1
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci 2021; 53:3743-3767. [PMID: 33818841 DOI: 10.1111/ejn.15222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.
Collapse
Affiliation(s)
- Isabelle Waku
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Mylena S Magalhães
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Camila O Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| | - Amanda R de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 2016; 60:3717-29. [PMID: 27067323 DOI: 10.1128/aac.00326-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in medically relevant bacterial pathogens, coupled with a paucity of novel antimicrobial discoveries, represents a pressing global crisis. Traditional drug discovery is an inefficient and costly process; however, systematic screening of Food and Drug Administration (FDA)-approved therapeutics for other indications in humans offers a rapid alternative approach. In this study, we screened a library of 780 FDA-approved drugs to identify molecules that rendered RAW 264.7 murine macrophages resistant to cytotoxicity induced by the highly virulent Yersinia pestis CO92 strain. Of these compounds, we identified 94 not classified as antibiotics as being effective at preventing Y. pestis-induced cytotoxicity. A total of 17 prioritized drugs, based on efficacy in in vitro screens, were chosen for further evaluation in a murine model of pneumonic plague to delineate if in vitro efficacy could be translated in vivo Three drugs, doxapram (DXP), amoxapine (AXPN), and trifluoperazine (TFP), increased animal survivability despite not exhibiting any direct bacteriostatic or bactericidal effect on Y. pestis and having no modulating effect on crucial Y. pestis virulence factors. These findings suggested that DXP, AXPN, and TFP may modulate host cell pathways necessary for disease pathogenesis. Finally, to further assess the broad applicability of drugs identified from in vitro screens, the therapeutic potential of TFP, the most efficacious drug in vivo, was evaluated in murine models of Salmonella enterica serovar Typhimurium and Clostridium difficile infections. In both models, TFP treatment resulted in increased survivability of infected animals. Taken together, these results demonstrate the broad applicability and potential use of nonantibiotic FDA-approved drugs to combat respiratory and gastrointestinal bacterial pathogens.
Collapse
|
4
|
Yang G, Zhou MH, Ren Z, Xu JJ, Mei YA. Amoxapine inhibits delayed outward rectifier K(+) currents in cerebellar granule cells via dopamine receptor and protein kinase A activation. Cell Physiol Biochem 2011; 28:163-74. [PMID: 21865859 DOI: 10.1159/000331725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although tricyclic antidepressants amoxapine is proposed to target 5-HT and D2 receptors, very few studies have addressed the effect of amoxapine on molecular and cellular mechanisms via receptor pathways. In this study, we test the effect of amoxapine on rat cerebellar granule neurons (CGNs) to address this possibility. METHODS CGNs cell culture, whole-cell current recording using a patch-clamp technique, western blot and non-radioactive detection analysis of phosphorylated protein kinase A (PKA) were used. RESULTS Amoxapine inhibits delayed rectifier potassium (I(K)) current in a dose-dependent manner and modulates inactivation properties in CGNs. Those effects were not eliminated by preincubation with 5-HT or 5-HT receptor antagonists, but abolished by dopamine and D1/D5 receptor antagonists. Application of GTPγ-S and inhibitor of the Gs signalling cascade abolished the amoxapine-induced effect on I(K). The application of forskolin or dibutyryl-cAMP mimicked the inhibitory effect of amoxapine on I(K). Western blotting for phosphorylated PKA revealed that amoxapine significantly increased the intracellular levels of phosphorylated PKA, a marker of PKA activation. CONCLUSION Amoxapine inhibits I(K) currents in rat CGNs via cAMP/PKA-dependent pathways, as in mouse cortical neurons we reported earlier, but that involves D1-like receptors instead of 5-HT receptors.
Collapse
Affiliation(s)
- Guang Yang
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
5
|
He YL, Zhan XQ, Yang G, Sun J, Mei YA. Amoxapine inhibits the delayed rectifier outward K+ current in mouse cortical neurons via cAMP/protein kinase A pathways. J Pharmacol Exp Ther 2009; 332:437-45. [PMID: 19915071 DOI: 10.1124/jpet.109.159160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channels are known to be modulated by antidepressant drugs, but the molecular mechanisms are not known. We have shown that the antidepressant drug amoxapine suppresses rectifier outward K(+) (I(K)) currents in mouse cortical neurons. At a concentration of 10 to 500 muM, amoxapine reversibly inhibited I(K) in a dose-dependent manner and modulated both steady-state activation and inactivation properties. The application of forskolin or dibutyryl cAMP mimicked the inhibitory effect of amoxapine on I(K) and abolished further inhibition by amoxapine. N-[2-(p-Bromocinnamylamino)ethyl]-5-iso-quinolinesulphonamide (H-89), a protein kinase A (PKA) inhibitor, augmented I(K) amplitudes and completely eliminated amoxapine inhibition of I(K). Amoxapine was also found to significantly increase intracellular cAMP levels. The effects of amoxapine on I(K) were abolished by preincubation with 5-hydroxytryptamine (5-HT) and the antagonists of 5-HT(2) receptor. Moreover, intracellular application of guanosine 5'-[gammathio]-triphosphate increased I(K) amplitudes and prevented amoxapine-induced inhibition. The selective Kv2.1 subunit blocker Jingzhaotoxin-III reduced I(K) amplitudes by 30% and also significantly abolished the inhibitory effect of amoxapine. Together these results suggest that amoxapine inhibits I(K) in mouse cortical neurons by cAMP/PKA-dependent pathway associated with the 5-HT receptor, and suggest that the Kv2.1 alpha-subunit may be the target for this inhibition.
Collapse
Affiliation(s)
- Yan-Lin He
- nstitutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
6
|
Takada K, Arefayene M, Desta Z, Yarboro CH, Boumpas DT, Balow JE, Flockhart DA, Illei GG. Cytochrome P450 pharmacogenetics as a predictor of toxicity and clinical response to pulse cyclophosphamide in lupus nephritis. ACTA ACUST UNITED AC 2004; 50:2202-10. [PMID: 15248218 DOI: 10.1002/art.20338] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Pulse cyclophosphamide is the treatment of choice for severe lupus nephritis. However, not all patients respond to this therapy, and gonadal toxicity is of particular concern. Cyclophosphamide is a prodrug that requires activation by cytochrome P450 (CYP) enzymes. We conducted a retrospective cohort study to test whether genetic polymorphisms of these enzymes are associated with the toxicity of, and clinical response to, cyclophosphamide in patients with lupus nephritis. METHODS Sixty-two patients with proliferative lupus nephritis treated with cyclophosphamide were genotyped for common variant alleles of CYP2B6, 2C19, 2C9, and 3A5. We examined the association between these genotypes and the following clinical end points: development of premature ovarian failure, end-stage renal disease (ESRD), doubling of serum creatinine level, and achievement of complete renal response. RESULTS The observed frequencies of the variant alleles CYP2B6*5, CYP2C19*2, CYP2C9*2, and CYP3A5*3 were 12.1%, 25.0%, 4.0%, and 75.8%, respectively. Patients who were either heterozygous or homozygous for CYP2C19*2 had a significantly lower risk of developing premature ovarian failure (relative risk 0.10; 95% confidence interval 0.02-0.52), after adjustment for age and total number of cyclophosphamide pulses received. In a survival analysis, patients homozygous for CYP2B6*5 (n = 3) or CYP2C19*2 (n = 4) had a higher probability of reaching ESRD (P = 0.0005) and of doubling the creatinine level (P = 0.0005) as well as a trend toward a lower probability of achieving a complete renal response (P = 0.051). CONCLUSION Determination of selected cytochrome P450 enzyme genotypes may be valuable for predicting the risk of premature ovarian failure in lupus nephritis patients treated with cyclophosphamide. The association of these genotypes with renal response needs further validation.
Collapse
Affiliation(s)
- Kazuki Takada
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Skiming JA, McDowell HP, Wright N, May P. Secondary parkinsonism: an unusual late complication of craniospinal radiotherapy given to a 16-month child. MEDICAL AND PEDIATRIC ONCOLOGY 2003; 40:132-4. [PMID: 12461804 DOI: 10.1002/mpo.10111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- J A Skiming
- Oncology Unit, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | | | | | | |
Collapse
|