Khadhraoui A, Gotico P, Leibl W, Halime Z, Aukauloo A. Through-Space Electrostatic Interactions Surpass Classical Through-Bond Electronic Effects in Enhancing CO
2 Reduction Performance of Iron Porphyrins.
CHEMSUSCHEM 2021;
14:1308-1315. [PMID:
33387402 DOI:
10.1002/cssc.202002718]
[Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In his pioneering work to unravel the catalytic power of enzymes, Warshel has pertinently validated that electrostatic interactions play a major role in the activation of substrates. Implementing such chemical artifice in molecular catalysts may help improve their catalytic properties. In this study, a series of tetra-, di-, and mono-substituted iron porphyrins with cationic imidazolium groups were designed. Their presence in the second coordination sphere helped stabilize the [Fe-CO2 ] intermediate through electrostatic interactions. It was found herein that the electrocatalytic overpotential is a function of the number of embarked imidazolium. Importantly, a gain of six orders of magnitude in turnover frequencies was observed going from a tetra- to a mono-substituted catalyst. Furthermore, the comparative study showed that catalytic performances trend of through-space electrostatic interaction, a first topological effect reported for iron porphyrins, outperforms the classical through-structure electronic effect.
Collapse