1
|
Cox N, Mallen CD, Scott IC. Pharmacological pain management in patients with rheumatoid arthritis: a narrative literature review. BMC Med 2025; 23:54. [PMID: 39881356 PMCID: PMC11780779 DOI: 10.1186/s12916-025-03870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Pain is a major challenge for patients with rheumatoid arthritis (RA), with many people suffering chronic pain. Current RA management guidelines focus on assessing and reducing disease activity using disease-modifying anti-rheumatic drugs (DMARDs). Consequently, pain care is often suboptimal, with growing evidence that analgesics are widely prescribed to patients with RA, despite potential toxicities and limited evidence for efficacy. Our review provides an overview of pharmacological treatments for pain in patients with RA, summarising their efficacy and use. FINDINGS Thirteen systematic reviews of drug efficacy for pain in patients with RA were included in this review. These showed moderate- to high-quality evidence from clinical trials in more contemporary time-periods (mainly 1990s/2000s for synthetic DMARDs and post-2000 for biological/targeted synthetic DMARDs) that, in patients with active RA, short-term glucocorticoids and synthetic, biologic, and targeted synthetic DMARDs have efficacy at reducing pain intensity relative to placebo. In contrast, they showed low-quality evidence from trials in more historical time-periods (mainly in the 1960s-1990s for opioids and paracetamol) that (aside from naproxen) analgesics/neuromodulators provide any improvements in pain relative to placebo, and no supportive evidence for gabapentinoids, or long-term opioids. Despite this evidence base, 21 studies of analgesic prescribing in patients with RA consistently showed substantial and sustained prescribing of analgesics, particularly opioids, with approximately one quarter and > 40% of patients receiving chronic opioid prescriptions in each year in England and North America, respectively. Whilst NSAID prescribing had fallen over time across countries, gabapentinoid prescribing in England had risen from < 1% of patients in 2004 to approximately 10% in 2020. Prescribing levels varied substantially between individual clinicians and groups of patients. CONCLUSIONS In patients with active RA, DMARDs have efficacy at reducing pain, supporting the role of treat-to-target strategies. Despite limited evidence that analgesics improve pain in patients with RA, these medicines are widely prescribed. The reasons for this are unclear. We consider that closing this evidence-to-practice gap requires qualitative research exploring the drivers of this practice, high-quality trials of analgesic efficacy in contemporary RA populations, alongside an increased focus on pain management (including pharmacological and non-pharmacological options) within RA guidelines.
Collapse
Affiliation(s)
- Natasha Cox
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
- Haywood Academic Rheumatology Centre, Haywood Hospital, Midlands Partnership University NHS Foundation Trust, High Lane, Burslem, Staffordshire, UK
| | - Christian D Mallen
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
- Haywood Academic Rheumatology Centre, Haywood Hospital, Midlands Partnership University NHS Foundation Trust, High Lane, Burslem, Staffordshire, UK
| | - Ian C Scott
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK.
- Haywood Academic Rheumatology Centre, Haywood Hospital, Midlands Partnership University NHS Foundation Trust, High Lane, Burslem, Staffordshire, UK.
| |
Collapse
|
2
|
Pérez-Lloret M, Reidy E, Lozano-Pérez AA, Marchal JA, Lens PNL, Ryan AE, Erxleben A. Auranofin loaded silk fibroin nanoparticles for colorectal cancer treatment. Drug Deliv Transl Res 2024:10.1007/s13346-024-01719-2. [PMID: 39382824 DOI: 10.1007/s13346-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer related deaths worldwide and the prevalence in young people especially is increasing annually. In the search for innovative approaches to treat the disease, drug delivery systems (DDS) are promising owing to their unique properties, which allow improved therapeutic results with lower drug concentrations, overcoming drug resistance and at the same time potentially reducing side effects. Silk fibroin is a biopolymer that can be processed to obtain biocompatible and biodegradable nanoparticles that can be efficiently loaded by surface adsorption with small-molecule therapeutics and allow their transport and sustained release by modulating their pharmacokinetics. Auranofin (AF) has recently been repurposed for its strong anticancer activity and is currently in clinical trials. Its mechanism of action is through the inhibition of thioredoxin reductase enzymes, which play an essential role in several intracellular processes and are overexpressed in some tumours. Taking into account that AF has a low solubility in water, we propose silk fibroin nanoparticles (SFN) as AF carrier in order to improve its bioavailability, increasing cellular absorption and preventing its degradation or avoiding some resistance mechanisms. Here we report the preparation and characterization of a new formulation of AF-loaded silk fibroin nanoparticles (SFN-AF), its functionalization with FITC for the analysis of cellular uptake, as well as its cytotoxic activity against cell lines of human colorectal cancer (HT29 and HCT116) in both 2D and 3D cell cultures. 3D spheroid models provide a 3D environment which mimics the 3D aspects of CRC observed in vivo and represents an effective 3D environment to screen therapeutics for the treatment of CRC. The loaded nanoparticles showed a spherical morphology with a hydrodynamic diameter of ~ 160 nm and good stability in aqueous solution due to their negative surface charges. FESEM-EDX analysis revealed a homogeneous distribution of Au clusters with high electron density on the surface of the nanoparticles. SFN-AF incubated in phosphate buffer at 37 °C released 77% of the loaded AF over 10 days, showing an initial burst and then sustained release. Flow cytometry analysis showed that FITC-SFN-AF was efficiently internalized by both cell lines, which was confirmed by confocal microscopy imaging. SFN enhanced the cytotoxicity of AF in 2D cultures in both CRC lines. Promising results were also obtained in 3D culture paving the way for future application of this strategy as a therapy for CRC.
Collapse
Affiliation(s)
- Marta Pérez-Lloret
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, Galway, Ireland
| | - Antonio Abel Lozano-Pérez
- Departamento de Biotecnología Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, Murcia, 30150, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, 30120, Spain
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, 18012, Spain
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Granada, 18016, Spain
- BioFab i3D-Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, Granada, 18100, Spain
| | - Piet N L Lens
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Andrea Erxleben
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
| |
Collapse
|
3
|
Anjou C, Royer M, Bertrand É, Bredon M, Le Bris J, Salgueiro IA, Caulat LC, Dupuy B, Barbut F, Morvan C, Rolhion N, Martin-Verstraete I. Adaptation mechanisms of Clostridioides difficile to auranofin and its impact on human gut microbiota. NPJ Biofilms Microbiomes 2024; 10:86. [PMID: 39284817 PMCID: PMC11405772 DOI: 10.1038/s41522-024-00551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Auranofin (AF), a former rheumatoid polyarthritis treatment, gained renewed interest for its use as an antimicrobial. AF is an inhibitor of thioredoxin reductase (TrxB), a thiol and protein repair enzyme, with an antibacterial activity against several bacteria including C. difficile, an enteropathogen causing post-antibiotic diarrhea. Several studies demonstrated the effect of AF on C. difficile physiology, but the crucial questions of resistance mechanisms and impact on microbiota remain unaddressed. We explored potential resistance mechanisms by studying the impact of TrxB multiplicity and by generating and characterizing adaptive mutations. We showed that if mutants inactivated for trxB genes have a lower MIC of AF, the number of TrxBs naturally present in clinical strains does not impact the MIC. All stable mutations isolated after AF long-term exposure were in the anti-sigma factor of σB and strongly affect physiology. Finally, we showed that AF has less impact on human gut microbiota than vancomycin.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Marie Royer
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Unité Écologie et Évolution de la Résistance aux Antibiotiques, Paris, France
| | - Émilie Bertrand
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Marius Bredon
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Julie Le Bris
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS UMR3525, Université Paris Cité, Paris, France
- Sorbonne Université, Collège Doctoral, École Doctorale Complexité du Vivant, 75005, Paris, France
| | - Iria Alonso Salgueiro
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Léo C Caulat
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Frédéric Barbut
- Université Paris Cité, INSERM, UMR-1139, Paris, France
- National Reference Laboratory for C. difficile, Assistance Publique Hôpitaux de Paris, Hôpital Saint-Antoine, 75012, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
4
|
DeAngelo SL, Zhao L, Dziechciarz S, Shin M, Solanki S, Balia A, El-Derany MO, Castillo C, Qin Y, Das NK, Bell HN, Paulo JA, Zhang Y, Rossiter NJ, McCulla EC, He J, Talukder I, Ng BWL, Schafer ZT, Neamati N, Mancias JD, Koutmos M, Shah YM. Recharacterization of RSL3 reveals that the selenoproteome is a druggable target in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587381. [PMID: 38617233 PMCID: PMC11014488 DOI: 10.1101/2024.03.29.587381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ferroptosis is a non-apoptotic form of cell death resulting from the iron-dependent accumulation of lipid peroxides. Colorectal cancer (CRC) cells accumulate high levels of intracellular iron and reactive oxygen species (ROS) and are thus particularly sensitive to ferroptosis. The compound (S)-RSL3 ([1S,3R]-RSL3) is a commonly used ferroptosis inducing compound that is currently characterized as a selective inhibitor of the selenocysteine containing enzyme (selenoprotein) Gluathione Peroxidase 4 (GPx4), an enzyme that utilizes glutathione to directly detoxify lipid peroxides. However, through chemical controls utilizing the (R) stereoisomer of RSL3 ([1R,3R]-RSL3) that does not bind GPx4, combined with inducible genetic knockdowns of GPx4 in CRC cell lines, we revealed that GPx4 dependency does not always align with (S)-RSL3 sensitivity, questioning the current characterization of GPx4 as the central regulator of ferroptosis. Utilizing affinity pull-down mass spectrometry with chemically modified (S)-RSL3 probes we discovered that the effects of (S)-RSL3 extend far beyond GPx4 inhibition, revealing that (S)-RSL3 is a broad and non-selective inhibitor of selenoproteins. To further investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed additional chemical and genetic approaches. We found that the selenoprotein inhibitor auranofin, an FDA approved gold-salt, chemically induced oxidative cell death and ferroptosis in both in-vitro and in-vivo models of CRC. Consistent with these data, we found that AlkBH8, a tRNA-selenocysteine methyltransferase required for the translation of selenoproteins, is essential for the in-vitro growth and xenograft survival of CRC cell lines. In summary, these findings recharacterize the mechanism of action of the most commonly used ferroptosis inducing molecule, (S)-RSL3, and reveal that broad inhibition of selenoproteins is a promising novel therapeutic angle for the treatment of CRC.
Collapse
Affiliation(s)
- Stephen L. DeAngelo
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Liang Zhao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Sofia Dziechciarz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Myungsun Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Andrii Balia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Yao Qin
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Nupur K. Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Hannah Noelle Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States
| | - Yuezhong Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas J. Rossiter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth C. McCulla
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Jianping He
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Indrani Talukder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Billy Wai-Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Joseph D. Mancias
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA. United States
| | - Markos Koutmos
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA. United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
6
|
Zhang J, Li Y, Fang R, Wei W, Wang Y, Jin J, Yang F, Chen J. Organometallic gold(I) and gold(III) complexes for lung cancer treatment. Front Pharmacol 2022; 13:979951. [PMID: 36176441 PMCID: PMC9513137 DOI: 10.3389/fphar.2022.979951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Metal compounds, especially gold complexes, have recently gained increasing attention as possible lung cancer therapeutics. Some gold complexes display not only excellent activity in cisplatin-sensitive lung cancer but also in cisplatin-resistant lung cancer, revealing promising prospects in the development of novel treatments for lung cancer. This review summarizes examples of anticancer gold(I) and gold (III) complexes for lung cancer treatment, including mechanisms of action and approaches adopted to improve their efficiency. Several excellent examples of gold complexes against lung cancer are highlighted.
Collapse
Affiliation(s)
- Juzheng Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yanping Li
- School of Public Health, Guilin Medical University, Guilin, China
| | - Ronghao Fang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Wei Wei
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yong Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
- *Correspondence: Feng Yang, mailto:, Jian Chen, mailto:
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Feng Yang, mailto:, Jian Chen, mailto:
| |
Collapse
|
7
|
Feng X, Liu S, Wang Y, Zhang Y, Sun L, Li H, Wang C, Liu Y, Cao B. Synergistic Activity of Colistin Combined With Auranofin Against Colistin-Resistant Gram-Negative Bacteria. Front Microbiol 2021; 12:676414. [PMID: 34248888 PMCID: PMC8267823 DOI: 10.3389/fmicb.2021.676414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Colistin-resistant (Col-R) bacteria are steadily increasing, and are extremely difficult to treat. New drugs or therapies are urgently needed to treat infections caused by these pathogens. Combination therapy with colistin and other old drugs, is an important way to restore the activity of colistin. This study aimed to investigate the activity of colistin in combination with the anti-rheumatic drug auranofin against Col-R Gram-negative bacteria. The results of checkerboard analysis demonstrated that auranofin synergized with colistin against Col-R Gram-negative bacteria. Time-kill assays showed significant synergistic antimicrobial activity of colistin combined with auranofin. Electron microscopy revealed that the combination resulted in more cellular structural alterations compared to each drug alone. Auranofin enhanced the therapeutic effectiveness of colistin in mouse peritoneal infection models. These results suggested that the combination of colistin and auranofin might be a potential alternative for the treatment of Col-R Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Xiaoxuan Feng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Shuai Liu
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingxiao Sun
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Haibo Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chunlei Wang
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yingmei Liu
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11:4839-4857. [PMID: 33754031 PMCID: PMC7978298 DOI: 10.7150/thno.56747] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
Collapse
|
9
|
Auranofin Has Advantages over First-Line Drugs in the Treatment of Severe Streptococcus suis Infections. Antibiotics (Basel) 2020; 10:antibiotics10010026. [PMID: 33396878 PMCID: PMC7823847 DOI: 10.3390/antibiotics10010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 02/02/2023] Open
Abstract
Streptococcal toxic shock-like syndrome (STSLS) likely occurs when an individual is infected with the Streptococcus suis (S. suis) epidemic strain and is characterized by a cytokine storm, multiple organ dysfunction syndrome (MODS) and a high incidence of mortality despite adequate treatment. A number of antibiotics exhibit excellent bactericidal effects in vivo, such as fluoroquinolones, aminoglycosides (gentamicin) and β-lactams (penicillin G, ceftiofur, or amoxicillin), but are less effective for treating STSLS. Therefore, there is an urgent need to identify new compounds that can reduce the damage caused by STSLS. In the present study, we identified auranofin, an orally bioavailable FDA-approved anti-rheumatic drug as a candidate repurposed drug to treat severe S. suis infections. Our results showed that auranofin can bind to the functional domain of bacterial thioredoxin reductase, decreasing the reducing redox-responsive capacity of target bacteria and allowing for the killing of S. suis cells. We also observed that auranofin has antibacterial activity against other gram-positive bacteria, such as multidrug resistant Streptococcus pneumoniae (MDRSP), Streptococcus agalactiae, and vancomycin-resistant strains of Staphylococcus aureus. Additionally, auranofin is capable of eradicating intracellular S.suis present inside infected macrophage cells. Mouse model experimental results showed that auranofin could effectively reduce the mortality of mice infected with S. suis. Compared to the ampicillin treatment group, the survival rate of mice in the auranofin treatment group in severely infected model mice was significantly improved. These results suggest that auranofin has the potential for use as an effective antibiotic against S. suis.
Collapse
|
10
|
|
11
|
Auranofin Rapidly Eradicates Methicillin-resistant Staphylococcus aureus (MRSA) in an Infected Pressure Ulcer Mouse Model. Sci Rep 2020; 10:7251. [PMID: 32350417 PMCID: PMC7190694 DOI: 10.1038/s41598-020-64352-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pressure ulcers (PUs) frequently occur in individuals with limited mobility including patients that are hospitalized or obese. PUs are challenging to resolve when infected by antibiotic-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA). In this study, we investigated the potential of repurposing auranofin to treat pressure ulcers infected with MRSA. Auranofin’s in vitro activity against strains of S. aureus (including MRSA) was not affected in the presence of higher bacterial inoculum (107 CFU/mL) or by lowering the pH in standard media to simulate the environment present on the surface of the skin. Additionally, S. aureus did not develop resistance to auranofin after repeated exposure for two weeks via a multi-step resistance selection experiment. In contrast, S. aureus resistance to mupirocin emerged rapidly. Moreover, auranofin exhibited a long postantibiotic effect (PAE) in vitro against three strains of S. aureus tested. Remarkably, topical auranofin completely eradicated MRSA (8-log10 reduction) in infected PUs of obese mice after just four days of treatment. This was superior to both topical mupirocin (1.96-log10 reduction) and oral clindamycin (1.24-log10 reduction), which are used to treat infected PUs clinically. The present study highlights auranofin’s potential to be investigated further as a treatment for mild-to-moderate PUs infected with S. aureus.
Collapse
|
12
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
13
|
Savarino A, Shytaj IL. Chloroquine and beyond: exploring anti-rheumatic drugs to reduce immune hyperactivation in HIV/AIDS. Retrovirology 2015; 12:51. [PMID: 26084487 PMCID: PMC4472405 DOI: 10.1186/s12977-015-0178-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/30/2015] [Indexed: 11/30/2022] Open
Abstract
The restoration of the immune system prompted by antiretroviral therapy (ART) has allowed drastically reducing the mortality and morbidity of HIV infection. However, one main source of clinical concern is the persistence of immune hyperactivation in individuals under ART. Chronically enhanced levels of T-cell activation are associated with several deleterious effects which lead to faster disease progression and slower CD4+ T-cell recovery during ART. In this article, we discuss the rationale, and review the results, of the use of antimalarial quinolines, such as chloroquine and its derivative hydroxychloroquine, to counteract immune activation in HIV infection. Despite the promising results of several pilot trials, the most recent clinical data indicate that antimalarial quinolines are unlikely to exert a marked beneficial effect on immune activation. Alternative approaches will likely be required to reproducibly decrease immune activation in the setting of HIV infection. If the quinoline-based strategies should nevertheless be pursued in future studies, particular care must be devoted to the dosage selection, in order to maximize the chances to obtain effective in vivo drug concentrations.
Collapse
Affiliation(s)
- Andrea Savarino
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Iart Luca Shytaj
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
14
|
Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc Natl Acad Sci U S A 2015; 112:4453-8. [PMID: 25831516 PMCID: PMC4394260 DOI: 10.1073/pnas.1504022112] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria are a rising public health threat and make the identification of new antibiotics a priority. From a cell-based screen for bactericidal compounds against Mycobacterium tuberculosis under nutrient-deprivation conditions we identified auranofin, an orally bioavailable FDA-approved antirheumatic drug, as having potent bactericidal activities against both replicating and nonreplicating M. tuberculosis. We also found that auranofin is active against other Gram-positive bacteria, including Bacillus subtilis and Enterococcus faecalis, and drug-sensitive and drug-resistant strains of Enterococcus faecium and Staphylococcus aureus. Our biochemical studies showed that auranofin inhibits the bacterial thioredoxin reductase, a protein essential in many Gram-positive bacteria for maintaining the thiol-redox balance and protecting against reactive oxidative species. Auranofin decreases the reducing capacity of target bacteria, thereby sensitizing them to oxidative stress. Finally, auranofin was efficacious in a murine model of methicillin-resistant S. aureus infection. These results suggest that the thioredoxin-mediated redox cascade of Gram-positive pathogens is a valid target for the development of antibacterial drugs, and that the existing clinical agent auranofin may be repurposed to aid in the treatment of several important antibiotic-resistant pathogens.
Collapse
|
15
|
Shytaj IL, Savarino A. A cure for AIDS: a matter of timing? Retrovirology 2013; 10:145. [PMID: 24267982 PMCID: PMC3842794 DOI: 10.1186/1742-4690-10-145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/12/2013] [Indexed: 01/08/2023] Open
Abstract
Despite the huge clinical success of antiretroviral therapy, several factors such as side effects, requirement of life-long adherence, high cost, incomplete access to therapies and development of drug resistance make the quest for an ultimate cure of HIV/AIDS a worldwide priority of biomedical research. In this respect, several sterilizing or functional cures have been reported in the last years in both non-human primates and humans. This review provides a summary of the main results achieved so far, outlining their strengths as well as their limitations. A synthetic interpretation of these results could be pivotal in order to develop an effective and widely available cure.
Collapse
Affiliation(s)
| | - Andrea Savarino
- Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|
16
|
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, systemic autoimmune disorder characterized by symmetric inflammation of synovial joints leading to progressive erosion of cartilage and bone. The aim of treatment is to mitigate joint destruction, preserve function, and prevent disability. The American College of Rheumatology guidelines for the treatment of RA recommend that newly diagnosed patients with RA begin treatment with disease-modifying antirheumatic drugs (DMARDs) within 3 months of diagnosis. Methotrexate remains the most commonly prescribed DMARD and is the standard by which recent new and emerging therapies are measured. Increasing knowledge regarding the immunologic basis of RA and advances in biotechnology have resulted in new, targeted biological therapies against proinflammatory cytokines that have dramatically changed the treatment paradigm and outcomes of patients with RA. This article reviews the pharmacological rationale underlying RA therapy, with a focus on currently available biological therapies and new therapies in development.
Collapse
Affiliation(s)
- Tanya Doan
- Tufts-New England Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
17
|
Abstract
Recent advances have made rheumatoid arthritis (RA) amenable to treatment. Clinical studies in patients with early and established RA have broadened understanding of its pathogenesis and have fundamentally changed the therapeutic approach to this disease. Quantum leaps in therapy-including the use of early, aggressive therapy, combination therapy, and the introduction of anti-cytokine agents-have improved patients' quality of life, eased clinical symptoms, retarded the progression of joint destruction, and delayed disability. We review clinical evidence supporting these therapeutic approaches. Diagnostic and therapeutic challenges are highlighted, and a decision tree to guide treatment in patients with early or established RA is provided.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
18
|
Abstract
BACKGROUND Because of the unpredictability people with arthritis face on a daily basis, patient education programmes have become an effective complement to traditional medical treatment giving people with arthritis the strategies and the tools necessary to make daily decisions to cope with the disease. OBJECTIVES To assess the effectiveness of patient education interventions on health status in patients with rheumatoid arthritis. SEARCH STRATEGY We searched MEDLINE, EMBASE and PsycINFO and the Cochrane Controlled Trials Register. A selection of review articles (see references) were examined to identify further relevant publications. There was no language restriction. SELECTION CRITERIA Randomised controlled trials (RCT's) evaluating patient education interventions that included an instructional component and a non-intervention control group; pre- and post-test results available separately for RA, either in the publication or from the studies' authors; and study results presented in full, end-of-study report. MAIN RESULTS Twenty-four studies with relevant data were included. We found significant effects of patient education at first follow-up for scores on disability, joint counts, patient global assessment and psychological status. Physician global assessment was not assessed in any of the included studies. The two separate dimensions of psychological status: anxiety and depression showed no significant effects, nor did the dimensions of pain and disease activity. At final follow up no significant effects of patient education were found. REVIEWER'S CONCLUSIONS Patient education as provided in the studies reviewed here had moderate short-term effects on patient global assessment, and small short-term effects on disability, joint counts and psychological status. There were no long-term benefits.
Collapse
Affiliation(s)
- R P Riemsma
- NHS Centre for Reviews and DIssemination, University of York, Heslington, York, UK, YO10 5DD.
| | | | | | | |
Collapse
|
19
|
Gabriel SE, Coyle D, Moreland LW. A clinical and economic review of disease-modifying antirheumatic drugs. PHARMACOECONOMICS 2001; 19:715-728. [PMID: 11548909 DOI: 10.2165/00019053-200119070-00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rheumatoid arthritis is one of the most common chronic systemic inflammatory diseases, affecting approximately 1% of the adult population. Disease-modifying antirheumatic drugs (DMARDs) have been the mainstay of treatment for rheumatoid arthritis when combined with physical therapy and aspirin (acetylsalicylic acid) or nonsteroidal anti-inflammatory drugs. Recently, a number of new biological therapies have been introduced for the treatment of this condition and will have a major impact on the future management of this disabling disease. In this review, we summarise data on the efficacy and tolerability of the currently available DMARDs, including gold compounds, antimalarials, penicillamine, cytotoxic drugs (azathioprine and cyclophosphamide), sulfasalazine, methotrexate, leflunomide, cyclosporin, anti-tumour necrosis factor agents, combination therapy and apheresis. A literature review and quality assessment of economic evaluations of DMARDs is presented, illustrating that there has been a paucity of economic evaluations on these agents and showing the variable quality of those studies that are available. The manuscript also addresses the pharmacoeconomic implications of the new agents for rheumatoid arthritis; the need for formal long term economic evaluations in order to determine the cost effectiveness of these costly, but highly effective, new treatments is emphasised.
Collapse
Affiliation(s)
- S E Gabriel
- Health Sciences Research, Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|