1
|
Hsu TW, Fang JM. Advances and prospects of analytic methods for bacterial transglycosylation and inhibitor discovery. Analyst 2024; 149:2204-2222. [PMID: 38517346 DOI: 10.1039/d3an01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.
Collapse
Affiliation(s)
- Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Löffler PMG, Risgaard NA, Svendsen BL, Jepsen KA, Rabe A, Vogel S. Label-free observation of DNA-encoded liposome fusion by surface plasmon resonance. Chem Commun (Camb) 2023; 59:10548-10551. [PMID: 37566388 DOI: 10.1039/d3cc02793g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Assembly and fusion between different populations of lipid nanoparticles was mediated by membrane-anchored lipidated nucleic acid (LiNA) strands and observed using surface plasmon resonance (SPR) as a label-free real-time assay. Irreversible membrane fusion was distinguished from reversible assembly by enzymatical cleavage of dsDNA tethers in situ. The assay enables user-friendly monitoring and application of membrane fusion in the context of liposomal drug delivery or synthetic biology.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Nikolaj A Risgaard
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Bettina L Svendsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Katrine A Jepsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Alexander Rabe
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Stefan Vogel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| |
Collapse
|
3
|
Hu S, Chen Y, Chen Y, Chen L, Zheng H, Azeman NH, Liu MX, Liu GS, Luo Y, Chen Z. High-performance fiber plasmonic sensor by engineering the dispersion of hyperbolic metamaterials composed of Ag/TiO 2. OPTICS EXPRESS 2020; 28:25562-25573. [PMID: 32907073 DOI: 10.1364/oe.397461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Hyperbolic metamaterials (HMMs) have attracted increasing attentions because of their unique dispersion properties and the flexibility to control the dispersion by changing the components and fractions of the composed materials. In this work, for the first time, we demonstrate a plasmonic sensor based on a side-polished few-mode-fiber coated with a layered of HMM, which is composed of alternating layers of Ag and TiO2. To optimize the sensor performance, the effects of the metal filling fraction (ρ) and the number of bilayers (Nbi) on the HMM dispersion are thoroughly engineered with the effective medium theory and the finite element method. It is found that the HMM with ρ=0.7 and Nbi = 3 can provide the average sensitivity of 5114.3 nm/RIU (RIU: refractive index unit), and the highest sensitivity 9000 nm/RIU in the surrounding refractive index (SRI) ranging from 1.33 to 1.40 RIU. The corresponding figure of merit (FOM) reaches a maximum of 230.8 RIU-1 which is much higher than that of the conventional silver film based SPR sensor. The influence of ρ and Nbi on the sensitivity are well explained from the aspects of the electrical field distribution and the dispersion relationship. This work opens a gate to significantly improve fiber plasmonic sensors performance by engineering the HMM dispersion, which is expected to meet the emergent demand in the biological, medical and clinical applications.
Collapse
|
4
|
Prasad KS, Abugalyon Y, Li C, Xu F, Li X. A new method to amplify colorimetric signals of paper-based nanobiosensors for simple and sensitive pancreatic cancer biomarker detection. Analyst 2020; 145:5113-5117. [PMID: 32589169 PMCID: PMC7446663 DOI: 10.1039/d0an00704h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A low-cost, sensitive, and disposable paper-based immunosensor for instrument-free colorimetric detection of pancreatic cancer biomarker PEAK1 was reported for the first time by capitalizing the catalytic properties of gold nanoparticles in colour dye degradation. This simple signal amplification method enhances the detection sensitivity by about 10 fold.
Collapse
Affiliation(s)
- K Sudhakara Prasad
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, USA.
| | | | | | | | | |
Collapse
|
5
|
Punekar AS, Samsudin F, Lloyd AJ, Dowson CG, Scott DJ, Khalid S, Roper DI. The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization. Cell Surf 2018; 2:54-66. [PMID: 30046666 PMCID: PMC6053601 DOI: 10.1016/j.tcsw.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial peptidoglycan glycosyltransferases (PGT) catalyse the essential polymerization of lipid II into linear glycan chains required for peptidoglycan biosynthesis. The PGT domain is composed of a large head subdomain and a smaller jaw subdomain and can be potently inhibited by the antibiotic moenomycin A (MoeA). We present an X-ray structure of the MoeA-bound Staphylococcus aureus monofunctional PGT enzyme, revealing electron density for a second MoeA bound to the jaw subdomain as well as the PGT donor site. Isothermal titration calorimetry confirms two drug-binding sites with markedly different affinities and positive cooperativity. Hydrophobic cluster analysis suggests that the membrane-interacting surface of the jaw subdomain has structural and physicochemical properties similar to amphipathic cationic α -helical antimicrobial peptides for lipid II recognition and binding. Furthermore, molecular dynamics simulations of the drug-free and -bound forms of the enzyme demonstrate the importance of the jaw subdomain movement for lipid II selection and polymerization process and provide molecular-level insights into the mechanism of peptidoglycan biosynthesis by PGTs.
Collapse
Affiliation(s)
- Avinash S. Punekar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Adrian J. Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - David J. Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
- ISIS Neutron and Muon Spallation Source and Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Bury D, Dahmane I, Derouaux A, Dumbre S, Herdewijn P, Matagne A, Breukink E, Mueller-Seitz E, Petz M, Terrak M. Positive cooperativity between acceptor and donor sites of the peptidoglycan glycosyltransferase. Biochem Pharmacol 2014; 93:141-50. [PMID: 25462814 DOI: 10.1016/j.bcp.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 12/01/2022]
Abstract
The glycosyltransferases of family 51 (GT51) catalyze the polymerization of lipid II to form linear glycan chains, which, after cross linking by the transpeptidases, form the net-like peptidoglycan macromolecule. The essential function of the GT makes it an attractive antimicrobial target; therefore a better understanding of its function and its mechanism of interaction with substrates could help in the design and the development of new antibiotics. In this work, we have used a surface plasmon resonance Biacore(®) biosensor, based on an amine derivative of moenomycin A immobilized on a sensor chip surface, to investigate the mechanism of binding of substrate analogous inhibitors to the GT. Addition of increasing concentrations of moenomycin A to the Staphylococcus aureus MtgA led to reduced binding of the protein to the sensor chip as expected. Remarkably, in the presence of low concentrations of the most active disaccharide inhibitors, binding of MtgA to immobilized moenomycin A was found to increase; in contrast competition with moenomycin A occurred only at high concentrations. This finding suggests that at low concentrations, the lipid II analogs bind to the acceptor site and induce a cooperative binding of moenomycin A to the donor site. Our results constitute the first indication of the existence of a positive cooperativity between the acceptor and the donor sites of peptidoglycan GTs. In addition, our study indicates that a modification of two residues (L119N and F120S) within the hydrophobic region of MtgA can yield monodisperse forms of the protein with apparently no change in its secondary structure content, but this is at the expense of the enzyme function.
Collapse
Affiliation(s)
- Daniel Bury
- Department of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany.
| | - Ismahene Dahmane
- Centre d'Ingénierie des Protéines, Université de Liège, Allée de la Chimie, B6a, B-4000, Sart Tilman, Liège, Belgium
| | - Adeline Derouaux
- Centre d'Ingénierie des Protéines, Université de Liège, Allée de la Chimie, B6a, B-4000, Sart Tilman, Liège, Belgium
| | - Shrinivas Dumbre
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - André Matagne
- Centre d'Ingénierie des Protéines, Université de Liège, Allée de la Chimie, B6a, B-4000, Sart Tilman, Liège, Belgium
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Erika Mueller-Seitz
- Department of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Michael Petz
- Department of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Mohammed Terrak
- Centre d'Ingénierie des Protéines, Université de Liège, Allée de la Chimie, B6a, B-4000, Sart Tilman, Liège, Belgium.
| |
Collapse
|
7
|
Huang SH, Wu WS, Huang LY, Huang WF, Fu WC, Chen PT, Fang JM, Cheng WC, Cheng TJR, Wong CH. New continuous fluorometric assay for bacterial transglycosylase using Förster resonance energy transfer. J Am Chem Soc 2013; 135:17078-89. [PMID: 24131464 DOI: 10.1021/ja407985m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emergence of antibiotic resistance has prompted scientists to search for new antibiotics. Transglycosylase (TGase) is an attractive target for new antibiotic discovery due to its location on the outer membrane of bacteria and its essential role in peptidoglycan synthesis. Though there have been a few molecules identified as TGase inhibitors in the past thirty years, none of them have been developed into antibiotics for humans. The slow pace of development is perhaps due to the lack of continuous, quantitative, and high-throughput assay available for the enzyme. Herein, we report a new continuous fluorescent assay based on Förster resonance energy transfer, using lipid II analogues with a dimethylamino-azobenzenesulfonyl quencher in the lipid chain and a coumarin fluorophore in the peptide chain. During the process of transglycosylation, the quencher-appended polyprenol is released and the fluorescence of coumarin can be detected. Using this system, the substrate specificity and affinity of lipid II analogues bearing various numbers and configurations of isoprene units were investigated. Moreover, the inhibition constants of moenomycin and two previously identified small molecules were also determined. In addition, a high-throughput screening using the new assay was conducted to identify potent TGase inhibitors from a 120,000 compound library. This new continuous fluorescent assay not only provides an efficient and convenient way to study TGase activities, but also enables the high-throughput screening of potential TGase inhibitors for antibiotic discovery.
Collapse
Affiliation(s)
- Shih-Hsien Huang
- Genomics Research Center, Academia Sinica , 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ostash B, Walker S. Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Nat Prod Rep 2010; 27:1594-617. [PMID: 20730219 PMCID: PMC2987538 DOI: 10.1039/c001461n] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The review (with 214 references cited) is devoted to moenomycins, the only known group of antibiotics that directly inhibit bacterial peptidoglycan glycosytransferases. Naturally occurring moenomycins and chemical and biological approaches to their derivatives are described. The biological properties of moenomycins and plausible mechanisms of bacterial resistance to them are also covered here, portraying a complete picture of the chemistry and biology of these fascinating natural products
Collapse
Affiliation(s)
- Bohdan Ostash
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Armenise Bldg. 2, Rm 630, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Liu CY, Guo CW, Chang YF, Wang JT, Shih HW, Hsu YF, Chen CW, Chen SK, Wang YC, Cheng TJR, Ma C, Wong CH, Fang JM, Cheng WC. Synthesis and evaluation of a new fluorescent transglycosylase substrate: lipid II-based molecule possessing a dansyl-C20 polyprenyl moiety. Org Lett 2010; 12:1608-11. [PMID: 20187630 DOI: 10.1021/ol100338v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of a novel fluorescent lipid II-based substrate for transglycosylases (TGases) is described. This substrate has characteristic structural features including a shorter lipid chain, a fluorophore tag at the end of the lipid chain rather than on the peptide chain, and no labeling with a radioactive atom. This fluorescent substrate is readily utilized in TGase activity assays to characterize TGases and also to evaluate the activities of TGase inhibitors.
Collapse
Affiliation(s)
- Chen-Yu Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A label-free visual immunoassay on solid support with silver nanoparticles as plasmon resonance scattering indicator. Anal Biochem 2008; 383:168-73. [DOI: 10.1016/j.ab.2008.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/21/2022]
|
11
|
Yuan Y, Fuse S, Ostash B, Sliz P, Kahne D, Walker S. Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design. ACS Chem Biol 2008; 3:429-36. [PMID: 18642800 DOI: 10.1021/cb800078a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptidoglycan glycosyltransferases (PGTs), enzymes that catalyze the formation of the glycan chains of the bacterial cell wall, have tremendous potential as antibiotic targets. The moenomycins, a potent family of natural product antibiotics, are the only known active site inhibitors of the PGTs and serve as blueprints for the structure-based design of new antibacterials. A 2.8 A structure of a Staphylococcus aureus PGT with moenomycin A bound in the active site appeared recently, potentially providing insight into substrate binding; however, the protein-ligand contacts were not analyzed in detail and the implications of the structure for inhibitor design were not addressed. We report here the 2.3 A structure of a complex of neryl-moenomycin A bound to the PGT domain of Aquifex aeolicus PBP1A. The structure allows us to examine protein-ligand contacts in detail and implies that six conserved active site residues contact the centrally located F-ring phosphoglycerate portion of neryl-moenomycin A. A mutational analysis shows that all six residues play important roles in enzymatic activity. We suggest that small scaffolds that maintain these key contacts will serve as effective PGT inhibitors. To test this hypothesis, we have prepared, via heterologous expression of a subset of moenomycin biosynthetic genes, a novel moenomycin intermediate that maintains these six contacts but does not contain the putative minimal pharmacophore. This compound has comparable biological activity to the previously proposed minimal pharmacophore. The results reported here may facilitate the design of antibiotics targeted against peptidoglycan glycosyltransferases.
Collapse
Affiliation(s)
- Yanqiu Yuan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Shinichiro Fuse
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Bohdan Ostash
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Piotr Sliz
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Suzanne Walker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
12
|
Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics. Proc Natl Acad Sci U S A 2008; 105:431-6. [PMID: 18182485 DOI: 10.1073/pnas.0710868105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Moenomycin inhibits bacterial growth by blocking the transglycosylase activity of class A penicillin-binding proteins (PBPs), which are key enzymes in bacterial cell wall synthesis. We compared the binding affinities of moenomycin A with various truncated PBPs by using surface plasmon resonance analysis and found that the transmembrane domain is important for moenomycin binding. Full-length class A PBPs from 16 bacterial species were produced, and their binding activities showed a correlation with the antimicrobial activity of moenomycin against Enterococcus faecalis and Staphylococcus aureus. On the basis of these findings, a fluorescence anisotropy-based high-throughput assay was developed and used successfully for identification of transglycosylase inhibitors.
Collapse
|
13
|
Welzel P. A long research story culminates in the first total synthesis of moenomycin A. Angew Chem Int Ed Engl 2007; 46:4825-9. [PMID: 17549780 DOI: 10.1002/anie.200700765] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Welzel
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
14
|
|
15
|
Liu H, Wong CH. Characterization of a transglycosylase domain of Streptococcus pneumoniae PBP1b. Bioorg Med Chem 2006; 14:7187-95. [PMID: 16870450 DOI: 10.1016/j.bmc.2006.06.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 06/16/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Inhibitors of transglycosylases may serve as potent antibiotics that are less prone to resistance development in bacterial pathogens. To facilitate the search of such compounds, a transglycosylase (TGase) domain of the membrane integral multidomain Streptococcus pneumoniae PBP1b was cloned and expressed. This TGase domain was characterized by a substrate-dependent fluorescence coupled enzyme assay and an inhibitor-tethered surface plasmon resonance binding assay. Both assays show that the catalytic efficiency of the domain is comparable to that of the monofunctional transglycosylases, and it is fully active in the absence of other domains. The isolation of the active TGase domain makes it possible to screen for potential antibiotics targeting transglycosylases.
Collapse
Affiliation(s)
- Haitian Liu
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Zehl M, Pittenauer E, Rizzi A, Allmaier G. Characterization of moenomycin antibiotic complex by multistage MALDI-IT/RTOF-MS and ESI-IT-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1081-1090. [PMID: 16731001 DOI: 10.1016/j.jasms.2006.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/03/2006] [Accepted: 04/03/2006] [Indexed: 05/09/2023]
Abstract
Flavomycin is a commercially available antimicrobial growth promoter and an authorized additive for feeding stuffs in the EU and in the USA. As most antibiotically active products biosynthesized by microorganisms, it contains not only a single active compound but is a complex mixture of structurally closely related substances. Multistage matrix-assisted laser desorption/ionization-ion trap/reflectron time-of-flight mass spectrometry (MALDI-IT/RTOF-MS) and liquid chromatography-electrospray ionization-ion trap-mass spectrometry (LC-ESI-IT-MS) were utilized for a detailed analysis of the constituents of the Flavomycin complex based on low-energy collision induced dissociation (CID). An optimal sample preparation for negative ion vacuum MALDI-MS for this compound class was developed. The MALDI-IT/RTOF-MS2 and -MS3 analysis starting with the precursor [M - H]- ions of these interesting phosphoglycolipids, named moenomycins, yielded a large variety of product ions that facilitated the structural characterization of this class of compounds. Based on the derived CID fragmentation pathway of the five known major constituents, namely moenomycin A, moenomycin A12, moenomycin C4, moenomycin C3. and moenomycin C1, four not yet described moenomycin-type constituents could be characterized. They were assigned as 4F-demethyl-6E-O-de-beta-D-glucopyranosyl-moenomycin A, 6B-N-de(2-hydroxy-5-oxo-1-cyclopenten-1-yl)-moenomycin A, 6B-hydroxy-6B-de[N-(2-hydroxy-5-oxo-1-cyclopenten-1-yl)amino]-moenomycin A, and 6C-hydroxy-moenomycin A. In addition, a moenomycin A carrying an oxygen in the moenocinol-group was found, which is most probably a chemical degradation product. These new compounds were verified by LC-ESI-IT-MS.
Collapse
Affiliation(s)
- Martin Zehl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Andreas Rizzi
- Institute of Analytical Chemistry and Food Chemistry, University of Vienna, Vienna, Austria
| | - Guenter Allmaier
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria.
| |
Collapse
|
17
|
Halliday J, McKeveney D, Muldoon C, Rajaratnam P, Meutermans W. Targeting the forgotten transglycosylases. Biochem Pharmacol 2006; 71:957-67. [PMID: 16298347 DOI: 10.1016/j.bcp.2005.10.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 10/06/2005] [Accepted: 10/11/2005] [Indexed: 11/30/2022]
Abstract
Forty years ago, moenomycin was reported as a representative of a novel natural product class with strong antibacterial activity against Gram-positive organisms. Moenomycin was developed as an antimicrobial growth promoter in animal feeds. Mechanistically, moenomycin acts via inhibition of the transglycosylation process at the final stage of the peptidoglycan biosynthesis, in particular through binding directly to the transglycosylase enzymes, thereby preventing polymerisation of lipid II into linear peptidoglycan. Despite moenomycin's success, no developments of direct transglycosylase enzyme inhibitors were reported for over 30 years, probably due to the complexities and uncertainties surrounding the transglycosylation process, in particular the number of enzymes involved in the process and their specific roles. The development of better research tools and an improved understanding of the transglycosylation process, together with the increasing threat presented by multidrug-resistant bacteria, have led to a resurfacing of interest in targeting the forgotten transglycosylases. In addition, several new generation glycopeptides in clinical development inhibit the transglycosylation process, adding further value to the approach. In this paper, we summarise some of the developments in the area of transglycosylase inhibitors over the last 10 years.
Collapse
Affiliation(s)
- Judy Halliday
- Alchemia Limited, 3 Hi-Tech Court, Eight Mile Plains, Brisbane Technology Park, Qld 4113, Australia
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Peter Welzel
- Institut für Organische Chemie, Universität Leipzig, Germany.
| |
Collapse
|
19
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
20
|
Rühl T, Daghish M, Buchynskyy A, Barche K, Volke D, Stembera K, Kempin U, Knoll D, Hennig L, Findeisen M, Oehme R, Giesa S, Ayala J, Welzel P. Studies on the interaction of the antibiotic moenomycin A with the enzyme penicillin-binding protein 1b. Bioorg Med Chem 2003; 11:2965-81. [PMID: 12788366 DOI: 10.1016/s0968-0896(03)00187-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interaction of a moenomycin derivative with the enzyme penicillin binding protein 1b (PBP 1b) has been studied by means of STD NMR. The results obtained initiated the synthesis of a number of moenomycin derivatives modified in unit A including a moenomycin-ampicillin conjugate and determination of their antibiotic activities. A protocol is described that allows studying the interaction of moenomycin analogues with PBP 1b by fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- Thomas Rühl
- Universität Leipzig, Fakultät für Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen L, Walker D, Sun B, Hu Y, Walker S, Kahne D. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc Natl Acad Sci U S A 2003; 100:5658-63. [PMID: 12714684 PMCID: PMC156257 DOI: 10.1073/pnas.0931492100] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 03/13/2003] [Indexed: 11/18/2022] Open
Abstract
Bacterial transglycosylases are enzymes that couple the disaccharide subunits of peptidoglycan to form long carbohydrate chains. These enzymes are the target of the pentasaccharide antibiotic moenomycin as well as the proposed target of certain glycopeptides that overcome vancomycin resistance. Because bacterial transglycosylases are difficult enzymes to study, it has not previously been possible to evaluate how moenomycin inhibits them or to determine whether glycopeptide analogues directly target them. We have identified transglycosylase assay conditions that enable kinetic analysis of inhibitors and have examined the inhibition of Escherichia coli penicillin-binding protein 1b (PBP1b) by moenomycin as well as by various glycopeptides. We report that chlorobiphenyl vancomycin analogues that are incapable of binding substrates nevertheless inhibit E. coli PBP1b, which shows that these compounds interact directly with the enzyme. These findings support the hypothesis that chlorobiphenyl vancomycin derivatives overcome vanA resistance by targeting bacterial transglycosylases. We have also found that moenomycin is not competitive with respect to the lipid II substrate of PBP1b, as has long been believed. With the development of suitable methods to evaluate bacterial transglycosylases, it is now possible to probe the mechanism of action of some potentially very important antibiotics.
Collapse
Affiliation(s)
- Lan Chen
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ajaj KA, Hennig L, Findeisen M, Giesa S, Müller D, Welzel P. Synthesis of a complex disaccharide precursor of phosphonate analogues of the antibiotic moenomycin A12. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)01049-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|