1
|
Kidd SR, Zhou W, Warren JJ, Leznoff DB. Inducing ring distortions in unsubstituted metallophthalocyanines using axial N-heterocyclic carbenes. Dalton Trans 2024; 53:6537-6546. [PMID: 38498318 DOI: 10.1039/d4dt00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A series of metallophthalocyanine (PcM) complexes with axial N-heterocyclic carbene ligands (NHC; 1,3-diisopropylimidazol-2-ylidene (DIP) and 1,3-dimethylbenzimidazol-2-ylidene (DMB)) were prepared and structurally characterized. PcCoII(DIP), PcZnII(DIP), and PcZnII(DMB) are five-coordinate complexes with mild dome-type Pc-ring distortions, while PcFeII(DIP)2 is six-coordinate and has a very large ruffle-type ring-distortion with respect to typical PcM(L)2 systems. The distortion is induced by the highly steric axial DIP ligands. The distortions were quantified and classified by their bond lengths and torsion angles, and according to the normal-coordinate structural decomposition (NSD) analysis. Upon ligation of the NHC, the insoluble PcM materials were solublized in common organic solvents, with typical UV-visible Q-band maxima observable between 658 and 677 nm; the increased solubility is rationalized in terms of the reduced solid-state aggregation of the complexes, attributable to the axial ligation.
Collapse
Affiliation(s)
- Steven R Kidd
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | - Wen Zhou
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | - Jeffrey J Warren
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | - Daniel B Leznoff
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
2
|
Ziegler CJ, Nemykin VN. The fascinating story of axial ligand dependent spectroscopy and redox-properties in iron(II) phthalocyanines. Dalton Trans 2023; 52:15647-15655. [PMID: 37721022 DOI: 10.1039/d3dt02565a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Iron phthalocyanines play crucial fundamental and applied roles ranging from bulk colorants to components of advanced materials. In this Frontier article, we discuss four aspects concerning the influence of the axial ligands on spectroscopic and redox properties of iron(II) phthalocyanines: (i) iron versus macrocycle oxidation cite as a function of Lever's EL parameter; (ii) energy of the metal-to-ligand charge-transfer transitions as a function of Lever's EL parameter; (iii) iron versus macrocycle reduction in iron(II) phthalocyanines; (iv) Mössbauer quadrupole splitting as a function of axial ligand binding through the prism of dz2 orbital population.
Collapse
Affiliation(s)
| | - Victor N Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
3
|
Schrage BR, Zhou W, Harrison LA, Nevonen DE, Thompson JR, Prosser KE, Walsby CJ, Ziegler CJ, Leznoff DB, Nemykin VN. Resolving a Half-Century-Long Controversy between (Magneto)optical and EPR Spectra of Single-Electron-Reduced [PcFe] −, [PcFeL] −, and [PcFeX] 2– Complexes: Story of a Double Flip. Inorg Chem 2022; 61:20177-20199. [DOI: 10.1021/acs.inorgchem.2c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Briana R. Schrage
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Laurel A. Harrison
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Dustin E. Nevonen
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - John R. Thompson
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Kathleen E. Prosser
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Charles J. Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | | | - Daniel B. Leznoff
- Department of Chemistry, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Victor N. Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
4
|
Nevonen DE, Ferch LS, Schrage BR, Nemykin VN. Charge-Transfer Spectroscopy of Bisaxially Coordinated Iron(II) Phthalocyanines through the Prism of the Lever's EL Parameters Scale, MCD Spectroscopy, and TDDFT Calculations. Inorg Chem 2022; 61:8250-8266. [PMID: 35549169 DOI: 10.1021/acs.inorgchem.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The position of the experimentally observed (in the UV-vis and magnetic circular dichroism (MCD) spectra) low-energy metal-to-ligand charge-transfer (MLCT) band in low-spin iron(II) phthalocyanine complexes of general formula PcFeL2, PcFeL'L″, and [PcFeX2]2- (L, L', or L″ are neutral and X- is an anionic axial ligand) was correlated with the Lever's electrochemical EL scale values for the axial ligands. The time-dependent density functional theory (TDDFT)-predicted UV-vis spectra are in very good agreement with the experimental data for all complexes. In the majority of compounds, TDDFT predicts that the first degenerate MLCT band that correlates with the MCD A-term observed between 360 and 480 nm is dominated by an eg (Fe, dπ) → b1u (Pc, π*) single-electron excitation (in traditional D4h point group notation) and agrees well with the previous assignment discussed by Stillman and co-workers[ Inorg. Chem. 1994, 33, 573-583]. The TDDFT calculations also suggest a small energy gap for b1u/b2u (Pc, π*) orbital splitting and closeness of the MLCT1 eg (Fe, dπ) → b1u (Pc, π*) and MLCT2 eg (Fe, dπ) → b2u (Pc, π*) transitions. In the case of the PcFeL2 complexes with phosphines as the axial ligands, additional degenerate charge-transfer transitions were observed between 450 and 500 nm. These transitions are dominated by a2u (Pc + L, π) → eg (Pc, π*) single-electron excitations and are unique for the PcFe(PR3)2 complexes. The energy of the phthalocyanine-based a2u orbital has large axial ligand dependency and is the reason for a large energy deviation for B1 a2u (Pc + L, π) → eg (Pc, π*) transition. The energies of the axial ligand-to-iron, axial ligand-to-phthalocyanine, iron-to-axial ligand, and phthalocyanine-to-axial ligand charge-transfer transitions were discussed on the basis of TDDFT calculations.
Collapse
Affiliation(s)
- Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Briana R Schrage
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Nemykin VN, Nevonen DE, Osterloh WR, Ferch LS, Harrison LA, Marx BS, Kadish KM. Application of Lever's EL Parameter Scale toward Fe(II)/Fe(III) versus Pc(2-)/Pc(1-) Oxidation Process Crossover Point in Axially Coordinated Iron(II) Phthalocyanine Complexes. Inorg Chem 2021; 60:16626-16644. [PMID: 34644056 DOI: 10.1021/acs.inorgchem.1c02520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures and, particularly, the nature of the HOMO in a series of PcFeL2, PcFeL'L″, and [PcFeX2]2- complexes (Pc = phthalocyaninato(2-) ligand; L = NH3, n-BuNH2, imidazole (Im), pyridine (Py), PMe3, PBu3, t-BuNC, P(OBu)3, and DMSO; L' = CO; L″ = NH3 or n-BuNH2; X = NCO-, NCS-, CN-, imidazolate (Im-), or 1,2,4-triazolate(Tz-)) were probed by electrochemical, spectroelectrochemical, and chemical oxidation as well as theoretical (density functional theory, DFT) studies. In general, energies of the metal-centered occupied orbitals in various six-coordinate iron phthalocyanine complexes correlate well with Lever Electrochemical Parameter EL and intercross the phthalocyanine-centered a1u orbital in several compounds with moderate-to-strong π-accepting axial ligands. In these cases, an oxidation of the phthalocyanine macrocycle (Pc(2-)/Pc(1-)) rather than the central metal ion (Fe(II)/Fe(III)) was theoretically predicted and experimentally confirmed.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Laurel A Harrison
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Benjamin S Marx
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
6
|
Nemykin VN, Nevonen DE, Ferch LS, Shepit M, Herbert DE, van Lierop J. Accurate Prediction of Mössbauer Hyperfine Parameters in Bis-Axially Coordinated Iron(II) Phthalocyanines Using Density Functional Theory Calculations: A Story of a Single Orbital Revealed by Natural Bond Orbital Analysis. Inorg Chem 2021; 60:3690-3706. [PMID: 33651595 DOI: 10.1021/acs.inorgchem.0c03373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Density Functional Theory (DFT) calculations coupled with several exchange-correlation functionals were used for the prediction of Mössbauer hyperfine parameters of 36 bis-axially coordinated iron(II) phthalocyanine complexes with the general formulas PcFeL2, PcFeL'L″, and [PcFeX2]2-, including four new compounds. Both gas-phase and PCM calculations using BPW91 and MN12L exchange-correlation functionals were found to accurately predict both Mössbauer quadrupole splittings and the correct trends in experimentally observed isomer shifts. In comparison, hybrid exchange-correlation functionals underestimated quadrupole splittings, while still accurately predicted isomer shifts. Out of ∼40 exchange-correlation functionals tested, only MN12L was found to correctly reproduce quadrupole splitting trends in the PcFeL2 complexes coordinated with phosphorus-donor axial ligands (i.e., P(OnBu)3 ≈ P(OEt)3 < PMe3 < P[(CH2O)2CH2]-p-C6H4NO2 < PEt3 ≈ PnBu3). Natural Bond Orbital (NBO) analysis was successfully used to explain the general trends in the observed quadrupole splitting for all compounds of interest. In particular, the general trends in the quadrupole splitting correlate well with the axial ligand dependent, NBO-predicted population of the 3dz2 orbital of the Fe ion and are reflective of the hypothesis proposed by Ohya and co-workers ( Inorg. Chem., 1984, 23, 1303) on the adaptability of the phthalocyanine's π-system toward Fe-Lax interactions. The first X-ray crystal structure of a PcFeL2 complex with axial phosphine ligands is also reported.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Dustin E Nevonen
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura S Ferch
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael Shepit
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David E Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Datta D, Saitow M, Sandhöfer B, Neese F. 57Fe Mössbauer parameters from domain based local pair-natural orbital coupled-cluster theory. J Chem Phys 2020; 153:204101. [PMID: 33261496 DOI: 10.1063/5.0022215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on applications of the domain based local pair-natural orbital (PNO) coupled-cluster method within the singles and doubles approximation (DLPNO-CCSD) to the calculation of 57Fe isomer shifts and quadrupole splittings in a small training set of iron complexes consisting of large molecular ligands and iron atoms in varying charge, spin, and oxidation states. The electron densities and electric field gradients needed for these calculations were obtained within the recently implemented analytic derivative scheme. A method for the direct treatment of scalar relativistic effects in the calculation of effective electron densities is described by using the first-order Douglas-Kroll-Hess Hamiltonian and a Gaussian charge distribution model for the nucleus. The performance of DLPNO-CCSD is compared with four modern-day density functionals, namely, RPBE, TPSS, B3LYP, and B2PLYP, as well as with the second-order Møller-Plesset perturbation theory. An excellent correlation between the calculated electron densities and the experimental isomer shifts is attained with the DLPNO-CCSD method. The correlation constant a obtained from the slope of the linear correlation plot is found to be ≈-0.31 a.u.3 mm s-1, which agrees very well with the experimental calibration constant α = -0.31 ± 0.04 a.u.3 mm s-1. This value of a is obtained consistently using both nonrelativistic and scalar relativistic DLPNO-CCSD electron densities. While the B3LYP and B2PLYP functionals achieve equally good correlation between theory and experiment, the correlation constant a is found to deviate from the experimental value. Similar trends are observed also for quadrupole splittings. The value of the nuclear quadrupole moment for 57Fe is estimated to be 0.15 b at the DLPNO-CCSD level. This is consistent with previous results and is here supported by a higher level of theory. The DLPNO-CCSD results are found to be insensitive to the intrinsic approximations in the method, in particular the PNO occupation number truncation error, while the results obtained with density functional theory (DFT) are found to depend on the choice of the functional. In a statistical sense, i.e., on the basis of the linear regression analysis, however, the accuracies of the DFT and DLPNO-CCSD results can be considered comparable.
Collapse
Affiliation(s)
- Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, 201 Spedding Hall, 2416 Pammel Drive, Ames, Iowa 50011-2416, USA
| | - Masaaki Saitow
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Nevonen DE, Ferch LS, Chernii VY, Herbert DE, van Lierop J, Nemykin VN. X-Ray structures, Mössbauer hyperfine parameters, and molecular orbital descriptions of the phthalocyaninato iron(II) azole complexes. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619502043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The electronic structures of a set of PcFe(azole)2 complexes (azole = imidazole, [Formula: see text]-methylimidazole, pyrazole, isoxazole, thiazole, 1,2,4-triazole, 3-amino-1,2,4,-triazole, and 5-amino-1,2,3,4-tetrazole) were examined by Mössbauer spectroscopy and Density Functional Theory (DFT) calculations. In addition, the geometric distortions in these compounds were elucidated by X-ray crystallography for imidazole, pyrazole, and thiazole-containing compounds. Predicted by DFT calculations, Mössbauer hyperfine parameters for all compounds are in reasonable agreement with experimental results, and the influence of the [Formula: see text]-donor and [Formula: see text]-acceptor properties of the axial azoles on the electronic structure of the PcFe(azole)2 complexes is demonstrated by comparison with the reference PcFePy2 compound.
Collapse
Affiliation(s)
- Dustin E. Nevonen
- Department of Chemistry, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| | - Laura S. Ferch
- Department of Chemistry, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| | - Victor Y. Chernii
- Institute of General and Inorganic Chemistry NASU, 03142 Kyiv, Ukraine
| | - David E. Herbert
- Department of Chemistry, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| | - Victor N. Nemykin
- Department of Chemistry, University of Manitoba, R3T 2N2 Winnipeg, MB, Canada
| |
Collapse
|
9
|
Fathi-Rasekh M, Rohde GT, Hart MD, Nakakita T, Zatsikha YV, Valiev RR, Barybin MV, Nemykin VN. Positional Isomers of Isocyanoazulenes as Axial Ligands Coordinated to Ruthenium(II) Tetraphenylporphyrin: Fine-Tuning Redox and Optical Profiles. Inorg Chem 2019; 58:9316-9325. [PMID: 31240923 DOI: 10.1021/acs.inorgchem.9b01030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two isomeric ruthenium(II)/5,10,15,20-tetraphenylporphyrin complexes featuring axially coordinated redox-active, low-optical gap 2- or 6-isocyanoazulene ligands have been isolated and characterized by NMR, UV-vis, and magnetic circular dichroism (MCD) spectroscopic methods, high-resolution mass spectrometry, and single-crystal X-ray crystallography. The UV-vis and MCD spectra support the presence of the low-energy, azulene-centered transitions in the Q band region of the porphyrin chromophore. The first coordination sphere in new L2RuTPP complexes reflects compressed tetragonal geometry. The redox properties of the new compounds were assessed by electrochemical and spectroelectrochemical means and correlated with the electronic structures predicted by density functional theory and CASSCF calculations. Both experimental and theoretical data are consistent with the first two reduction processes involving the axial azulenic ligands, whereas the oxidation profile (in the direction of increasing potential) is exerted by the ruthenium ion, the porphyrin core, and the axial azulenic moieties.
Collapse
Affiliation(s)
- Mahtab Fathi-Rasekh
- Department of Chemistry and Biochemistry , University of Minnesota Duluth , 1039 University Drive , Duluth , Minnesota 55812 , United States
| | | | - Mason D Hart
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Toshinori Nakakita
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Yuriy V Zatsikha
- Department of Chemistry , University of Manitoba , 144 Dysart Road , Winnipeg , MB R3T 2N2 , Canada
| | - Rashid R Valiev
- Tomsk State University , 36, Lenin Avenue , 634050 Tomsk , Russia.,University of Helsinki , P.O. Box 55, FIN-00014 Helsinki , Finland
| | - Mikhail V Barybin
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045 , United States
| | - Victor N Nemykin
- Department of Chemistry and Biochemistry , University of Minnesota Duluth , 1039 University Drive , Duluth , Minnesota 55812 , United States.,Department of Chemistry , University of Manitoba , 144 Dysart Road , Winnipeg , MB R3T 2N2 , Canada
| |
Collapse
|
10
|
McWilliams SF, Brennan-Wydra E, MacLeod KC, Holland PL. Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes. ACS OMEGA 2017; 2:2594-2606. [PMID: 28691111 PMCID: PMC5494642 DOI: 10.1021/acsomega.7b00595] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 05/09/2023]
Abstract
The relative ease of Mössbauer spectroscopy and of density functional theory (DFT) calculations encourages the use of Mössbauer parameters as a validation method for calculations, and the use of calculations as a double check on crystallographic structures. A number of studies have proposed correlations between the computationally determined electron density at the iron nucleus and the observed isomer shift, but deviations from these correlations in low-valent iron β-diketiminate complexes encouraged us to determine a new correlation for these compounds. The use of B3LYP/def2-TZVP in the ORCA platform provides an excellent balance of accuracy and speed. We provide here not only this new correlation and a clear guide to its use but also a systematic analysis of the limitations of this approach. We also highlight the impact of crystallographic inaccuracies, DFT model truncation, and spin states, with intent to assist experimentalists to use Mössbauer spectroscopy and calculations together.
Collapse
Affiliation(s)
- Sean F McWilliams
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Emma Brennan-Wydra
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - K Cory MacLeod
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Litvinov AL, Kuzmin AV, Yudanova EI, Konarev DV, Romanenko NR, Khasanov SS, Lyubovskaya RN. Coordination Polymer of Manganese(II) Phthalocyanine with 4,4′‐Bipyridyl: Synthesis, Crystal Structure, and Physical Properties. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexey L. Litvinov
- Institute of Problems of Chemical Physics RAS142432Chernogolovka, Moscow RegionRussia
| | - Alexey V. Kuzmin
- Institute of Solid State Physics RAS142432Chernogolovka, Moscow RegionRussia
| | - Evgeniya I. Yudanova
- Institute of Problems of Chemical Physics RAS142432Chernogolovka, Moscow RegionRussia
| | - Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS142432Chernogolovka, Moscow RegionRussia
| | - Nikita R. Romanenko
- Institute of Problems of Chemical Physics RAS142432Chernogolovka, Moscow RegionRussia
- Moscow State UniversityLeninskie Gory119991MoscowRussia
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS142432Chernogolovka, Moscow RegionRussia
| | - Rimma N. Lyubovskaya
- Institute of Problems of Chemical Physics RAS142432Chernogolovka, Moscow RegionRussia
| |
Collapse
|
12
|
Nemykin VN, Dudkin SV, Fathi-Rasekh M, Spaeth AD, Rhoda HM, Belosludov RV, Barybin MV. Probing Electronic Communications in Heterotrinuclear Fe–Ru–Fe Molecular Wires Formed by Ruthenium(II) Tetraphenylporphyrin and Isocyanoferrocene or 1,1′-Diisocyanoferrocene Ligands. Inorg Chem 2015; 54:10711-24. [DOI: 10.1021/acs.inorgchem.5b01614] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Victor N. Nemykin
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Semyon V. Dudkin
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Mahtab Fathi-Rasekh
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Andrew D. Spaeth
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Hannah M. Rhoda
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | | | - Mikhail V. Barybin
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
13
|
Maligaspe E, Hauwiller MR, Zatsikha YV, Hinke JA, Solntsev PV, Blank DA, Nemykin VN. Redox and Photoinduced Electron-Transfer Properties in Short Distance Organoboryl Ferrocene-Subphthalocyanine Dyads. Inorg Chem 2014; 53:9336-47. [DOI: 10.1021/ic5014544] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eranda Maligaspe
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Matthew R. Hauwiller
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yuriy V. Zatsikha
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
| | - Jonathan A. Hinke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Pavlo V. Solntsev
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - David A. Blank
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Victor N. Nemykin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
14
|
Nemykin VN, Purchel AA, Spaeth AD, Barybin MV. Probing the Electronic Properties of a Trinuclear Molecular Wire Involving Isocyanoferrocene and Iron(II) Phthalocyanine Motifs. Inorg Chem 2013; 52:11004-12. [DOI: 10.1021/ic4011423] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Victor N. Nemykin
- Department of Chemistry
and Biochemistry, University of Minnesota—Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Anatolii A. Purchel
- Department of Chemistry
and Biochemistry, University of Minnesota—Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Andrew D. Spaeth
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Mikhail V. Barybin
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
15
|
Lu Z, Abbina S, Sabin JR, Nemykin VN, Du G. Unexpected Formation of Chiral Pincer CNN Nickel Complexes with β-Diketiminato Type Ligands via C–H Activation: Synthesis, Properties, Structures, and Computational Studies. Inorg Chem 2013; 52:1454-65. [DOI: 10.1021/ic3021904] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhengliang Lu
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop
9024, Grand Forks, North Dakota 58202, United States
| | - Srinivas Abbina
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop
9024, Grand Forks, North Dakota 58202, United States
| | - Jared R. Sabin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Victor N. Nemykin
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Guodong Du
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop
9024, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
16
|
Koçan H, Burat AK. Synthesis and characterization of [7-(trifluoromethyl)quinolin-4-yl]oxy-substituted phthalocyanines. MONATSHEFTE FUR CHEMIE 2012. [DOI: 10.1007/s00706-012-0790-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Solntsev PV, Spurgin KL, Sabin JR, Heikal AA, Nemykin VN. Photoinduced charge transfer in short-distance ferrocenylsubphthalocyanine dyads. Inorg Chem 2012; 51:6537-47. [PMID: 22651219 DOI: 10.1021/ic3000608] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new ferrocenylsubphthalocyanine dyads with ferrocenylmethoxide (2) and ferrocenecarboxylate (3) substituents directly attached to the subphthalocyanine ligand via the axial position have been prepared and characterized using NMR, UV-vis, and magnetic circular dichroism (MCD) spectroscopies as well as X-ray crystallography. The redox properties of the ferrocenyl-containing dyads 2 and 3 were investigated using the cyclic voltammetry (CV) approach and compared to those of the parent subphthalocyanine 1. CV data reveal that the first reversible oxidation is ferrocene-centered, while the second oxidation and the first reduction are localized on the subphthalocyanine ligand. The electronic structures and nature of the optical bands observed in the UV-vis and MCD spectra of all target compounds were investigated by a density functional theory polarized continuum model (DFT-PCM) and time-dependent (TD)DFT-PCM approaches. It has been found that in both dyads the highest occupied molecular orbital (HOMO) to HOMO-2 are ferrocene-centered molecular orbitals, while HOMO-3 as well as lowest unoccupied molecular orbital (LUMO) and LUMO+1 are localized on the subphthalocyanine ligand. TDDFT-PCM data on complexes 1-3 are consistent with the experimental observations, which indicate the dominance of π-π* transitions in the UV-vis spectra of 1-3. The excited-state dynamics of the dyads 2 and 3 were investigated using time-correlated single photon counting, which indicates that fluorescence quenching is more efficient in dyad 3 compared to dyad 2. These fluorescence lifetime measurements were interpreted on the basis of DFT-PCM calculations.
Collapse
Affiliation(s)
- Pavlo V Solntsev
- Department of Chemistry and Biochemistry, University of Minnesota-Duluth, 1039 University Drive, Duluth, Minnesota 55812, USA
| | | | | | | | | |
Collapse
|
18
|
Sandala GM, Hopmann KH, Ghosh A, Noodleman L. Calibration of DFT Functionals for the Prediction of Fe Mössbauer Spectral Parameters in Iron-Nitrosyl and Iron-Sulfur Complexes: Accurate Geometries Prove Essential. J Chem Theory Comput 2011; 7:3232-3247. [PMID: 22039359 PMCID: PMC3203024 DOI: 10.1021/ct200187d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Six popular density functionals in conjunction with the conductor-like screening (COSMO) solvation model have been used to obtain linear Mössbauer isomer shift (IS) and quadrupole splitting (QS) parameters for a test set of 20 complexes (with 24 sites) comprised of nonheme nitrosyls (Fe-NO) and non-nitrosyl (Fe-S) complexes. For the first time in an IS analysis, the Fe electron density was calculated both directly at the nucleus, ρ(0)(N), which is the typical procedure, and on a small sphere surrounding the nucleus, ρ(0)(S), which is the new standard algorithm implemented in the ADF software package. We find that both methods yield (near) identical slopes from each linear regression analysis but are shifted with respect to ρ(0) along the x-axis. Therefore, the calculation of the Fe electron density with either method gives calibration fits with equal predictive value. Calibration parameters obtained from the complete test set for OLYP, OPBE, PW91, and BP86 yield correlation coefficients (r(2)) of approximately 0.90, indicating that the calibration fit is of good quality. However, fits obtained from B3LYP and B3LYP* with both Slater-type and Gaussian-type orbitals are generally found to be of poorer quality. For several of the complexes examined in this study, we find that B3LYP and B3LYP* give geometries that possess significantly larger deviations from the experimental structures than OLYP, OPBE, PW91 or BP86. This phenomenon is particularly true for the di- and tetranuclear Fe complexes examined in this study. Previous Mössbauer calibration fit studies using these functionals have usually included mononuclear Fe complexes alone, where these discrepancies are less pronounced. An examination of spin expectation values reveals B3LYP and B3LYP* approach the weak-coupling limit more closely than the GGA exchange-correlation functionals. The high degree of variability in our calculated S(2) values for the Fe-NO complexes highlights their challenging electronic structure. Significant improvements to the isomer shift calibrations are obtained for B3LYP and B3LYP* when geometries obtained with the OLYP functional are used. In addition, greatly improved performance of these functionals is found if the complete test set is grouped separately into Fe-NO and Fe-S complexes. Calibration fits including only Fe-NO complexes are found to be excellent, while those containing the non-nitrosyl Fe-S complexes alone are found to demonstrate less accurate correlations. Similar trends are also found with OLYP, OPBE, PW91, and BP86. Correlations between experimental and calculated QSs were also investigated. Generally, universal and separate Fe-NO and Fe-S fit parameters obtained to determine QSs are found to be of good to excellent quality for every density functional examined, especially if [Fe(4)(NO)(4)(μ(3)-S)(4)](-) is removed from the test set.
Collapse
Affiliation(s)
- Gregory M Sandala
- Department of Molecular Biology, TPC15, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037 U.S.A
| | | | | | | |
Collapse
|
19
|
Sumimoto M, Kawashima Y, Yokogawa D, Hori K, Fujimoto H. Theoretical study on the molecular structures of X-, α-, and β-types of lithium phthalocyanine dimer. J Comput Chem 2011; 32:3062-7. [PMID: 21793010 DOI: 10.1002/jcc.21889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/20/2011] [Accepted: 06/22/2011] [Indexed: 11/07/2022]
Abstract
We report here the results from theoretical calculations of the potential energy curves, the geometry optimizations, and the electronic structures for three dimers of lithium phthalocyanine (LiPc) by using three types of functional systems: PBE1PBE, B3LYP, and M06. The results were discussed in comparison with those obtained for the dimers of magnesium phthalocyanine (MgPc). The long-range dispersive interactions were considered in part using these functional systems in the increasing order of PBE1PBE, B3LYP, and M06. The mechanism whereby the dispersive interactions affect the geometric and electronic structures of the LiPc and MgPc dimers is discussed. The calculated results provide insight into the computational methods for both open- and closed-shell metal phthalocyanine (MPc) dimers: Although the PBE1PBE and B3LYP functional systems cannot evaluate a weak dispersion interaction appropriately, the M06 functional can estimate a weak dispersion interaction well in both open- and closed-shell MPc dimers. Basis set superposition error (BSSE) corrections play an important role for the quantitative analysis; however, the calculation results without BSSE corrections may be sufficient for the qualitative discussion on the properties of these dimers such as geometries, stabilities, electronic structures, and so on.
Collapse
Affiliation(s)
- Michinori Sumimoto
- Division of Material Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| | | | | | | | | |
Collapse
|
20
|
Zueva EM, Sameera WMC, Piñero DM, Chakraborty I, Devlin E, Baran P, Lebruskova K, Sanakis Y, McGrady JE, Raptis RG. Experimental and theoretical Mössbauer study of an extended family of [Fe8(μ4-O)4(μ-4-R-px)12X4] clusters. Inorg Chem 2010; 50:1021-9. [PMID: 21188980 DOI: 10.1021/ic101691q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Six [Fe(8)(μ(4)-O)(4)(μ-4-R-pyrazolato)(12)X(4)] complexes containing an identical Fe(8)(μ(4)-O)(4) core have been structurally characterized and studied by Mössbauer spectroscopy. In each case, an inner μ(4)-O bridged Fe(III) cubane core is surrounded by four trigonal bipyramidal iron centers, the two distinct sites occurring in a 1:1 ratio. The Mössbauer spectrum of each of the clusters consists of two quadrupole doublets, which, with one exception (X = NCS, R = H), overlap to give three absorption lines. The systematic variation of X and R causes significant changes in the Mössbauer spectra. A comparison with values for the same clusters computed using density functional theory allows us to establish an unequivocal assignment of these peaks in terms of a nested model for the overlapping doublets. The changes in Mössbauer parameters (both experimental and computed) for the 1-electron reduced species [Fe(8)(μ(4)-O)(4)(μ-4-Cl-pyrazolato)(12)Cl(4)](-) are consistent with a redox event that is localized within the cubane core.
Collapse
Affiliation(s)
- Ekaterina M Zueva
- Department of Inorganic Chemistry, Kazan State Technological University, Kazan, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oña-Burgos P, Casimiro M, Fernández I, Navarro AV, Fernández Sánchez JF, Carretero AS, Gutiérrez AF. Octahedral iron(ii) phthalocyanine complexes: multinuclear NMR and relevance as NO2 chemical sensors. Dalton Trans 2010; 39:6231-8. [DOI: 10.1039/b924429h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Hopmann KH, Ghosh A, Noodleman L. Density functional theory calculations on Mössbauer parameters of nonheme iron nitrosyls. Inorg Chem 2009; 48:9155-65. [PMID: 19780615 PMCID: PMC2777692 DOI: 10.1021/ic9008784] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density Functional Theory (DFT) calculations on transition metal nitrosyls often reveal unusual spin density profiles, involving substantial spatial separation of majority and minority spin densities. Against this context, there is a significant lack of studies where DFT calculations have been quantitatively calibrated against experimental spectroscopic properties. Reported herein are DFT calculations of Mössbauer isomer shifts and quadrupole splittings for 21 nonheme iron complexes (26 distinct iron sites) including 9 iron nitrosyls. Low- (S = 1/2) and high-spin (S = 3/2) {FeNO}(7) complexes, S = 1/2 {Fe(NO)(2)}(9) species, and polynuclear iron nitrosyls are all represented within the set of compounds examined. The general conclusion with respect to isomer shifts is that DFT (OLYP/STO-TZP) performs comparably well for iron nitrosyls and for iron complexes in general. However, quadrupole splittings are less accurately reproduced for nitrosyl complexes.
Collapse
Affiliation(s)
- Kathrin H. Hopmann
- Center for Theoretical and Computational Chemistry and Department of Chemistry, University of Tromsø, N-9037 Tromsø. Norway
| | - Abhik Ghosh
- Center for Theoretical and Computational Chemistry and Department of Chemistry, University of Tromsø, N-9037 Tromsø. Norway
| | - Louis Noodleman
- Department of Molecular Biology, TPC15, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Fang X, Yang FJ, Yu HY, Chen NS, Huang MD, Wang JD. Aminopyridine coordinated iron phthalocyanines: Synthesis, structure, and characterization. INORG CHEM COMMUN 2009. [DOI: 10.1016/j.inoche.2009.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Römelt M, Ye S, Neese F. Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: meta-GGA and double-hybrid functionals. Inorg Chem 2009; 48:784-5. [PMID: 19102678 DOI: 10.1021/ic801535v] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Five density functionals including GGA (generalized gradient approximation) (BP86), meta-GGA (TPSS), hybrid meta-GGA (TPSSh), hybrid (B3LYP), and double-hybrid functionals (B2PLYP) were calibrated for the prediction of 57Fe Mössbauer isomer shifts on a set of 20 iron-containing molecules. The influence of scalar relativistic effects and the basis set dependence of the predictions were investigated.
Collapse
Affiliation(s)
- Michael Römelt
- Lehrstuhl für Theoretische Chemie, Institut für Physikalische and Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany
| | | | | |
Collapse
|
25
|
Halcrow MA. The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron 2007. [DOI: 10.1016/j.poly.2007.03.033] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Janczak J, Kubiak R. Synthesis, thermal stability and structural characterisation of iron(II) phthalocyanine complex with 4-cyanopyridine. Polyhedron 2007. [DOI: 10.1016/j.poly.2007.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Matta CF, Castillo N, Boyd RJ. Atomic contributions to bond dissociation energies in aliphatic hydrocarbons. J Chem Phys 2007; 125:204103. [PMID: 17144686 DOI: 10.1063/1.2378720] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper explores the atomic contributions to the electronic vibrationless bond dissociation enthalpy (BDE) at 0 K of the central C-C bond in straight-chain alkanes (C(n)H(2n+2)) and trans-alkenes (C(n)H(2n)) with an even number of carbon atoms, where n=2, 4, 6, 8. This is achieved using the partitioning of the total molecular energy according to the quantum theory of atoms in molecules by comparing the atomic energies in the intact molecule and its dissociation products. The study is conducted at the MP2(full)6-311++G(d,p) level of theory. It is found that the bulk of the electronic energy necessary to sever a single C-C bond is not supplied by these two carbon atoms (the alpha-carbons) but instead by the atoms directly bonded to them. Thus, the burden of the electronic part of the BDE is primarily carried by the two hydrogens attached to each of the alpha-carbons and by the beta-carbons. The effect drops off rapidly with distance along the hydrocarbon chain. The situation is more complex in the case of the double bond in alkenes, since here the burden is shared between the alpha-carbons as well as the atoms directly bonded to them, namely, again the alpha-hydrogens and the beta-carbons. These observations may lead to a better understanding of the bond dissociation process and should be taken into account when locally dense basis sets are introduced to improve the accuracy of BDE calculations.
Collapse
Affiliation(s)
- Chérif F Matta
- Mount Saint Vincent University, Halifax, Nova Scotia B3M 2J6, Canada and Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada.
| | | | | |
Collapse
|
28
|
Fernández I, Pregosin P, Albinati A, Rizzato S, Spichiger-Keller U, Nezel T, Fernández-Sánchez J. Solution NMR and X-Ray Structural Studies on Phthalocyaninatoiron Complexes. Helv Chim Acta 2006. [DOI: 10.1002/hlca.200690153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Ionkin AS, Marshall WJ, Adelman DJ, Shoe AL, Spence RE, Xie T. Nitro-substituted iron(II) tridentate bis(imino)pyridine complexes as high-temperature catalysts for the production of α-olefins. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/pola.21360] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Kikuchi Y, Belosludov R, Baba H, Farajian A, Mizuseki H, Kawazoe Y. Structure and Electronic Properties of Metal Di-(4-thiophenyl)-porphyrin. MOLECULAR SIMULATION 2004. [DOI: 10.1080/08927020412331298667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Noodleman L, Lovell T, Han WG, Li J, Himo F. Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem Rev 2004; 104:459-508. [PMID: 14871132 DOI: 10.1021/cr020625a] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Louis Noodleman
- Department of Molecular Biology TPC-15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
32
|
Liu T, Lovell T, Han WG, Noodleman L. DFT calculations of isomer shifts and quadrupole splitting parameters in synthetic iron-oxo complexes: applications to methane monooxygenase and ribonucleotide reductase. Inorg Chem 2003; 42:5244-51. [PMID: 12924895 DOI: 10.1021/ic020640y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To predict isomer shifts and quadrupole splitting parameters of Fe atoms in the protein active sites of methane monooxygenase and ribonucleotide reductase, a correlation between experimental isomer shifts ranging 0.1-1.5 mm s(-)(1) for Fe atoms in a training set with the corresponding density functional theory (DFT) calculated electron densities at the Fe nuclei in those complexes is established. The geometries of the species in the training set, consisting of synthetic polar monomeric and dimeric iron complexes, are taken from the Cambridge structural database. A comparison of calculated Mössbauer parameters for Fe atoms from complexes in the training set with their corresponding experimental values shows very good agreement (standard deviation of 0.11 mm/s, correlation coefficient of -0.94). However, for the Fe atoms in the active sites of the structurally characterized proteins of methane monooxygenase and ribonucleotide reductase, the calculated Mössbauer parameters deviate more from their experimentally measured values. The high correlation that exists between calculated and observed quadrupole splitting and isomer shift parameters for the synthetic complexes leads us to conclude that the main source of the error arising for the protein active sites is due to the differing degrees of atomic-level resolution for the protein structural data, compared to the synthetic complexes in the training set. Much lower X-ray resolutions associated with the former introduce uncertainty in the accuracy of several bond lengths. This is ultimately reflected in the calculated isomer shifts and quadrupole splitting parameters of the Fe sites in the proteins. For the proteins, the closest correspondence between predicted and observed Mössbauer isomer shifts follows the order MMOH(red), RNR(red), MMOH(ox), and RNR(ox), with average deviations from experiment of 0.17, 0.17, 0.17-0.20, and 0.32 mm/s, but this requires DFT geometry optimization of the iron-oxo dimer complexes.
Collapse
Affiliation(s)
- Tiqing Liu
- Department of Molecular Biology, TPC-15, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
33
|
Janczak J, Kubiak R, Śledź M, Borrmann H, Grin Y. Synthesis, structural investigations and magnetic properties of dipyridinated manganese phthalocyanine, MnPc(py)2. Polyhedron 2003. [DOI: 10.1016/s0277-5387(03)00361-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Kail B, Nemykin VN, Davie SR, Carrano CJ, Hammes B, Basu P. Synthesis, characterization, electrochemistry, electronic structure, and isomerization of mononuclear oxo-molybdenum(V) complexes: the serine gate hypothesis in the function of DMSO reductases. Inorg Chem 2002; 41:1281-91. [PMID: 11874366 DOI: 10.1021/ic011169w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystal structures of DMSO reductases isolated from two different sources and the crystal structure of related trimethylamine-N-oxide reductase indicate that the angle between the terminal oxo atom on the molybdenum and the serinato oxygen varies significantly. To understand the significance of this angular variation, we have synthesized two isomeric compounds of the heteroscorpionato ligand (L1OH) (cis- and trans-(L1O)Mo(V)OCl(2)), where the phenolic oxygen mimics the serinato oxygen donor. Density functional and semiempirical calculations indicate that the trans isomer is more stable than the cis. The lower stability of the cis isomer can be attributed to two factors. First, a strong antibonding interaction between the phenolic oxygen with molybdenum d(xy) orbital raises the energy of this orbital. Second, the strong trans influence of the terminal oxo group in the trans isomer places the phenol ring, and hence the bulky tertiary butyl group, in a less sterically hindered position. In solution, the cis isomer spontaneously converts to the thermodynamically favorable trans isomer. This geometric transformation follows a first-order process, with an enthalpy of activation of 20 kcal/mol and an entropy of activation of -9 cal/mol K. Computational analysis at the semiempirical level supports a twist mechanism as the most favorable pathway for the geometric transformation. The twist mechanism is further supported by detailed mass spectral data collected in the presence of excess tetraalkylammonium salts. Both the cis and trans isomers exhibit well-defined one-electron couples due to the reduction of molybdenum(V) to molybdenum(IV), with the cis isomer being more difficult to reduce. Both isomers also exhibit oxidative couples because of the oxidation of molybdenum(V) to molybdenum(VI), with the cis isomer being easier to oxidize. This electrochemical behavior is consistent with a higher-energy redox orbital in the cis isomer, which has been observed computationally. Collectively, this investigation demonstrates that by changing the O(t)-Mo-O(p) angle, the reduction potential can be modulated. This geometrically controlled modulation may play a gating role in the electron-transfer process during the regeneration steps in the catalytic cycle.
Collapse
Affiliation(s)
- Brian Kail
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | | | | | |
Collapse
|