-51. [PMID: 15808994 DOI: 10.1016/j.neuroimage.2004.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/19/2004] [Accepted: 12/02/2004] [Indexed: 11/22/2022] Open
Abstract
The objective of the present study was to assess the spatiotemporal scenario of brain activity associated with sensory stimulation of the abductor pollicis brevis muscle. Spatiotemporal dipole models, using realistic individual boundary element head models, were built from somatosensory evoked potentials (SEPs; 64 Ch. EEG) to nonpainful and painful intramuscular electrostimulation (IMES) as well as to cutaneous electrostimulation delivered to the distal phalanx of the thumb. Nonpainful and painful muscle stimuli resulted in activation of the same brain regions. In temporal order, these were: the contralateral primary sensorimotor cortex, contralateral dorso-lateral premotor area (PM), bilateral operculo-insular cortices, caudal cingulate motor area (CMA), and posterior cingulate cortex/precuneus. Brain processing induced by muscle sensory input showed a characteristic pattern in contrast to cutaneous sensory input, namely: (1) no early SEP components to IMES; (2) an initial IMES component likely generated by proprioceptive input is not present for digit stimulation; (3) one source was located in the PM only for IMES. This source was unmasked by the lower stimulus intensity; (4) a source for IMES was located in the contralateral caudal CMA rather than being located in the cingulate gyrus. Cerebral sensory processing of input from the muscle involved several sensory and motor areas and likely occurs in two parallel streams subserving higher order somatosensory processing as well as sensory-motor integration. The two streams might on one hand involve sensory discrimination via SI and SII and on the other hand integration of sensory feedback for further motor processing via MI, lateral PM area, and caudal CMA.
Collapse
Affiliation(s)
- David M Niddam
- Center for Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
30
|
Yao J, Dewald JPA. Evaluation of different cortical source localization methods using simulated and experimental EEG data. Neuroimage 2005; 25:369-82. [PMID: 15784415 DOI: 10.1016/j.neuroimage.2004.11.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 07/23/2004] [Accepted: 11/29/2004] [Indexed: 11/17/2022] Open
Abstract
Different cortical source localization methods have been developed to directly link the scalp potentials with the cortical activities. Up to now, these methods are the only possible solution to noninvasively investigate cortical activities with both high spatial and time resolutions. However, the application of these methods is hindered by the fact that they have not been rigorously evaluated nor compared. In this paper, the performances of several source localization methods (moving dipoles, minimum Lp norm, and low resolution tomography (LRT) with Lp norm, p equal to 1, 1.5, and 2) were evaluated by using simulated scalp EEG data, scalp somatosensory evoked potentials (SEPs), and upper limb motor-related potentials (MRPs) obtained on human subjects (all with 163 scalp electrodes). By using simulated EEG data, we first evaluated the source localization ability of the above methods quantitatively. Subsequently, the performance of the various methods was evaluated qualitatively by using experimental SEPs and MRPs. Our results show that the overall LRT Lp norm method with p equal to 1 has a better source localization ability than any of the other investigated methods and provides physiologically meaningful reconstruction results. Our evaluation results provide useful information for choosing cortical source localization approaches for future EEG/MEG studies.
Collapse
Affiliation(s)
- Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
31
|
Stancák A, Polácek H, Vrána J, Rachmanová R, Hoechstetter K, Tintra J, Scherg M. EEG source analysis and fMRI reveal two electrical sources in the fronto-parietal operculum during subepidermal finger stimulation. Neuroimage 2005; 25:8-20. [PMID: 15734339 DOI: 10.1016/j.neuroimage.2004.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 10/08/2004] [Accepted: 10/25/2004] [Indexed: 11/21/2022] Open
Abstract
Using functional magnetic resonance imaging (fMRI) and electroencephalographic (EEG) source dipole analysis in 10 normal subjects, two electrical source dipoles in the contralateral fronto-parietal operculum were identified during repetitive painful subepidermal stimulation of the right index finger. The anterior source dipole peaking at 79 +/- 8 ms (mean +/- SD) was located in the frontal operculum, and oriented tangentially toward the cortical surface. The posterior source dipole peaking at 118 +/- 12 ms was located in the upper bank of the Sylvian fissure corresponding to the second somatosensory cortex (S2). The orientations of the posterior source dipoles displayed large variability, but differed significantly (P < 0.05) from the orientations of the anterior source dipoles. Electrical sources and fMRI clusters were also observed in ipsilateral fronto-parietal operculum. However, due to low signal-to-noise ratio of ipsilateral EEG sources in individual recordings, separation of sources into anterior and posterior clusters was not performed. Combined fMRI and source dipole EEG analysis of individual data suggests the presence of two distinct electrical sources in the fronto-parietal operculum participating in processing of somatosensory stimuli. The anterior region of the fronto-parietal operculum shows earlier peak activation than the posterior region.
Collapse
Affiliation(s)
- Andrej Stancák
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Praha 2, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
32
|
Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005; 9:463-84. [PMID: 15979027 DOI: 10.1016/j.ejpain.2004.11.001] [Citation(s) in RCA: 2108] [Impact Index Per Article: 110.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 11/02/2004] [Indexed: 12/31/2022]
Abstract
CONTEXT The perception of pain due to an acute injury or in clinical pain states undergoes substantial processing at supraspinal levels. Supraspinal, brain mechanisms are increasingly recognized as playing a major role in the representation and modulation of pain experience. These neural mechanisms may then contribute to interindividual variations and disabilities associated with chronic pain conditions. OBJECTIVE To systematically review the literature regarding how activity in diverse brain regions creates and modulates the experience of acute and chronic pain states, emphasizing the contribution of various imaging techniques to emerging concepts. DATA SOURCES MEDLINE and PRE-MEDLINE searches were performed to identify all English-language articles that examine human brain activity during pain, using hemodynamic (PET, fMRI), neuroelectrical (EEG, MEG) and neurochemical methods (MRS, receptor binding and neurotransmitter modulation), from January 1, 1988 to March 1, 2003. Additional studies were identified through bibliographies. STUDY SELECTION Studies were selected based on consensus across all four authors. The criteria included well-designed experimental procedures, as well as landmark studies that have significantly advanced the field. DATA SYNTHESIS Sixty-eight hemodynamic studies of experimental pain in normal subjects, 30 in clinical pain conditions, and 30 using neuroelectrical methods met selection criteria and were used in a meta-analysis. Another 24 articles were identified where brain neurochemistry of pain was examined. Technical issues that may explain differences between studies across laboratories are expounded. The evidence for and the respective incidences of brain areas constituting the brain network for acute pain are presented. The main components of this network are: primary and secondary somatosensory, insular, anterior cingulate, and prefrontal cortices (S1, S2, IC, ACC, PFC) and thalamus (Th). Evidence for somatotopic organization, based on 10 studies, and psychological modulation, based on 20 studies, is discussed, as well as the temporal sequence of the afferent volley to the cortex, based on neuroelectrical studies. A meta-analysis highlights important methodological differences in identifying the brain network underlying acute pain perception. It also shows that the brain network for acute pain perception in normal subjects is at least partially distinct from that seen in chronic clinical pain conditions and that chronic pain engages brain regions critical for cognitive/emotional assessments, implying that this component of pain may be a distinctive feature between chronic and acute pain. The neurochemical studies highlight the role of opiate and catecholamine transmitters and receptors in pain states, and in the modulation of pain with environmental and genetic influences. CONCLUSIONS The nociceptive system is now recognized as a sensory system in its own right, from primary afferents to multiple brain areas. Pain experience is strongly modulated by interactions of ascending and descending pathways. Understanding these modulatory mechanisms in health and in disease is critical for developing fully effective therapies for the treatment of clinical pain conditions.
Collapse
Affiliation(s)
- A Vania Apkarian
- Department of Physiology, Northwestern University Medical School, 303 E. Chicago Avenue, Ward 5-003, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
33
|
Kakigi R, Inui K, Tamura Y. Electrophysiological studies on human pain perception. Clin Neurophysiol 2005; 116:743-63. [PMID: 15792883 DOI: 10.1016/j.clinph.2004.11.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/08/2004] [Accepted: 11/09/2004] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We reviewed the recent progress in electrophysiological studies using electroencephalography (EEG), magnetoencephalography (MEG) and repetitive transcranial magnetic stimulation (rTMS) on human pain perception. METHODS For recording activities following A delta fiber stimulation relating to first pain, several kinds of lasers such as CO2, Tm:YAG and argon lasers are now widely used. The activity is frequently termed laser evoked potential (LEP), and we reviewed previous basic and clinical reports on LEP. We also introduced our new method, epidermal stimulation (ES), which is useful for recording brain activities by the signals ascending through A delta fibers. For recording activities following C fiber stimulation relating to second pain, several methods have been used but weak CO2 laser stimuli applied to tiny areas of the skin were recently used. RESULTS EEG and MEG findings following C fiber stimulation were similar to those following A delta fiber stimulation except for a longer latency. Finally, we reviewed the effect of rTMS on acute pain perception. rTMS alleviated acute pain induced by intracutaneous injection of capsaicin, which activated C fibers, but it enhanced acute pain induced by laser stimulation, which activated A delta fibers. CONCLUSIONS One promising approach in the near future is to analyze the change of a frequency band. This method will probably be used for evaluation of continuous tonic pain such as cancer pain, which evoked response studies cannot evaluate.
Collapse
Affiliation(s)
- Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
| | | | | |
Collapse
|
34
|
Barba C, Valeriani M, Colicchio G, Tonali P, Restuccia D. Parietal generators of low- and high-frequency MN (median nerve) SEPs: data from intracortical human recordings. Clin Neurophysiol 2004; 115:647-57. [PMID: 15036061 DOI: 10.1016/j.clinph.2003.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2003] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To identify low and high-frequency median nerve (MN) somatosensory evoked potential (SEP) generators by means of chronically implanted electrodes in the parietal lobe (SI and neighbouring areas) of two epileptic patients. METHODS Wide-pass short-latency and long-latency SEPs to electrical MN stimulation were recorded in two epileptic patients by stereotactically chronically implanted electrodes in the parietal lobe (SI and neighbouring areas). To study high-frequency responses (HFOs) an off-line digital filtering of depth short-latency SEPs was performed (500-800 Hz, 24 dB roll-off). Spectral analysis was performed by fast Fourier transform. RESULTS In both patients we recorded a N20/P30 potential followed by a biphasic N50/P70 response. A little negative response in the 100 ms latency range was the last detectable wide-pass SEP in both patients. Two HFOs components (called iP1 and iP2) were detected by mere visual analysis and spectral analysis, and were supposed to be originated within the parietal cortex. CONCLUSIONS This was the very first study that recorded wide bandpass and high frequency SEPs by electrodes, exploring both the lateral and the mesial part of the parietal lobe and particularly that of the post-central gyrus.
Collapse
Affiliation(s)
- C Barba
- Department of Neurosurgery, Catholic University, Rome, Italy.
| | | | | | | | | |
Collapse
|
35
|
Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin 2004; 33:279-92. [PMID: 14678842 DOI: 10.1016/j.neucli.2003.10.008] [Citation(s) in RCA: 403] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In this work we review data on cortical generators of laser-evoked potentials (LEPs) in humans, as inferred from dipolar modelling of scalp EEG/MEG results, as well as from intracranial data recorded with subdural grids or intracortical electrodes. The cortical regions most consistently tagged as sources of scalp LERs are the suprasylvian region (parietal operculum, SII) and the anterior cingulate cortex (ACC). Variability in opercular sources across studies appear mainly in the anterior-posterior direction, where sources tend to follow the axis of the Sylvian fissure. As compared with parasylvian activation described in functional pain imaging studies, LEP opercular sources tended to cluster at more superior sites and not to involve the insula. The existence of suprasylvian opercular LEPs has been confirmed by both epicortical (subdural) and intracortical recordings. In dipole-modelling studies, these sources appear to become active less than 150 ms post-stimulus, and remain in action for longer than opercular responses recorded intracortically, thus suggesting that modelled opercular dipoles reflect a "lumped" activation of several sources in the suprasylvian region, including both the operculum and the insula. Participation of SI sources to explain LEP scalp distribution remains controversial, but evidence is emerging that both SI and opercular sources may be concomitantly activated by laser pulses, with very similar time courses. Should these data be confirmed, it would suggest that a parallel processing in SI and SII has remained functional in humans for noxious inputs, whereas hierarchical processing from SI toward SII has emerged for other somatosensory sub-modalities. The ACC has been described as a source of LEPs by virtually all EEG studies so far, with activation times roughly corresponding to scalp P2. Activation is generally confined to area 24 in the caudal ACC, and has been confirmed by subdural and intracortical recordings. The inability of most MEG studies to disclose such ACC activity may be due to the radial orientation of ACC currents relative to scalp. ACC dipole sources have been consistently located between the VAC and VPC lines of Talairach's space, near to the cingulate subsections activated by motor tasks involving control of the hand. Together with the fact that scalp activities at this latency are very sensitive to arousal and attention, this supports the hypothesis that laser-evoked ACC activity may underlie orienting reactions tightly coupled with limb withdrawal (or control of withdrawal). With much less consistency than the above-mentioned areas, posterior parietal, medial temporal and anterior insular regions have been occasionally tagged as possible contributors to LEPs. Dipoles ascribed to medial temporal lobe may be in some cases re-interpreted as being located at or near the insular cortex. This would make sense as the insular region has been shown to respond to thermal pain stimuli in both functional imaging and intracranial EEG studies.
Collapse
Affiliation(s)
- L Garcia-Larrea
- Inserm EMI-0342, Human Neuro. Laboratory at CERMEP, Hôpital Neurologique, 59 Boulevard Pinel, 69003 Lyon, France.
| | | | | |
Collapse
|
36
|
Mauguière F. Chapter 7 The role of secondary somatosensory cortex and insula in pain. ACTA ACUST UNITED AC 2004; 57:62-71. [PMID: 16106606 DOI: 10.1016/s1567-424x(09)70343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- François Mauguière
- Department of Functional Neurology and Epileptology, Federative Institute of Neurosciences, Neurological Hospital, 59 boulevard Pinel, 69 003, Lyon, France.
| |
Collapse
|
37
|
Peyron R, Frot M, Schneider F, Garcia-Larrea L, Mertens P, Barral FG, Sindou M, Laurent B, Mauguière F. Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. Neuroimage 2002; 17:1336-46. [PMID: 12414273 DOI: 10.1006/nimg.2002.1315] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insular and SII cortices have been consistently shown by PET, fMRI, EPs, and MEG techniques to be activated bilaterally by a nociceptive stimulation. The aim of the present study was to refer to, and to compare within a common stereotactic space, the nociceptive responses obtained in humans by (i) PET, (ii) fMRI, (iii) dipole modeling of scalp LEPs, and (iv) intracerebral recordings of LEPs. PET, fMRI, and scalp LEPs were obtained from normal subjects during thermal pain. Operculoinsular LEPs were obtained from 13 patients using deep brain electrodes implanted for presurgical evaluation of drug-resistant epilepsy. Whatever the technique, we obtained responses which were located bilaterally in the insular and SII cortices. In electrophysiological responses (LEPs) the SII insular contribution peaked between 150 and 250 ms poststimulus and corresponded to the earliest portions of the whole cerebral response. Group analysis of PET and fMRI data showed highly consistent responses contralateral to stimulation. On single-subject analysis, LEPs and fMRI activations were concentrated in relatively restricted volumes even though spatial sampling was quite different for both techniques. Despite our multimodal approach, however, it was not possible to separate insular from SII activities. Individual variations in the anatomy and function of SII and insular cortices may explain this limitation. This multimodal study provides, however, cross-validated spatial and temporal information on the pain-related processes occurring in the operculoinsular region, which thus appears as a major site for the early cortical pain encoding in the human brain.
Collapse
Affiliation(s)
- R Peyron
- Clinical Neurophysiology and Epileptology Department, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stancak A, Hoechstetter K, Tintera J, Vrana J, Rachmanova R, Kralik J, Scherg M. Source activity in the human secondary somatosensory cortex depends on the size of corpus callosum. Brain Res 2002; 936:47-57. [PMID: 11988229 DOI: 10.1016/s0006-8993(02)02502-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
If corpus callosum (CC) mediates the activation of the secondary somatosensory area (SII) ipsilateral to the side of stimulation, then the peak latencies of the contra- and ipsilateral SII activity as well as the amplitude of the ipsilateral SII activity should correlate with the size of CC. Innocuous electrical stimuli of five different intensities were applied to the ventral surface of the right index finger in 15 right-handed men. EEG was recorded using 82 closely spaced electrodes. The size of CC and of seven callosal regions was measured from the mid-sagittal slice of a high-resolution anatomical MRI. The activation in the contralateral and ipsilateral SII was evaluated using spatio-temporal source analysis. At the strongest stimulus intensity, the size of the intermediate part of the callosal truncus correlated negatively with the interpeak latency of the sources in ipsi- and contralateral SII (r = -0.83, P < 0.01). Stepwise regression analysis showed that the large size of the intermediate truncus of CC was paralleled by a latency reduction of peak activity of the ipsilateral SII, whereas both contra- and ipsilateral peak latencies were positively correlated. The peak amplitude of the ipsilateral SII source correlated positively with the size of the intermediate truncus of CC, and with the peak amplitudes of sources in the primary somatosensory cortex (SI) and in the mesial frontal cortex. The results suggest that in right-handed neurologically normal men, the size of the intermediate callosal truncus contributes to the timing and amplitude of ipsilateral SII source activity.
Collapse
Affiliation(s)
- Andrej Stancak
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University Prague, Ke Karlovu 4, 120 00 2, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
39
|
Valeriani M, Fraioli L, Ranghi F, Giaquinto S. Dipolar source modeling of the P300 event-related potential after somatosensory stimulation. Muscle Nerve 2001; 24:1677-86. [PMID: 11745977 DOI: 10.1002/mus.1203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebral generators of the P300 potential evoked by somatosensory stimuli were investigated. Event-related potentials elicited by an oddball paradigm were recorded in 15 healthy subjects by 19 scalp electrodes. Nontarget and target electric stimuli were delivered on the anterior surface of the left elbow and of the wrist, respectively. Target traces showed an N140 potential followed by a widely distributed P300 response. Dipolar source modeling of target traces resulted in a six-dipole model. In the earlier latency range (up to 200 ms), one dipole in the contralateral perirolandic region and two dipoles in the parasylvian cortex of both hemispheres were activated. Two dipolar sources located bilaterally in the medial temporal region (MTR) showed their maximal activity at the P300 latency. Finally, a dipole in the contralateral frontal lobe was activated both at the latency of the N140 response and after 200 ms. It was found that two symmetrical MTR sources and a frontal dipole contributed to P300 generation.
Collapse
Affiliation(s)
- M Valeriani
- Casa di Cura San Raffaele Pisana, Tosinvest Sanità, via della Pisana 235, 00163 Rome, Italy.
| | | | | | | |
Collapse
|
40
|
Hoechstetter K, Rupp A, Stancák A, Meinck HM, Stippich C, Berg P, Scherg M. Interaction of tactile input in the human primary and secondary somatosensory cortex--a magnetoencephalographic study. Neuroimage 2001; 14:759-67. [PMID: 11506548 DOI: 10.1006/nimg.2001.0855] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of simultaneous tactile input at two finger sites in primary (SI) and secondary somatosensory cortex (SII) was studied by whole-head magnetoencephalography. Short pressure pulses were delivered to fingers of the right and left hand at an interstimulus interval of 1.6 s. The first phalanx of the left digit 1 and four other sites were stimulated either separately or simultaneously. We compared four sites with increasing distance: the second phalanx of left digit 1, left digit 5, and digits 1 and 5 of the right hand. The temporal evolution of source activity in the contralateral SI and bilateral SII was calculated using spatiotemporal source analysis. Interaction was assessed by comparing the source activity during simultaneous stimulation with the sum of the source activities elicited by separate stimulation. Significant suppressive interaction was observed in contralateral SI only for stimuli at the same hand, decreasing with distance. In SII, all digits of the same and the opposite hand interacted significantly with left digit 1. When stimulating bilaterally, SII source waveforms closely resembled the time course of the response to separate stimulation of the opposite hand. Thus, in bilateral simultaneous stimulation, the contralateral input arriving first in SII appeared to inhibit the later ipsilateral input. Similarly, the separate response to input at two unilateral finger sites which arrived slightly earlier in SII dominated the simultaneous response. Our results confirm previous findings of considerable overlap in the cortical hand representation in SII and illustrate hemispheric specialization to contralateral input when simultaneous stimuli occur bilaterally.
Collapse
Affiliation(s)
- K Hoechstetter
- Section of Biomagnetism, University Hospital of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Valeriani M, Le Pera D, Tonali P. Characterizing somatosensory evoked potential sources with dipole models: Advantages and limitations. Muscle Nerve 2001; 24:325-39. [PMID: 11353416 DOI: 10.1002/1097-4598(200103)24:3<325::aid-mus1002>3.0.co;2-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several methods have been developed to investigate the cerebral generators of scalp somatosensory evoked potentials (SEPs), because simple visual inspection of the electroencephalographic signal does not allow for immediate identification of the active brain regions. When the neurons fired by the afferent inputs are closely grouped, as usually occurs in SEP generation, they can be represented as a dipole, that is, as a linear source with two opposite poles. Several techniques for dipolar source modeling, which use different algorithms, have been employed to build source models of early, middle-latency, and late cognitive SEPs. Modifications of SEP dipolar activities after experimental maneuvers or in pathological conditions have also been observed. Although the effectiveness of dipolar source analysis should not be overestimated due to the intrinsic limitations of the approach, dipole modeling provides a means to assess SEPs in terms of cerebral sources and voltage fields that they produce over the head.
Collapse
Affiliation(s)
- M Valeriani
- Department of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | |
Collapse
|
42
|
Le Pera D, Svensson P, Valeriani M, Watanabe I, Arendt-Nielsen L, Chen AC. Long-lasting effect evoked by tonic muscle pain on parietal EEG activity in humans. Clin Neurophysiol 2000; 111:2130-7. [PMID: 11090762 DOI: 10.1016/s1388-2457(00)00474-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To explore EEG changes evoked by tonic experimental muscle pain compared to a non-painful vibratory stimulus. METHODS Thirty-one EEG channels were recorded before, during and after painful and non-painful stimulation. Pain was induced in the left brachioradialis muscle by injection of hypertonic (5%) saline. The vibratory stimulus was applied to the skin area overlying the brachioradialis muscle. The power of the major frequency components of the EEG activity (FFT, fast Fourier transform) was quantified and t-maps between the different experimental conditions were evaluated in frequency domain. RESULTS The main effect of muscle pain, compared to non-painful stimulation, was a significant and long-lasting increase of delta (1-3 Hz) power and an alpha-1 (9-11 Hz) power increase over the contralateral parietal locus. This finding could suggest a decreased excitability of the primary somatosensory cortex during muscle pain. The main effect of vibration, compared to its unstimulated baseline, consisted in an increase of beta-1 (14-20 Hz) power in the right frontal region. CONCLUSIONS Our data demonstrate significant and specific topographic EEG changes during tonic muscle pain. Since these modifications differ from those produced by an unstimulated baseline and during non-painful tonic stimulation, they might reflect mechanisms involved in the processing of nociceptive and adverse tonic stimuli.
Collapse
Affiliation(s)
- D Le Pera
- Laboratory for Experimental Pain Research, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| | | | | | | | | | | |
Collapse
|