1
|
Sangkachai N, Gummow B, Hayakijkosol O, Suwanpakdee S, Wiratsudakul A. A review of risk factors at the human-animal-environmental interface of garbage dumps that are driving current and emerging zoonotic diseases. One Health 2024; 19:100915. [PMID: 39468997 PMCID: PMC11513544 DOI: 10.1016/j.onehlt.2024.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
An increasing trend in zoonotic and emerging infectious diseases (EIDs) has been observed worldwide. Most EID outbreaks originate from wildlife, and these outbreaks often involve pathogen-host-environment interaction. Garbage dumps act as an interface between humans, animals, and the environment, from which EIDs could arise. Therefore, this review considers the presence of important pathogens associated with animals and vectors at garbage dumps from a One Health perspective, looking at animal, human, and environmental factors that play a role. A narrative review was performed focusing on four key points, including garbage dumps, animals, waste pickers, zoonoses and EIDs. Articles addressing the presence of terrestrial animals, insects in garbage dumps, and infectious diseases among waste pickers were included in this study. There were 345 relevant articles covering 395 species of terrestrial animals and insects, consisting of 4 species of amphibians, 180 species of birds, 84 species of insects, 114 species of mammals, and 13 species of reptiles. Furthermore, 97 articles (28.12 %) addressed pathogens found in those populations. About half of the articles were interested in bacterial diseases (52.58 %), followed by parasitic diseases (30.93 %) and viral diseases (30.93 %). Zoonotic pathogens were described in 53.6 % of all articles, while 19.59 % focused on drug-resistant microbes, 13.40 % on rodent-borne diseases, and 7.21 % on vector-borne diseases. Garbage dumps would play a role in the emergence of diseases. The relevant factors at garbage dumps that may increase the risk of disease emergence include increased animal populations and density, increased vector population, newly evolved strains of pathogens, increased interaction between humans, domestic animals, wildlife, and vectors, and socio-economic factors. Therefore, sustainable waste management will reduce waste generation, and improve waste collection, and disposal which helps reduce the emergence of new diseases.
Collapse
Affiliation(s)
- Nareerat Sangkachai
- ASEAN Institute for Health Development, Mahidol University, Salaya, Nakhon Pathom, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Bruce Gummow
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Orachun Hayakijkosol
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sarin Suwanpakdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Anuwat Wiratsudakul
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Arévalo-Ayala DJ, Real J, Mañosa S, Aymerich J, Durà C, Hernández-Matías A. Age-Specific Demographic Response of a Long-Lived Scavenger Species to Reduction of Organic Matter in a Landfill. Animals (Basel) 2023; 13:3529. [PMID: 38003146 PMCID: PMC10668657 DOI: 10.3390/ani13223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Food availability shapes demographic parameters and population dynamics. Certain species have adapted to predictable anthropogenic food resources like landfills. However, abrupt shifts in food availability can negatively impact such populations. While changes in survival are expected, the age-related effects remain poorly understood, particularly in long-lived scavenger species. We investigated the age-specific demographic response of a Griffon vulture (Gyps fulvus) population to a reduction in organic matter in a landfill and analyzed apparent survival and the probability of transience after initial capture using a Bayesian Cormack-Jolly-Seber model on data from 2012-2022. The proportion of transients among newly captured immatures and adults increased after the reduction in food. Juvenile apparent survival declined, increased in immature residents, and decreased in adult residents. These results suggest that there was a greater likelihood of permanent emigration due to intensified intraspecific competition following the reduction in food. Interestingly, resident immatures showed the opposite trend, suggesting the persistence of high-quality individuals despite the food scarcity. Although the reasons behind the reduced apparent survival of resident adults in the final four years of the study remain unclear, non-natural mortality potentially plays a part. In Europe landfill closure regulations are being implemented and pose a threat to avian scavenger populations, which underlines the need for research on food scarcity scenarios and proper conservation measures.
Collapse
Affiliation(s)
- Diego J. Arévalo-Ayala
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain; (J.R.); (S.M.); (A.H.-M.)
| | - Joan Real
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain; (J.R.); (S.M.); (A.H.-M.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Santi Mañosa
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain; (J.R.); (S.M.); (A.H.-M.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joan Aymerich
- Grup d’Anellament de Calldetenes-Osona (GACO), 08506 Calldetenes, Spain; (J.A.); (C.D.)
| | - Carles Durà
- Grup d’Anellament de Calldetenes-Osona (GACO), 08506 Calldetenes, Spain; (J.A.); (C.D.)
- Estació Biològica del Montseny, Institut Català d’Ornitologia (ICO), Edifici Fontmartina, 08081 Fogars de Montclús, Spain
| | - Antonio Hernández-Matías
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain; (J.R.); (S.M.); (A.H.-M.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Cerecedo-Iglesias C, Bartumeus F, Cortés-Avizanda A, Pretus JL, Hernández-Matías A, Real J. Resource predictability modulates spatial-use networks in an endangered scavenger species. MOVEMENT ECOLOGY 2023; 11:22. [PMID: 37081522 PMCID: PMC10120099 DOI: 10.1186/s40462-023-00383-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Changes in human-induced resource availability can alter the behaviour of free-living species and affect their foraging strategies. The future European Landfill Waste Directive and Circular Economy Action Plan will reduce the number of predictable anthropogenic food subsidies (PAFS), above all, by closing landfills to preclude negative effects on human health. Obligate avian scavengers, the most threatened group of birds worldwide, are the most likely group of species that will be forced to change their behaviour and use of space in response to landfill site closures. Here, we examine the possible consequences of these management decisions on the foraging patterns of Egyptian vultures (Neophron percnopterus) in an expanding population in the Iberian Peninsula. METHODS We tracked 16 individuals in 2018-2021, including breeders and non-breeders, and, using a combination of spatial-use and spatial-network modelling, assessed landscape connectivity between key resources based on movement patterns. We then carried out simulations of future scenarios based on the loss of PAFS to predict likely changes in the movement patterns of both non-breeders and breeders. RESULTS Our results show that foraging strategies in non-breeders and breeders differ significantly: non-breeders performed more dispersal movements than breeding birds across a spatial-use network. Non-breeding and breeding networks were found to be vulnerable to the removal of central foraging areas containing landfill sites, a highly predictable resource, while perturbation analysis showed dissimilar foraging responses to the gradual reduction of other predictable resources. Under a context of the non-availability of landfills for breeders and non-breeders, vultures will increase their use of extensive livestock as a trophic resource. CONCLUSIONS Future environmental policies should thus extend the areas used by scavengers in which livestock carcasses are allowed to remain in the wild, a strategy that will also mitigate the lack of food caused by any reduction in available waste if landfills close. In general, our results emphasize the capabilities of a spatial network approaches to address questions on movement ecology. They can be used to infer the behavioural response of animal species and, also demonstrate the importance of applying such approaches to endangered species conservation within a context of changing humanized scenarios.
Collapse
Affiliation(s)
- Catuxa Cerecedo-Iglesias
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia and Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Catalonia Spain
| | - Frederic Bartumeus
- Centre d’Estudis Avançats de Blanes (CEAB), CSIC, Accés a la Cala Sant Francesc, 17300 Blanes, Girona, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals, CREAF, Campus Bellaterra, 17300 Cerdanyola del Vallès, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Ainara Cortés-Avizanda
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Joan Ll. Pretus
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia and Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Catalonia Spain
| | - Antonio Hernández-Matías
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia and Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Catalonia Spain
| | - Joan Real
- Equip de Biologia de la Conservació, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia and Institut de la Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Catalonia Spain
| |
Collapse
|
4
|
Souc C, Sadoul N, Blanchon T, Vittecoq M, Pin C, Vidal E, Mante A, Choquet R, McCoy KD. Natal colony influences age-specific movement patterns of the Yellow-legged gull (Larus michahellis). MOVEMENT ECOLOGY 2023; 11:11. [PMID: 36774513 PMCID: PMC9922451 DOI: 10.1186/s40462-023-00375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND As for other life history traits, variation occurs in movement patterns with important impacts on population demography and community interactions. Individuals can show variation in the extent of seasonal movement (or migration) or can change migratory routes among years. Internal factors, such as age or body condition, may strongly influence changes in movement patterns. Indeed, young individuals often tend to move across larger spatial scales compared to adults, but relatively few studies have investigated the proximate and ultimate factors driving such variation. This is particularly the case for seabirds in which the sub-adult period is long and difficult to follow. Here, we examine migration variation and the factors that affect it in a common Mediterranean seabird, the Yellow-legged gull (Larus michahellis). METHODS The data include the encounter histories of 5158 birds marked as fledglings between 1999 and 2004 at 14 different colonies in southern France and resighted over 10 years. Using a multi-event mark-recapture modeling framework, we use these data to estimate the probability of movement and survival, taking into account recapture heterogeneity and age. RESULTS In accordance with previous studies, we find that young individuals have greater mobility than older individuals. However, the spatial extent of juvenile movements depends on natal colony location, with a strong difference in the proportion of sedentary individuals among colonies less than 50 km apart. Colony quality or local population dynamics may explain these differences. Indeed, young birds from colonies with strong juvenile survival probabilities (~ 0.75) appear to be more sedentary than those from colonies with low survival probabilities (~ 0.36). CONCLUSIONS This study shows the importance of studying individuals of different ages and from different colonies when trying to understand seabird movement strategies. Local breeding success and the availability of food resources may explain part of the among colony differences we observe and require explicit testing. We discuss our results with respect to the feedback loop that may occur between breeding success and mobility, and its potential implications for population demography and the dissemination of avian disease at different spatial scales.
Collapse
Affiliation(s)
- Charly Souc
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
- CEFE, University of Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France.
| | - Nicolas Sadoul
- Les Amis des Marais du Vigueirat, Marais du Vigueirat, Arles, France
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Thomas Blanchon
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Marion Vittecoq
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Christophe Pin
- Les Amis des Marais du Vigueirat, Marais du Vigueirat, Arles, France
| | - Eric Vidal
- Institut Mediterraneen de Biodiversite et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Aix-en-Provence, France
- UMR Entropie, Labex-Corail, IRD, Noumea, New Caledonia
| | - Alain Mante
- Parc national des Calanques, Marseille, France
| | - Rémi Choquet
- CEFE, University of Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Karen D McCoy
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|