Lai A, Ghaffari A, Ghahary A. Inhibitory effect of anti-aminopeptidase N/CD13 antibodies on fibroblast migration.
Mol Cell Biochem 2010;
343:191-9. [PMID:
20589526 PMCID:
PMC7088764 DOI:
10.1007/s11010-010-0513-7]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 05/04/2010] [Indexed: 01/21/2023]
Abstract
Aminopeptidase N (APN)/CD13 is a widely expressed transmembrane ectoenzyme and has been implicated in a myriad of physiological processes that are specific to cell type and tissue origin, including cancer cell metastasis, angiogenesis, cholesterol uptake, apoptosis, and cell migration. Skin cells, in particular fibroblasts have a relatively high level of APN/CD13 expression. The migratory capacity of skin cells is critical for the outcome of wound repair, as successful wound healing requires timely re-epithelialization which involves reformation of epithelium over wound surface by migrating keratinocytes. While failure of keratinocytes to undergo proper migration leads to chronic non-healing wounds, the presence of excess fibroblasts may contribute to formation of hypertrophic scars and keloids. The aim of this study was to investigate the role of APN/CD13 in skin cell migration and explore its potential as a therapeutic target in wound healing. Our results show an elevated expression of APN/CD13 in fibroblasts on the edge of the wound compared to unwounded cells. The presence of anti-APN/CD13 antibodies WM15, 3D8, and H300 reduces the migratory activity of human dermal fibroblasts in a dose-dependent manner by 42, 21, and 28%, respectively. However, the antibodies have no effect on keratinocyte migration. Further, none of the anti-APN/CD13 antibodies used in this study has any antiproliferative and cytotoxic effect on primary human keratinocytes or fibroblasts when used at 10 μg/ml in vitro. The differential inhibition on the migratory capacity of fibroblasts and keratinocytes presents an opportunity for anti-APN/CD13 antibodies to be used as a therapeutic agent for high fibroblast cellularity seen in fibroproliferative disorders.
Collapse