1
|
Pennell TM, Mank JE, Alonzo SH, Hosken DJ. On the resolution of sexual conflict over shared traits. Proc Biol Sci 2024; 291:20240438. [PMID: 39082243 PMCID: PMC11289733 DOI: 10.1098/rspb.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Anisogamy, different-sized male and female gametes, sits at the heart of sexual selection and conflict between the sexes. Sperm producers (males) and egg producers (females) of the same species generally share most, if not all, of the same genome, but selection frequently favours different trait values in each sex for traits common to both. The extent to which this conflict might be resolved, and the potential mechanisms by which this can occur, have been widely debated. Here, we summarize recent findings and emphasize that once the sexes evolve, sexual selection is ongoing, and therefore new conflict is always possible. In addition, sexual conflict is largely a multivariate problem, involving trait combinations underpinned by networks of interconnected genes. Although these complexities can hinder conflict resolution, they also provide multiple possible routes to decouple male and female phenotypes and permit sex-specific evolution. Finally, we highlight difficulty in the study of sexual conflict over shared traits and promising directions for future research.
Collapse
Affiliation(s)
- Tanya M. Pennell
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| | - Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060, USA
| | - David J. Hosken
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| |
Collapse
|
2
|
Wu Y, Fujita T, Namba Y, Kobayashi K, Takata M, Vargo EL, Matsuura K. Inter-clonal competition over queen succession imposes a cost of parthenogenesis on termite colonies. Proc Biol Sci 2024; 291:20232711. [PMID: 38772420 DOI: 10.1098/rspb.2023.2711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.
Collapse
Affiliation(s)
- Yao Wu
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho , Kyoto 606-8502, Japan
| | - Tadahide Fujita
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho , Kyoto 606-8502, Japan
| | - Yusuke Namba
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho , Kyoto 606-8502, Japan
| | - Kazuya Kobayashi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho , Kyoto 606-8502, Japan
- Hokkaido Forest Research Station, Field Science Education and Research Center, Kyoto University , Hokkaido 088-2339, Japan
| | - Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho , Kyoto 606-8502, Japan
| | - Edward L Vargo
- Department of Entomology, Texas A&M University (TAMU) , College Station, TX 77843-2143, USA
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho , Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Hellemans S, Hanus R. Termite primary queen - ancestral, but highly specialized eusocial phenotype. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101157. [PMID: 38142979 DOI: 10.1016/j.cois.2023.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Termite eusociality is accompanied by flagrant caste polyphenism manifested by the presence of several sterile (workers and soldiers) and reproductive (imaginal and neotenic kings and queens) caste phenotypes. Imaginal kings and queens are developmentally equivalent to adults of other hemimetabolous insects but display multiple adaptations inherent to their role of eusocial colony founders, such as long lifespan and high fecundity. Herein, we summarize the recent advances in understanding the biology of imaginal (primary) queens as emblematic examples of termite polyphenism acquired during social evolution. We focus on the control of queen development, on dynamics in physiology and fecundity during the queen's life, on new findings about queen fertility signaling, and on proximate mechanisms underlying queen longevity.
Collapse
Affiliation(s)
- Simon Hellemans
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan; Evolutionary Biology and Ecology, Université libre de Bruxelles, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium
| | - Robert Hanus
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| |
Collapse
|
4
|
Santos DS, Rocha MA, Mello MLS. Epigenetic studies in insects and the valproic acid perspective. BRAZ J BIOL 2024; 84:e256045. [DOI: 10.1590/1519-6984.256045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Valproic acid in association with sodium valproate (VPA) is an important anticonvulsant drug used for decades to treat neurological disorders. VPA also acts as an epigenetic modulator by inhibiting histone deacetylases, permitting histone acetylation, affecting the DNA and histone methylation status and gene expression, and inducing chromatin remodeling. Insects represent an important animal model for studies in several areas of science. Their high phenotypic plasticity makes them alternative models for epigenetic studies. This brief review emphasizes recent reports on insect epigenetics and the contribution of studies on the VPA action in insects, including effects on epigenetic markers, extending the pharmacological understanding of the potential of this drug, and demonstrating the usefulness of insects as an alternative animal model to drug studies.
Collapse
|
5
|
Lobanova YV, Zhenilo SV. Genomic Imprinting and Random Monoallelic Expression. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:84-96. [PMID: 38467547 DOI: 10.1134/s000629792401005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 03/13/2024]
Abstract
The review discusses the mechanisms of monoallelic expression, such as genomic imprinting, in which gene transcription depends on the parental origin of the allele, and random monoallelic transcription. Data on the regulation of gene activity in the imprinted regions are summarized with a particular focus on the areas controlling imprinting and factors influencing the variability of the imprintome. The prospects of studies of the monoallelic expression are discussed.
Collapse
Affiliation(s)
- Yaroslava V Lobanova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Svetlana V Zhenilo
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
6
|
Wu Y, Chen J, Takata M, Matsuura K. Maternal determination of soldier proportion and paternal determination of soldier sex ratio in hybrid Reticulitermes (Isoptera: Rhinotermitidae) termite colonies. PLoS One 2023; 18:e0293096. [PMID: 37917766 PMCID: PMC10621947 DOI: 10.1371/journal.pone.0293096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Altruistic caste, including worker and soldier (derived from worker), plays a critical role in the ecological success of social insects. The proportion of soldiers, soldier sex ratios, and the number of workers vary significantly between species, and also within species, depending on colony developmental stage and environmental factors. However, it is unknown whether there are sex-linked effects from parents on controlling the caste fate or not. Here, we compared soldier sex ratios, soldier proportions, and population size among a four mating types of Reticulitermes amamianus (Ra) and R. speratus (Rs) (male × female, mRa × fRa, mRa × fRs, mRs × fRa, mRs × fRs) and demonstrate that the soldier sex ratio and worker population size of hybrid colonies skew to colonies of king's species, while the soldier proportion skew to queen's species. The survival rate of offspring resulting from interspecies hybridization was significantly higher for mRa × fRs than for mRs × fRa. The results of this study demonstrate the asymmetric influence of kings and queens on caste determination and colony growth, which can contribute to our better understanding of parental influence on the colony dynamics of social insects.
Collapse
Affiliation(s)
- Yao Wu
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jiaming Chen
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Okwaro LA, Korb J. Epigenetic regulation and division of labor in social insects. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101051. [PMID: 37164259 DOI: 10.1016/j.cois.2023.101051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Analogous to multicellular organisms, social insect colonies are characterized by division of labor with queens and workers reflecting germline and soma, respectively. In multicellular organisms, such division is achieved through epigenetic factors regulating cell differentiation during development. Analogously, epigenetic regulation is postulated to regulate caste differences in social insects. We summarize recent findings about the role of epigenetics in social insects, focusing on DNA methylation and histone modifications. We specifically address (i) queen versus worker caste differentiation, (ii) queen versus worker caste differences, and (iii) division of labor among workers. Our review provides an overview of an exciting and controversially discussed field in developmental and molecular biology. It shows that our current understanding about the role of epigenetics in regulating division of labor in social insects is still fragmentary but that refined methods with well-replicated samples and targeted questions offer promising insights into this emerging field of socio-epigenomics.
Collapse
Affiliation(s)
- Louis A Okwaro
- University of Freiburg, Evolutionary Biology and Ecology D-79104 Freiburg, Germany
| | - Judith Korb
- University of Freiburg, Evolutionary Biology and Ecology D-79104 Freiburg, Germany.
| |
Collapse
|
8
|
Takata M, Nagai S, Inagaki T, Ohkubo Y, Tasaki E, Matsuura K. Heritable effects on caste determination and colony-level sex allocation in termites under field conditions. iScience 2023; 26:106207. [PMID: 36876124 PMCID: PMC9982680 DOI: 10.1016/j.isci.2023.106207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The ecological success of social insects is attributed to the division of labor, where newly hatched offspring differentiate into either fertile progeny or functionally sterile worker castes. There is growing evidence for the heritable (genetic or epigenetic) effects on caste determination based on laboratory experiments. Here, we indirectly demonstrate that heritable factors have the principal role in caste determination and strongly affect colony-level production of both sexes of fertile dispersers (i.e., alates) in field colonies of the termite Reticulitermes speratus. An egg-fostering experiment suggests that the colony-dependent sex-specific caste fates were almost entirely determined before oviposition. Our investigation of field colonies revealed that such colony-dependent sex-specific caste fates result in the intercolonial variation in the numerical sex ratio of differentiated fertile offspring and, eventually, that of alates. This study contributes to better understanding the mechanisms underlying the division of labor and life-history traits in social insects.
Collapse
Affiliation(s)
- Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto Universit, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shuya Nagai
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto Universit, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tatsuya Inagaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto Universit, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.,School of Life Science and Technology, Tokyo Institute of Technolog, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusaku Ohkubo
- Center for Data Assimilation Research and Applications, Joint Support Center for Data Science Research, Research Organization of Information and Systems, 10-3, Midori-cho, Tachikawa, Tokyo, Japan.,The Institute of Statistical Mathematics, Research Organization of Information and Systems, 10-3, Midori-cho, Tachikawa, Tokyo, Japan
| | - Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto Universit, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.,Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto Universit, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Dolejšová K, Křivánek J, Štáfková J, Horáček N, Havlíčková J, Roy V, Kalinová B, Roy A, Kyjaková P, Hanus R. Identification of a queen primer pheromone in higher termites. Commun Biol 2022; 5:1165. [PMID: 36323794 PMCID: PMC9630296 DOI: 10.1038/s42003-022-04163-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
It is long established that queens of social insects, including termites, maintain their reproductive dominance with queen primer pheromones (QPPs). Yet, the QPP chemistry has only been elucidated in a single species of lower termites. By contrast, the most diversified termite family Termitidae (higher termites), comprising over 70% of termite species, has so far resisted all attempts at QPP identification. Here, we show that the queen- and egg-specific sesquiterpene (3R,6E)-nerolidol acts as the QPP in the higher termite Embiratermes neotenicus. This species has a polygynous breeding system, in which the primary queen is replaced by multiple neotenic queens of parthenogenetic origin. We demonstrate that (3R,6E)-nerolidol suppresses the development of these parthenogenetic queens and thus mimics the presence of mature queen(s). It acts as an airborne signal and may be used to optimize the number of queens, thus being the key regulatory element in the special breeding system of E. neotenicus.
Collapse
Affiliation(s)
- Klára Dolejšová
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Křivánek
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Štáfková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Natan Horáček
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Havlíčková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Virginie Roy
- Université Paris Est Créteil, Sorbonne Université, Université Paris Cité, CNRS, INRAE, IRD, iEES Paris, Créteil, France
| | | | - Amit Roy
- Czech University of Life Sciences, Prague, Czech Republic
| | - Pavlína Kyjaková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Hanus
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
10
|
Tamaki C, Takata M, Matsuura K. The lose-to-win strategy of the weak: intraspecific parasitism via egg abduction in a termite. Biol Lett 2021; 17:20210540. [PMID: 34932926 PMCID: PMC8692029 DOI: 10.1098/rsbl.2021.0540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Predation by larger conspecifics poses a major threat to small juveniles in many animal species. However, in social insects, raids perpetrated by large colonies may provide smaller colonies with opportunities for parasitization. Herein, in the termite Reticulitermes speratus, we demonstrate that small incipient colonies parasitize large mature colonies through egg abduction when attacked by raiding conspecifics. We observed that the eggs of incipient colonies were brought into raiding colonies while their parents were killed during the attack. In this species, unmated females found new colonies with female-female (FF) cooperation, in addition to the typical monogamous colony foundation. Interestingly, the abducted eggs of FF pairs developed into nymphs (reproductive caste) in the raiding colonies, whereas the eggs of male-female (MF) pairs developed into workers (non-reproductive caste). Parthenogenetic eggs are known to be developmentally predisposed to becoming female reproductives owing to genomic imprinting in termites. This study demonstrates that the plundering of small colonies by larger conspecific colonies not only results in the extinction of the weaker colonies, but also serves as a strategy that incipient colonies use to obtain the reproductive position in large colonies by stealth. The results elucidate the diversity and complexity of inter-colonial interactions in social insects.
Collapse
Affiliation(s)
- Chihiro Tamaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Oldroyd BP, Yagound B. The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200115. [PMID: 33866805 PMCID: PMC8059649 DOI: 10.1098/rstb.2020.0115] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Eusocial insects can be defined as those that live in colonies and have distinct queens and workers. For most species, queens and workers arise from a common genome, and so caste-specific developmental trajectories must arise from epigenetic processes. In this review, we examine the epigenetic mechanisms that may be involved in the regulation of caste dimorphism. Early work on honeybees suggested that DNA methylation plays a causal role in the divergent development of queen and worker castes. This view has now been challenged by studies that did not find consistent associations between methylation and caste in honeybees and other species. Evidence for the involvement of methylation in modulating behaviour of adult workers is also inconsistent. Thus, the functional significance of DNA methylation in social insects remains equivocal. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
12
|
Oldroyd BP, Yagound B. Parent-of-origin effects, allele-specific expression, genomic imprinting and paternal manipulation in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200425. [PMID: 33866807 DOI: 10.1098/rstb.2020.0425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Haplo-diploidy and the relatedness asymmetries it generates mean that social insects are prime candidates for the evolution of genomic imprinting. In single-mating social insect species, some genes may be selected to evolve genomic mechanisms that enhance reproduction by workers when they are inherited from a female. This situation reverses in multiple mating species, where genes inherited from fathers can be under selection to enhance the reproductive success of daughters. Reciprocal crosses between subspecies of honeybees have shown strong parent-of-origin effects on worker reproductive phenotypes, and this could be evidence of such genomic imprinting affecting genes related to worker reproduction. It is also possible that social insect fathers directly affect gene expression in their daughters, for example, by placing small interfering RNA molecules in semen. Gene expression studies have repeatedly found evidence of parent-specific gene expression in social insects, but it is unclear at this time whether this arises from genomic imprinting, paternal manipulation, an artefact of cyto-nuclear interactions, or all of these. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany.,BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| | - Boris Yagound
- BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
13
|
Pauler FM, Hudson QJ, Laukoter S, Hippenmeyer S. Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochem Int 2021; 145:104986. [PMID: 33600873 DOI: 10.1016/j.neuint.2021.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 12/27/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.
Collapse
Affiliation(s)
- Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
14
|
Chan WY, Chung J, Peplow LM, Hoffmann AA, van Oppen MJH. Maternal effects in gene expression of interspecific coral hybrids. Mol Ecol 2020; 30:517-527. [PMID: 33179328 DOI: 10.1111/mec.15727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
Maternal effects have been well documented for offspring morphology and life history traits in plants and terrestrial animals, yet little is known about maternal effects in corals. Further, few studies have explored maternal effects in gene expression. In a previous study, F1 interspecific hybrid and purebred larvae of the coral species Acropora tenuis and Acropora loripes were settled and exposed to ambient or elevated temperature and pCO2 conditions for 7 months. At this stage, the hybrid coral recruits from both ocean conditions exhibited strong maternal effects in several fitness traits. We conducted RNA-sequencing on these corals and showed that gene expression of the hybrid Acropora also exhibited clear maternal effects. Only 40 genes were differentially expressed between hybrids and their maternal progenitor. In contrast, ~2000 differentially expressed genes were observed between hybrids and their paternal progenitors, and between the reciprocal F1 hybrids. These results indicate that maternal effects in coral gene expression can be long-lasting. Unlike findings from most short-term stress experiments in corals, no genes were differentially expressed in the hybrid nor purebred offspring after seven months of exposure to elevated temperature and pCO2 conditions.
Collapse
Affiliation(s)
- Wing Yan Chan
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Jessica Chung
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.,Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | - Lesa M Peplow
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Ary A Hoffmann
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
16
|
Noda T. Population Ecology2020 editorial. POPUL ECOL 2020. [DOI: 10.1002/1438-390x.12038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Affiliation(s)
- Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of AgricultureKyoto University Kyoto Japan
| |
Collapse
|