1
|
Hurley MN, Smith S, Forrester DL, Smyth AR. Antibiotic adjuvant therapy for pulmonary infection in cystic fibrosis. Cochrane Database Syst Rev 2020; 7:CD008037. [PMID: 32671834 PMCID: PMC8407502 DOI: 10.1002/14651858.cd008037.pub4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cystic fibrosis is a multi-system disease characterised by the production of thick secretions causing recurrent pulmonary infection, often with unusual bacteria. This leads to lung destruction and eventually death through respiratory failure. There are no antibiotics in development that exert a new mode of action and many of the current antibiotics are ineffective in eradicating the bacteria once chronic infection is established. Antibiotic adjuvants - therapies that act by rendering the organism more susceptible to attack by antibiotics or the host immune system, by rendering it less virulent or killing it by other means, would be a significant therapeutic advance. This is an update of a previously published review. OBJECTIVES To determine if antibiotic adjuvants improve clinical and microbiological outcome of pulmonary infection in people with cystic fibrosis. SEARCH METHODS We searched the Cystic Fibrosis Trials Register which is compiled from database searches, hand searches of appropriate journals and conference proceedings. Date of most recent search: 16 January 2020. We also searched MEDLINE (all years) on 14 February 2019 and ongoing trials registers on 06 April 2020. SELECTION CRITERIA Randomised controlled trials and quasi-randomised controlled trials of a therapy exerting an antibiotic adjuvant mechanism of action compared to placebo or no therapy for people with cystic fibrosis. DATA COLLECTION AND ANALYSIS Two of the authors independently assessed and extracted data from identified trials. MAIN RESULTS We identified 42 trials of which eight (350 participants) that examined antibiotic adjuvant therapies are included. Two further trials are ongoing and five are awaiting classification. The included trials assessed β-carotene (one trial, 24 participants), garlic (one trial, 34 participants), KB001-A (a monoclonal antibody) (two trials, 196 participants), nitric oxide (two trials, 30 participants) and zinc supplementation (two trials, 66 participants). The zinc trials recruited children only, whereas the remaining trials recruited both adults and children. Three trials were located in Europe, one in Asia and four in the USA. Three of the interventions measured our primary outcome of pulmonary exacerbations (β-carotene, mean difference (MD) -8.00 (95% confidence interval (CI) -18.78 to 2.78); KB001-A, risk ratio (RR) 0.25 (95% CI 0.03 to 2.40); zinc supplementation, RR 1.85 (95% CI 0.65 to 5.26). β-carotene and KB001-A may make little or no difference to the number of exacerbations experienced (low-quality evidence); whereas, given the moderate-quality evidence we found that zinc probably makes no difference to this outcome. Respiratory function was measured in all of the included trials. β-carotene and nitric oxide may make little or no difference to forced expiratory volume in one second (FEV1) (low-quality evidence), whilst garlic probably makes little or no difference to FEV1 (moderate-quality evidence). It is uncertain whether zinc or KB001-A improve FEV1 as the certainty of this evidence is very low. Few adverse events were seen across all of the different interventions and the adverse events that were reported were mild or not treatment-related (quality of the evidence ranged from very low to moderate). One of the trials (169 participants) comparing KB001-A and placebo, reported on the time to the next course of antibiotics; results showed there is probably no difference between groups, HR 1.00 (95% CI 0.69 to 1.45) (moderate-quality evidence). Quality of life was only reported in the two KB001-A trials, which demonstrated that there may be little or no difference between KB001-A and placebo (low-quality evidence). Sputum microbiology was measured and reported for the trials of KB001-A and nitric oxide (four trials). There was very low-quality evidence of a numerical reduction in Pseudomonas aeruginosa density with KB001-A, but it was not significant. The two trials looking at the effects of nitric oxide reported significant reductions in Staphylococcus aureus and near-significant reductions in Pseudomonas aeruginosa, but the quality of this evidence is again very low. AUTHORS' CONCLUSIONS We could not identify an antibiotic adjuvant therapy that we could recommend for treating of lung infection in people with cystic fibrosis. The emergence of increasingly resistant bacteria makes the reliance on antibiotics alone challenging for cystic fibrosis teams. There is a need to explore alternative strategies, such as the use of adjuvant therapies. Further research is required to provide future therapeutic options.
Collapse
Affiliation(s)
- Matthew N Hurley
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| | - Sherie Smith
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology (COG), School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, Noone PG, Bilton D, Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Sermet-Gaudelus I, Smyth AR, van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, Haworth CS. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax 2016; 71 Suppl 1:i1-22. [PMID: 26666259 PMCID: PMC4717371 DOI: 10.1136/thoraxjnl-2015-207360] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous environmental organisms that can cause chronic pulmonary infection, particularly in individuals with pre-existing inflammatory lung disease such as cystic fibrosis (CF). Pulmonary disease caused by NTM has emerged as a major threat to the health of individuals with CF but remains difficult to diagnose and problematic to treat. In response to this challenge, the US Cystic Fibrosis Foundation (CFF) and the European Cystic Fibrosis Society (ECFS) convened an expert panel of specialists to develop consensus recommendations for the screening, investigation, diagnosis and management of NTM pulmonary disease in individuals with CF. Nineteen experts were invited to participate in the recommendation development process. Population, Intervention, Comparison, Outcome (PICO) methodology and systematic literature reviews were employed to inform draft recommendations. An anonymous voting process was used by the committee to reach consensus. All committee members were asked to rate each statement on a scale of: 0, completely disagree, to 9, completely agree; with 80% or more of scores between 7 and 9 being considered ‘good’ agreement. Additionally, the committee solicited feedback from the CF communities in the USA and Europe and considered the feedback in the development of the final recommendation statements. Three rounds of voting were conducted to achieve 80% consensus for each recommendation statement. Through this process, we have generated a series of pragmatic, evidence-based recommendations for the screening, investigation, diagnosis and treatment of NTM infection in individuals with CF as an initial step in optimising management for this challenging condition.
Collapse
Affiliation(s)
- R Andres Floto
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Kenneth N Olivier
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lisa Saiman
- Department of Pediatrics, Columbia University Medical Center, Pediatric Infectious Diseases, New York, New York, USA
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado, USA
| | - Jean-Louis Herrmann
- INSERM U1173, UFR Simone Veil, Versailles-Saint-Quentin University, Saint-Quentin en Yvelines, France AP-HP, Service de Microbiologie, Hôpital Raymond Poincaré, Garches, France
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Peadar G Noone
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Diana Bilton
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Paul Corris
- Department of Respiratory Medicine, Freeman Hospital, High Heaton, Newcastle, UK
| | - Ronald L Gibson
- Department of Pediatrics University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah E Hempstead
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Karsten Koetz
- Department of Pediatrics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kathryn A Sabadosa
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Isabelle Sermet-Gaudelus
- Service de Pneumo-Pédiatrie, Université René Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology, University of Nottingham, Nottingham, UK
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J Wallace
- Department of Microbiology, University of Texas Health Science Center, Tyler, Texas, USA
| | | | | | - Charles S Haworth
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | | |
Collapse
|
3
|
Hurley MN, Forrester DL, Smyth AR. Antibiotic adjuvant therapy for pulmonary infection in cystic fibrosis. Cochrane Database Syst Rev 2013; 2013:CD008037. [PMID: 23737089 PMCID: PMC6481746 DOI: 10.1002/14651858.cd008037.pub3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cystic fibrosis is a multi-system disease characterised by the production of thick secretions causing recurrent pulmonary infection, often with unusual bacteria. This leads to lung destruction and eventually death through respiratory failure. There are no antibiotics in development that exert a new mode of action and many of the current antibiotics are ineffective in eradicating the bacteria once chronic infection is established. Antibiotic adjuvants - therapies that act by rendering the organism more susceptible to attack by antibiotics or the host immune system, by rendering it less virulent or killing it by other means, are urgently needed. OBJECTIVES To determine if antibiotic adjuvants improve clinical and microbiological outcome of pulmonary infection in people with cystic fibrosis. SEARCH METHODS We searched the Cystic Fibrosis Trials Register which is compiled from database searches, hand searches of appropriate journals and conference proceedings.Date of most recent search: 26 July 2012.We also searched MEDLINE (all years) on 23 February 2013 and ongoing trials registers on 13 February 2013. SELECTION CRITERIA Randomised controlled trials and quasi-randomised controlled trials of a therapy exerting an antibiotic adjuvant mechanism of action compared to placebo or no therapy for people with cystic fibrosis. DATA COLLECTION AND ANALYSIS The authors independently assessed and extracted data from identified studies. MAIN RESULTS We identified eighteen studies of which four are included that examined antibiotic adjuvant therapies, three studies are ongoing. The included studies involve the assessment of β-carotene, garlic and zinc supplementation and KB001 (a biological agent). No therapy demonstrated a significant effect upon pulmonary function, pulmonary exacerbations or quality of life. The study of zinc supplementation reports a reduction in the requirement of oral antibiotics but not of intravenous antibiotics, an effect that is difficult to understand. AUTHORS' CONCLUSIONS We could not identify an antibiotic adjuvant therapy that could be recommended for the treatment of lung infection in those with cystic fibrosis. The emergence of increasingly resistant bacteria makes the reliance on antibiotics alone challenging for cystic fibrosis teams. There is a need to explore alternative strategies, such as the use of adjuvant therapies. Further research is required to provide future therapeutic options.
Collapse
Affiliation(s)
- Matthew N Hurley
- Department of Child Health, School of Clinical Sciences, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
5
|
Hurley MN, Cámara M, Smyth AR. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J 2012; 40:1014-23. [PMID: 22743672 PMCID: PMC3461346 DOI: 10.1183/09031936.00042012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa chronically infects patients with cystic fibrosis and is associated with greater morbidity. There has been limited progress on the clinical development of new antibiotics with novel modes of action. This review addresses some of the latest research developments on the exploitation of candidate adjuvant therapeutic agents that may act alongside conventional antibiotics as an alternative therapeutic strategy. After considering key mechanisms this opportunistic pathogen employs to control virulence, the progress of various strategies including the inhibition of quorum sensing, efflux pumps and lectins, and the use of iron chelators, bacteriophages, immunisation and immunotherapy is reviewed. Both therapeutic approaches in early development and clinical phase are discussed.
Collapse
Affiliation(s)
- Matthew N Hurley
- Dept of Child Health, University of Nottingham, E Floor, East Block, Queens Medical Centre, Nottingham, NG7 2UHUK.
| | | | | |
Collapse
|