1
|
Peng W, Ma H, Zhao R, Xu S, Lv M, Jing B, Hu Z. Role of intermittent hypoxic training combined with methazolamide in the prevention of high-altitude cerebral edema in rats. Sci Rep 2024; 14:30252. [PMID: 39632926 PMCID: PMC11618614 DOI: 10.1038/s41598-024-81226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Although intermittent hypoxia training (IHT) and methazolamide (MTZ) alone can prevent high-altitude cerebral edema (HACE) to varying degrees, their efficacy and dispersion remain limited. However, only a handful of trials have explored the effectiveness of the IHT and MTZ combination in preventing HACE. Rats were first exposed to hypobaric hypoxia (5000 m, 54.02 kPa, 10.8% fraction of inspired oxygen (FiO2)) with simultaneous exhaustive exercise (EE) for different durations to determine the ideal condition for establishing a rat model of HACE. Rats receiving various courses of IHT were subjected to this condition, and changes in behaviour, brain water content (BWC), pathology and brain protein expression were evaluated. Meanwhile, rats received different doses of MTZ before and during hypoxia exposure with simultaneous EE. Finally, rats receiving the IHT and MTZ combination were then exposed to hypoxia with simultaneous EE. Systemic inflammation and mild cerebral edema developed in rats after 6 h of hypobaric hypoxia with simultaneous EE. Rats showed severe impairment of spatial and memory functions after 2 days of hypobaric hypoxia with simultaneous EE, and the pathology of their brain showed significant dilated perivascular spaces, cell swelling, vacuolar degeneration and reduced neuron count. BWC, serum inflammatory factors and expression of vascular endothelial growth factor (VEGF) and aquaporin 4 (AQP4) proteins in the hippocampus increased significantly. Both IHT and MTZ differentially counteracted hypobaric hypoxia-induced spatial and memory function impairments and increased BWC, pathological changes and expression of AQP4 and VEGF proteins in the hippocampus. Among these, the long-course IHT (BID, 14 d) combined with MTZ (200 mg/kg/d) showed the most significant improvement, restoring the rats' indices to normal levels. Continuous hypobaric hypoxia with simultaneous EE for 2 days resulted in significant HACE in rats, which may be used to establish a rat model of HACE. Both IHT and MTZ alleviated HACE in rats to varying degrees, among which long-course IHT (BID, 14 d) combined with MTZ (200 mg/kg/d) effectively prevented HACE in rats.
Collapse
Affiliation(s)
- Weicheng Peng
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Haiyang Ma
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Rui Zhao
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Sheng Xu
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Meng Lv
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Bei Jing
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Zhiqiang Hu
- Department of Neurosurgery, Neuromedicine Center, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, China.
| |
Collapse
|
2
|
Wang B, Chen S, Song J, Huang D, Xiao G. Recent advances in predicting acute mountain sickness: from multidimensional cohort studies to cutting-edge model applications. Front Physiol 2024; 15:1397280. [PMID: 38978820 PMCID: PMC11228308 DOI: 10.3389/fphys.2024.1397280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
High-altitude illnesses, encompassing a spectrum of health threats including Acute Mountain Sickness (AMS), pose significant challenges to individuals exposed to high altitude environments, necessitating effective prophylaxis and immediate management. Given the variability in individual responses to these conditions, accurate prediction of high-altitude illnesses onset is of paramount importance. This review systematically consolidates recent advancements in research on predicting AMS by evaluating existing cohort data, predictive models, and methodologies, while also delving into the application of emerging technologies. Through a thorough analysis of scholarly literature, we discuss traditional prediction methods anchored in physiological parameters (e.g., heart rate, respiratory frequency, blood pressure) and biochemical markers, as well as the integration and utility of novel technologies such as biosensors, genetic testing, and artificial intelligence within high-altitude prediction research. While conventional pre-diction techniques have been extensively used, they are often constrained by limitations in accuracy, reliability, and multifactorial influences. The advent of these innovative technologies holds promise for more precise individual risk assessments and personalized preventive and therapeutic strategies across various forms of AMS. Future research endeavors must pivot decisively towards the meticulous identification and stringent validation of innovative predictive biomarkers and models. This strategic re-direction should catalyze intensified interdisciplinary cooperation to significantly deepen our mechanistic insights into the pathogenesis of AMS while refining existing prediction methodologies. These groundbreaking advancements harbor the potential to fundamentally transform preventive and therapeutic frameworks for high-altitude illnesses, ultimately securing augmented safety standards and wellbeing for individuals operating at elevated altitudes with far-reaching global implications.
Collapse
Affiliation(s)
- Boyuan Wang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Shanji Chen
- The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Hunan Primary Digital Engineering Technology Research Center for Medical Prevention and Treatment, Huaihua, China
- National Institute of Hospital Administration (NIHA), Beijing, China
| | | | - Dan Huang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Gexin Xiao
- National Institute of Hospital Administration (NIHA), Beijing, China
| |
Collapse
|
3
|
Gatterer H, Villafuerte FC, Ulrich S, Bhandari SS, Keyes LE, Burtscher M. Altitude illnesses. Nat Rev Dis Primers 2024; 10:43. [PMID: 38902312 DOI: 10.1038/s41572-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria.
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxígeno y Adaptación a la Altura - LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sanjeeb S Bhandari
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
- Emergency Department, UPMC Western Maryland Health, Cumberland, MD, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Guo Y, Liu X, Zhang Q, Shi Z, Zhang M, Chen J. Can acute high-altitude sickness be predicted in advance? REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:27-36. [PMID: 36165715 DOI: 10.1515/reveh-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
In high-altitude environments, the oxygen and air density are decreased, and the temperature and humidity are low. When individuals enter high-altitude areas, they are prone to suffering from acute mountain sickness (AMS) because they cannot tolerate hypoxia. Headache, fatigue, dizziness, and gastrointestinal reactions are the main symptoms of AMS. When these symptoms cannot be effectively alleviated, they can progress to life-threatening high-altitude pulmonary edema or high-altitude cerebral edema. If the risk of AMS can be effectively assessed before people enter high-altitude areas, then the high-risk population can be promptly discouraged from entering the area, or drug intervention can be established in advance to prevent AMS occurrence and avoid serious outcomes. This article reviews recent studies related to the early-warning biological indicators of AMS to provide a new perspective on the prevention of AMS.
Collapse
Affiliation(s)
- Yan Guo
- Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Xiao Liu
- Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, Shandong Province, China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Zhongshan Shi
- Department of Intensive Care Medicine, Ge er mu People's Hospital, Ge er mu, Qinghai Province, China
| | - Menglan Zhang
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Jie Chen
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| |
Collapse
|
5
|
Liu B, Yuan M, Yang M, Zhu H, Zhang W. The Effect of High-Altitude Hypoxia on Neuropsychiatric Functions. High Alt Med Biol 2024; 25:26-41. [PMID: 37815821 DOI: 10.1089/ham.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Liu, Bo, Minlan Yuan, Mei Yang, Hongru Zhu, and Wei Zhang. The effect of high-altitude hypoxia on neuropsychiatric functions. High Alt Med Biol. 25:26-41, 2024. Background: In recent years, there has been a growing popularity in engaging in activities at high altitudes, such as hiking and work. However, these high-altitude environments pose risks of hypoxia, which can lead to various acute or chronic cerebral diseases. These conditions include common neurological diseases such as acute mountain sickness (AMS), high-altitude cerebral edema, and altitude-related cerebrovascular diseases, as well as psychiatric disorders such as anxiety, depression, and psychosis. However, reviews of altitude-related neuropsychiatric conditions and their potential mechanisms are rare. Methods: We conducted searches on PubMed and Google Scholar, exploring existing literature encompassing preclinical and clinical studies. Our aim was to summarize the prevalent neuropsychiatric diseases induced by altitude hypoxia, the potential pathophysiological mechanisms, as well as the available pharmacological and nonpharmacological strategies for prevention and intervention. Results: The development of altitude-related cerebral diseases may arise from various pathogenic processes, including neurovascular alterations associated with hypoxia, cytotoxic responses, activation of reactive oxygen species, and dysregulation of the expression of hypoxia inducible factor-1 and nuclear factor erythroid 2-related factor 2. Furthermore, the interplay between hypoxia-induced neurological and psychiatric changes is believed to play a role in the progression of brain damage. Conclusions: While there is some evidence pointing to pathophysiological changes in hypoxia-induced brain damage, the precise mechanisms responsible for neuropsychiatric alterations remain elusive. Currently, the range of prevention and intervention strategies available is primarily focused on addressing AMS, with a preference for prevention rather than treatment.
Collapse
Affiliation(s)
- Bo Liu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- Zigong Mental Health Center, Zigong, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, Sichuan
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Tan L, Li Y, Chen H, Lanzi G, Hu X. Sleep at high altitude: A bibliometric study and visualization analysis from 1992 to 2022. Heliyon 2024; 10:e23041. [PMID: 38163230 PMCID: PMC10755286 DOI: 10.1016/j.heliyon.2023.e23041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Background As an important monitoring index for adaptation to hypoxia, sleep may reflect the adaptive state of the body at high altitudes. The literature has shown a link between altitude and sleep problems, and sleep changes have become a common problem for individuals at high altitudes, negatively impacting their physical and mental health. As research on high-altitude sleep has gained attention in recent years, the publishing volume has increased worldwide, necessitating a more comprehensive understanding of this field. This manuscript evaluates the key themes and emerging trends in high-altitude sleep over the past few decades and predicts future research directions. Methods Articles related to high-altitude sleep published from 1992 to 2022 were retrieved from the Web of Science Core Collection, and the relevant literature characteristics were extracted after the screening. Then, bibliometric analyses and visualizations were performed using Microsoft Excel, CiteSpace, VOSviewer, and an online analysis platform (http://bibliometric.com). Results A total of 1151 articles were retrieved, of which 368 were included in the analysis, indicating a gradually increasing trend. The United States, Switzerland, and China have made significant contributions in this field. Bloch KE from the University of Zurich was determined to be the most productive and academically influential author in this field. The highest-yielding journal was High Altitude Medicine & Biology. Initially, altitude training was the primary research topic. Currently, research focuses on sleep disorders and sleep apnea. In the coming years, keywords such as "sleep quality," "prevalence," and "obstructive sleep apnea" will attract more attention. Conclusion Our findings will assist scholars to better understand the intellectual structure and emerging trends in this field. Future developments in high-altitude sleep research are highly anticipated, particularly in terms of sleep quality at high altitudes and its associated prevalence. This research is also crucial for the improvement and treatment of symptoms during nocturnal sleep in patients with chronic hypoxia due to cardiopulmonary diseases at high altitudes.
Collapse
Affiliation(s)
- Lixia Tan
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Medical College, Tibet University, Lhasa, China
| | - Yong Li
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hongxiu Chen
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | | | - Xiuying Hu
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Zubieta-Calleja GR, Zubieta-DeUrioste N. High Altitude Pulmonary Edema, High Altitude Cerebral Edema, and Acute Mountain Sickness: an enhanced opinion from the High Andes - La Paz, Bolivia 3,500 m. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:327-338. [PMID: 35487499 DOI: 10.1515/reveh-2021-0172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/21/2022] [Indexed: 06/02/2023]
Abstract
Traveling to high altitudes for entertainment or work is sometimes associated with acute high altitude pathologies. In the past, scientific literature from the lowlander point of view was primarily based on mountain climbing. Sea level scientists developed all guidelines, but they need modifications for medical care in high altitude cities. Acute Mountain Sickness, High Altitude Pulmonary Edema, and High Altitude Cerebral Edema are medical conditions that some travelers can face. We present how to diagnose and treat acute high altitude pathologies, based on 51 years of high altitude physiology research and medical practice in hypobaric hypoxic diseases in La Paz, Bolivia (3,600 m; 11,811 ft), at the High Altitude Pulmonary and Pathology Institute (HAPPI - IPPA). These can occasionally present after flights to high altitude cities, both in lowlanders or high-altitude residents during re-entry. Acute high altitude ascent diseases can be adequately diagnosed and treated in high altitude cities following the presented guidelines. Treating these high-altitude illnesses, we had no loss of life. Traveling to a high altitude with sound medical advice should not be feared as it has many benefits. Nowadays, altitude descent and evacuation are not mandatory in populated highland cities, with adequate medical resources.
Collapse
Affiliation(s)
- Gustavo R Zubieta-Calleja
- High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), La Paz, Bolivia
- Department of Physiology, Shri B.M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur 586103, Karnataka, India
| | | |
Collapse
|
8
|
谭 璐, 唐 向. [Sleep-Disordered Breathing at High Altitude: Its Characteristics and Research Progress in Treatment]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:246-251. [PMID: 36949680 PMCID: PMC10409183 DOI: 10.12182/20230360506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 03/24/2023]
Abstract
Hypobaric hypoxia in regions of high altitude may increase the risk of having sleep-disordered breathing (SDB). SDB at high altitude mainly refers to the SDB incurred in highlanders and lowlanders at a high altitude. At present, research on SDB at high altitude is mainly focused on these two groups of people. On the one hand, highlanders have SDB at a higher prevalence and greater severity than lowlanders do and highlanders have a prolonged duration of apnea when they travel to low-altitude regions. On the other hand, the severity of SDB increased in lowlanders when they travel to high altitude, represented mainly by an increase in central and hypopnea events. In terms of treatment, a substantial number of studies have shown that medication, including acetazolamide and dexamethasone, and nocturnal oxygen supplementation could improve SDB in lowlanders when they travel to high altitude. However, not much research has been done on the treatment of SDB in highlanders and it has only been reported that nocturnal oxygen supplementation was an available treatment option. Herein, we summarized the latest research findings on SDB at high altitude, providing the basis for further studies about the characteristics and treatments for highlanders with SDB.
Collapse
Affiliation(s)
- 璐 谭
- 四川大学华西医院 睡眠医学中心 (成都 610041)Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 向东 唐
- 四川大学华西医院 睡眠医学中心 (成都 610041)Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Chang KS, Chiu YH, Kao WF, Yang CCH, How CK, Lin YK, Hwang YS, Chien DK, Huang MK, Kuo TBJ. The changes of electroencephalography in mountaineers on Mount Jade, Taiwan: An observational study. PLoS One 2022; 17:e0275870. [PMID: 36417369 PMCID: PMC9683632 DOI: 10.1371/journal.pone.0275870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The diagnosis of acute mountain sickness, which lacks a reliable and objective diagnostic tool, still depends on the clinical symptoms and signs and remains a major threat and unpredictable disease affecting millions of mountaineers. OBJECTIVES To record electroencephalography signals with small, convenient, wireless equipment and to test whether electroencephalography parameters, which are more sensitive and reliable markers, could predict the symptoms of acute mountain sickness. METHODS Twenty-five participants were enrolled and separated into two groups to climb Mount Jade in Taiwan. We collected electrocardiography signals and arterial oxygen saturation data at ground, moderate (2,400 m), and high altitude (3,400 m). A spectral analysis of the electrocardiography was performed to assess the study subjects' electroencephalography activity at different frequencies (α, β, θ, δ) and the mean power frequency of electrocardiography. The clinical symptoms and Lake Louise Acute Mountain Sickness scores of the subjects were recorded for comparison. RESULTS A significant change in the δ power of electroencephalography was recorded in subjects ascending from the ground to a high altitude of 3,400 m in a 4-day itinerary. In addition, between the two groups of subjects with and without acute mountain sickness (Lake Louise Acute Mountain Sickness scores < 3 and ≥ 3), the δ power of electroencephalography at the fronto-parietal 1 and parietal 3 electrodes at moderate altitude as well as the changes of δ power and mean power frequency of electrocardiography over parietal 4 at high altitude showed a significant difference. At moderate altitude, the increasing δ power of electroencephalography at the parietal 4 electrode was related to the headache symptom of acute mountain sickness before ascending to high altitude. CONCLUSION At moderate altitude, the δ power increase of electroencephalography at the P4 electrode could be a predictor of acute mountain sickness symptoms before ascending to high altitude. Thus, electroencephalography had the potential to identify the risk of acute mountain sickness.
Collapse
Affiliation(s)
- Kuo-Song Chang
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yu-Hui Chiu
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Fong Kao
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Emergency and Critical Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Cheryl C. H. Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yuh-Shyan Hwang
- Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ding-Kuo Chien
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Kun Huang
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
- * E-mail: (MKH); (TBJK)
| | - Terry B. J. Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Clinical Research Center, Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
- * E-mail: (MKH); (TBJK)
| |
Collapse
|
10
|
Guo Y, Yong S, Xu Y, Hu Y, Li J, Long Q, Wang X, Gu C, Miao Z. Integrative Analysis of Proteomics and Metabolism Reveals the Potential Roles of Arachidonic Acid Metabolism in Hypoxia Response in Mouse Spleen. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228102. [PMID: 36432203 PMCID: PMC9696392 DOI: 10.3390/molecules27228102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
High altitude hypoxia stress is the key cause of high-altitude pulmonary edema and spleen contraction. The molecular mechanism of immune response of various tissue systems to hypoxia stress remains lacking. In this study, we applied proteomics combined with metabolomics to explore the key molecular profilings involved in high altitude hypoxia response in the spleen of mice. The results showed that 166 proteins were significantly up-regulated, and only 39 proteins were down-regulated. Bioinformatics analysis showed that mineral absorption, neuroactive ligand-receptor interaction, arachidonic acid metabolism, IL-17 signaling pathway and NOD-like preceptor signaling pathway were significantly enriched in the list of 166 upregulated differentially expressed proteins (DEPs). Among these metabolic pathways, the former three pathways were co-identified in KEGG terms from LC-MS/MS based metabolic analysis. We further found that both arachidonate 15-lipoxygenase and hematopoietic prostaglandin D synthase were upregulated by around 30% and 80% for their protein levels and mRNA levels, respectively. Most downstream metabolites were upregulated accordingly, such as prostaglandin A2 and D2. This study provides important evidence that arachidonic acid metabolism potentially promotes spleen hypoxia response through a combined analysis of proteomics and metabolism, which could bring new insights for the spleen targeted rational design upon arachidonic acid metabolism of new therapies.
Collapse
|
11
|
Xue Y, Wang X, Wan B, Wang D, Li M, Cheng K, Luo Q, Wang D, Lu Y, Zhu L. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema. Cell Commun Signal 2022; 20:160. [PMID: 36253854 PMCID: PMC9575296 DOI: 10.1186/s12964-022-00976-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background High-altitude cerebral edema (HACE) is a serious and potentially fatal brain injury that is caused by acute hypobaric hypoxia (HH) exposure. Vasogenic edema is the main pathological factor of this condition. Hypoxia-induced disruptions of tight junctions in the endothelium trigger blood‒brain barrier (BBB) damage and induce vasogenic edema. Nuclear respiratory factor 1 (NRF1) acts as a major regulator of hypoxia-induced endothelial cell injury, and caveolin-1 (CAV-1) is upregulated as its downstream gene in hypoxic endothelial cells. This study aimed to investigate whether CAV-1 is involved in HACE progression and the underlying mechanism. Methods C57BL/6 mice were exposed to HH (7600 m above sea level) for 24 h, and BBB injury was assessed by brain water content, Evans blue staining and FITC-dextran leakage. Immunofluorescence, transmission electron microscope, transendothelial electrical resistance (TEER), transcytosis assays, and western blotting were performed to confirm the role and underlying mechanism of CAV-1 in the disruption of tight junctions and BBB permeability. Mice or bEnd.3 cells were pretreated with MβCD, a specific blocker of CAV-1, and the effect of CAV-1 on claudin-5 internalization under hypoxic conditions was detected by immunofluorescence, western blotting, and TEER. The expression of NRF1 was knocked down, and the regulation of CAV-1 by NRF1 under hypoxic conditions was examined by qPCR, western blotting, and immunofluorescence. Results The BBB was severely damaged and was accompanied by a significant loss of vascular tight junction proteins in HACE mice. CAV-1 was significantly upregulated in endothelial cells, and claudin-5 explicitly colocalized with CAV-1. During the in vitro experiments, hypoxia increased cell permeability, CAV-1 expression, and claudin-5 internalization and downregulated tight junction proteins. Simultaneously, hypoxia induced the upregulation of CAV-1 by activating NRF1. Blocking CAV-1-mediated intracellular transport improved the integrity of TJs in hypoxic endothelial cells and effectively inhibited the increase in BBB permeability and brain water content in HH animals. Conclusions Hypoxia upregulated CAV-1 transcription via the activation of NRF1 in endothelial cells, thus inducing the internalization and autophagic degradation of claudin-5. These effects lead to the destruction of the BBB and trigger HACE. Therefore, CAV-1 may be a potential therapeutic target for HACE. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00976-3.
Collapse
Affiliation(s)
- Yan Xue
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.,Medical School of Nantong University, Nantong, 226007, China.,Nantong Health College of Jiangsu Province, Nantong, 226010, China
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Baolan Wan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Meiqi Li
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Kang Cheng
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
12
|
Li Y, Wang Y, Shi F, Zhang X, Zhang Y, Bi K, Chen X, Li L, Diao H. Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells. Gut Microbes 2022; 14:2096994. [PMID: 35898110 PMCID: PMC9336479 DOI: 10.1080/19490976.2022.2096994] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal dysfunction is a common symptom of acute mountain sickness (AMS). The gut microbiota and γδ T cells play critical roles in intestinal disease. However, the mechanistic link between the microbiota and γδ T cells in hypoxia-induced intestinal injury remains unclear. Here, we show that hypoxia-induced intestinal damage was significantly alleviated after microbiota depletion with antibiotics. Hypoxia modulated gut microbiota composition by promoting antimicrobial peptides angiogenin-4 secretions. The abundance of Clostridium in the gut of mice after hypoxia significantly decreased, while the abundance of Desulfovibrio significantly increased. Furthermore, Desulfovibrio-derived phosphatidylethanolamine and phosphatidylcholine promoted γδ T cell activation. In CD1d-deficient mice, the levels of intraepithelial IL-17A and γδ T cells and intestinal damage were significantly decreased compared with those in wild-type mice under hypoxia. Mechanistically, phospholipid metabolites from Desulfovibrio are presented by intestinal epithelial CD1d to induce the proliferation of IL-17A-producing γδ T cells, which aggravates intestinal injury. Gut microbiota-derived metabolites promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells, suggesting that phospholipid metabolites and γδ T cells can be targets for AMS therapy.
Collapse
Affiliation(s)
- Yuyu Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Yongting Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Xuequn Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang province, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong province, China,CONTACT Hongyan Diao State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang province, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China,Lanjuan Li State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Jinan Microecological Biomedicine Shandong Laboratory, 250117 Jinan, China
| |
Collapse
|
13
|
Zou X, Yang H, Li Q, Li N, Hou Y, Wang X, Meng X, Yu J, Zhang Y, Tang C, Kuang T. Protective Effect of Brassica rapa Polysaccharide against Acute High-Altitude Hypoxia-Induced Brain Injury and Its Metabolomics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3063899. [PMID: 39282147 PMCID: PMC11401678 DOI: 10.1155/2022/3063899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 09/18/2024]
Abstract
Brassica rapa L., a traditional Tibetan medicine, has been wildly used for treating plateau disease. Polysaccharide is an important chemical component in B. rapa. The present study aimed to evaluate the effect of B. rapa polysaccharide (BRP) against acute high-altitude hypoxia (AHH) induced brain injury and its metabolic mechanism. The rats were randomly divided into six groups: control group, AHH group, Hongjingtian oral liquid group, and three BRP groups (38, 75, and 150 mg/kg/d). Serum levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and lactate dehydrogenase (LDH) were detected by commercial biochemical kits. Hippocampus and cortex histopathological changes were observed by H&E staining and Nissl staining. Neuronal apoptosis was observed by TUNEL staining. The protein and gene expression of Caspase-3, Bax, Bcl-2, p-PI3K, PI3K, p-Akt, Akt, HIF-1α, microRNA 210, ISCU1/2, and COX10 were detected by western blotting and qRT-PCR. Then, a brain metabolomics method based on UPLC-Q-Exactive-MS was performed to discover potential biomarkers and analyze metabolic pathways. It was found that BRP decreased levels of MDA, LDH, and GSSG, increased GSH and SOD, reduced the pathological changes, inhibited apoptosis, and activated the PI3K/Akt/HIF-1α signaling pathway as evidenced by increased phosphorylation of PI3K and Akt, enhanced protein expression of HIF-1α and gene levels of microRNA210, ISCU1/2, and COX10. Furthermore, 15 endogenous potential biomarkers were identified in the brain through metabolomics analysis. BRP can regulate 7 potential biomarkers and the corresponding metabolic pathways were mainly associated with pyruvate metabolism and glycolysis/gluconeogenesis. Collectively, BRP has a clear protective effect on AHH-induced brain injury and its mechanisms may be related to ameliorate oxidative stress injury, inhibit apoptosis by activating PI3K/Akt/HIF-1α signaling pathway, and reverse metabolic pathway disturbances.
Collapse
Affiliation(s)
- Xuemei Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hailing Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiuyue Li
- Pharmacy Intravenous Admixture Services, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646600, China
| | - Ning Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
14
|
Tan L, Furian M, Li T, Tang X. Effect of acetazolamide on obstructive sleep apnoea in highlanders: protocol for a randomised, placebo-controlled, double-blinded crossover trial. BMJ Open 2022; 12:e057113. [PMID: 35256446 PMCID: PMC8905944 DOI: 10.1136/bmjopen-2021-057113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnoea (OSA) is a highly prevalent disease that causing systemic hypertension. Furthermore, altitude-dependent hypobaric hypoxic condition and Tibetan ethnicity have been associated with systemic hypertension independent of OSA, therefore patients with OSA living at high altitude might be at profound risk to develop systemic hypertension. Acetazolamide has been shown to decrease blood pressure, improve arterial oxygenation and prevent high altitude periodic breathing in healthy volunteers ascending to high altitude and decrease blood pressure in patients with systemic hypertension at low altitude. However, the effect of acetazolamide on 24-hour blood pressure, sleep-disordered disturbance and daytime cognitive performance in patients with OSA permanently living at high altitude has not been studied. METHODS AND ANALYSIS This study protocol describes a randomised, placebo-controlled, double-blinded crossover trial. Highland residents of both sexes, aged 30-60 years, Tibetan ethnicity, living at an elevation of 3650 m and apnoea-hypopnoea index over 15/hour will be included. Participants will be randomly assigned to a 2×2 week treatment period starting with 750 mg/day acetazolamide followed by placebo treatment or vice versa, separated by a 1-week wash-out phase. Clinical assessments, 24-hour ambulatory blood pressure monitoring (ABPM), polysomnography (PSG), near-infrared spectroscopy, nocturnal fluid shift and cognitive performance will be assessed before and at the end of each treatment period. The primary outcome will be the difference in 24-hour mean blood pressure between acetazolamide therapy and placebo; secondary outcomes will be the difference in other 24-hour ABPM-derived parameters, PSG-derived parameters, cognitive performance and overnight change in different segments of fluid volume between acetazolamide therapy and placebo. Accounting for potential dropouts, 40 participants will be recruited. ETHICS AND DISSEMINATION The protocol was approved by the West China Hospital of Sichuan University Biomedical Research Ethics Committee. Recruitment will start in spring 2022. Dissemination of the results include presentations at conferences and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER ChiCTR2100049304.
Collapse
Affiliation(s)
- Lu Tan
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Michael Furian
- Sleep Disorders Center, Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Taomei Li
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Tan L, Li T, Luo L, Xue X, Lei F, Ren R, Zhang Y, He J, Bloch KE, Tang X. The Characteristics of Sleep Apnea in Tibetans and Han Long-Term High Altitude Residents. Nat Sci Sleep 2022; 14:1533-1544. [PMID: 36072275 PMCID: PMC9444001 DOI: 10.2147/nss.s371388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Obstructive sleep apnea (OSA) is common both at low and high altitude. Since adaptations to high altitude and respiratory control may differ among Tibetans and Hans, we compared characteristics of sleep-disordered breathing in the two ethnic groups at high altitude. MATERIALS AND METHODS This was a prospective observational study including 86 Tibetan and Han long-term (>5 years) high altitude residents with chief complaints of snoring and/or witnessed apnea underwent clinical evaluation and polysomnography at 3200 meters in Shangri-La, China. RESULTS In 42 Tibetans, 38 men, median (quartiles) age was 50.0 (41.0; 56.0)y, total apnea/hypopnea index (AHI) 53.9 (32.0; 77.5)/h, obstructive AHI 51.0 (28.0; 72.2)/h and central AHI 1.5 (0.2; 3.1)/h. In 44 Hans, 32 men, median (quartiles) age was 47.0 (43.5; 51.0)y, total AHI 22.2 (12.8; 39.2)/h, obstructive AHI 17.7 (12.0; 33.0)/h and central AHI 2.4 (0.5; 3.4)/h (p < 0.001 total and obstructive AHI vs Tibetans). In Tibetans, mean nocturnal oxygen saturation was lower [median 85.0 (83.0; 88.0)% vs 88.5 (87.0; 90.0)%] and obstructive apnea and hypopnea duration was longer [22.0 (19.6; 24.8) sec vs 18.3 (16.7; 20.6) sec] than in Hans (all p < 0.001). In regression analysis, Tibetan ethnicity, neck circumference and high-altitude living duration were the predictors of total AHI. We also found that with every 10/h increase in total AHI, there were an approximately 0.9 beat/min and 0.8 beat/min increase in mean heart rate during rapid eye movement (REM) and non-REM sleep and 1.9 mmHg and 2.0 mmHg increase in evening and morning systolic blood pressure. CONCLUSION Our data suggest that Tibetans presented more severe obstructive sleep apnea, hypoxemia and longer apnea duration compared to Hans at 3200 meters, which was correlated with higher heart rate and blood pressure suggesting a greater cardiovascular risk.
Collapse
Affiliation(s)
- Lu Tan
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Taomei Li
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lian Luo
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Xue
- Department of Emergency, Diqing Tibetan Autonomous Prefectural People's Hospital, Shangri-La, People's Republic of China.,Department of Intensive Care Unit, Diqing Tibetan Autonomous Prefectural People's Hospital, Shangri-La, People's Republic of China
| | - Fei Lei
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Rong Ren
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ye Zhang
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jiaming He
- Department of Emergency, Diqing Tibetan Autonomous Prefectural People's Hospital, Shangri-La, People's Republic of China.,Department of Intensive Care Unit, Diqing Tibetan Autonomous Prefectural People's Hospital, Shangri-La, People's Republic of China
| | - Konrad E Bloch
- Department of Respiratory Medicine, Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Xiangdong Tang
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Mental Health Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
16
|
Jacovas VC, Michita RT, Bisso-Machado R, Reales G, Tarazona-Santos EM, Sandoval JR, Salazar-Granara A, Chies JAB, Bortolini MC. HLA-G 3'UTR haplotype frequencies in highland and lowland South Native American populations. Hum Immunol 2021; 83:27-38. [PMID: 34563386 DOI: 10.1016/j.humimm.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Human Leukocyte Antigen (HLA)-G participates in several biological processes, including reproduction, vascular remodeling, immune tolerance, and hypoxia response. HLA-G is a potential candidate gene for high altitude adaptation since its expression is modulated in both micro and macro environment under hypoxia and constant cellular stress. Besides the promoter region, the HLA-G 3'untranslated region (UTR) influences HLA-G expression patterns through several post-transcriptional mechanisms. Currently, the 3'UTR genetic diversity in terms of altitude adaptation of Native American populations is still unexplored, particularly at high altitude ecoregions. Here, we evaluated 288 Native Americans from 9 communities located in the Andes [highland (HL); ≥2,500 m (range = 2,838-4,433 m)] and 8 populations located in lowland (LL) regions [<2,500 m (range = 80-431 m); Amazonian tropical forest, Brazilian central plateau, and Chaco] of South America. In total, nine polymorphic sites and ten haplotypes were observed. The most frequent haplotypes (UTR-1, UTR-2, and UTR-3) accounted for ∼ 77% of haplotypes found in LL, while in the HL, the same haplotypes reach ∼ 93%. Also, a remarkable high frequency of putative ancestral UTR-5 haplotype was observed in LL (21.5%), while in HL UTR-2 reaches up to 47%. Further, UTR-2 frequency positively correlates with altitude-related variables, while a negative correlation for UTR-5 was observed. From an evolutionary perspective, we observed a tendency towards balancing selection in HL and LL populations thus suggesting that haplotypes of ancient and more derived alleles may have been co-opted for relatively recent adaptations such as those experienced by modern humans in the highland and lowland of South America. We also discuss how long-term balancing selection can be a reservoir of genetic variants that can be positively selected. Finally, our study provides some pieces of evidence that HLA-G 3'UTR haplotypes may have contributed to high altitude adaptation in the Andes.
Collapse
Affiliation(s)
- Vanessa Cristina Jacovas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Tomoya Michita
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Human Molecular Genetics Laboratory, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Rafael Bisso-Machado
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guillermo Reales
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo M Tarazona-Santos
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - José Raul Sandoval
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | | | - José Artur Bogo Chies
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
Schmickl CN, Owens RL, Orr JE, Edwards BA, Malhotra A. Side effects of acetazolamide: a systematic review and meta-analysis assessing overall risk and dose dependence. BMJ Open Respir Res 2021; 7:7/1/e000557. [PMID: 32332024 PMCID: PMC7204833 DOI: 10.1136/bmjresp-2020-000557] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023] Open
Abstract
Introduction Acetazolamide (AZM) is used for various conditions (eg, altitude sickness, sleep apnoea, glaucoma), but therapy is often limited by its side effect profile. Our objective was to estimate the risk of commonly reported side effects based on meta-analyses. We hypothesised that these risks are dose-dependent. Methods We queried MEDLINE/EMBASE (Medical Literature Analysis and Retrieval System Online/Excerpta Medica dataBASE) up until 04/10/2019, including any randomised placebo-controlled trial in which adults received oral AZM versus placebo reporting side effects. Eligibility assessment was performed by two independent reviewers. Data were abstracted by one reviewer who verified key entries at a second time point. For side effects reported by >3 studies a pooled effect estimate was calculated, and heterogeneity assessed via I2; for outcomes reported by >5 studies effect modification by total daily dose (EMbyTDD; <400 mg/d, 400–600 mg/d, >600 mg/d) was assessed via meta-regression. For pre-specified, primary outcomes (paraesthesias, taste disturbances, polyuria and fatigue) additional subgroup analyses were performed using demographics, intervention details, laboratory changes and risk of bias. Results We included 42 studies in the meta-analyses (Nsubjects=1274/1211 in AZM/placebo groups). AZM increased the risk of all primary outcomes (p<0.01, I2 ≤16% and low-to-moderate quality of evidence for all)—the numbers needed to harm (95% CI; nStudies) for each were: paraesthesias 2.3 (95% CI 2 to 2.7; n=39), dysgeusia 18 (95% CI 10 to 38, n=22), polyuria 17 (95% CI 9 to 49; n=22), fatigue 11 (95% CI 6 to 24; n=14). The risk for paraesthesias (beta=1.8 (95% CI 1.1 to 2.9); PEMbyTDD=0.01) and dysgeusia (beta=3.1 (95% CI 1.2 to 8.2); PEMbyTDD=0.02) increased with higher AZM doses; the risk of fatigue also increased with higher dose but non-significantly (beta=2.6 (95% CI 0.7 to 9.4); PEMbyTDD=0.14). Discussion This comprehensive meta-analysis of low-to-moderate quality evidence defines risk of common AZM side effects and corroborates dose dependence of some side effects. These results may inform clinical decision making and support efforts to establish the lowest effective dose of AZM for various conditions.
Collapse
Affiliation(s)
- Christopher N Schmickl
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert L Owens
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California, USA
| | - Jeremy E Orr
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California, USA
| | - Bradley A Edwards
- Sleep and Circadian Medicine Laboratory, Department of Physiology, Monash University, Clayton, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria, Australia
| | - Atul Malhotra
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Zubieta-Calleja G, Zubieta-DeUrioste N. Acute Mountain Sickness, High Altitude Pulmonary Edema, and High Altitude Cerebral Edema: A view from the High Andes. Respir Physiol Neurobiol 2021; 287:103628. [PMID: 33545376 DOI: 10.1016/j.resp.2021.103628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/27/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Travelling to high altitude for entertainment or work is sometimes associated with acute high altitude pathologies. In the past, scientific literature from the lowlanders' point of view was mostly based on mountain climbing. Nowadays, descent is not mandatory in populated highland cities. METHODS We present how to diagnose and treat acute high altitude pathologies (hypobaric hypoxic diseases) based on 50 years of experience in both: high altitude physiology research and medical practice as clinicians, in La Paz, Bolivia (3,600 m; 11,811 ft), at the High Altitude Pulmonary and Pathology Institute (HAPPI - IPPA). RESULTS Acute Mountain Sickness, High Altitude Pulmonary Edema, and High Altitude Cerebral Edema are medical conditions faced by some travelers. These can occasionally present after flights to high altitude cities, both in lowlanders or in high altitude residents during re-entry, having spent more than 20 days at sea level. CONCLUSIONS Traveling to high altitude should not be feared as it has many benefits; Acute high altitude ascent diseases can be adequately diagnosed and treated without descent.
Collapse
Affiliation(s)
- Gustavo Zubieta-Calleja
- High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), Av. Copacabana - Prolongación # 55, La Paz, Bolivia; Department of Physiology, Shri B.M.Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, 586103, Karnataka, India.
| | - Natalia Zubieta-DeUrioste
- High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), Av. Copacabana - Prolongación # 55, La Paz, Bolivia
| |
Collapse
|
19
|
Li Z, Li R, Xu Y, Xu Y. Study on the Oxygen Enrichment Effect of Individual Oxygen-Supply Device in a Tunnel of Plateau Mine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165934. [PMID: 32824194 PMCID: PMC7459575 DOI: 10.3390/ijerph17165934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Complex characteristics of the plateau environment such as low oxygen content seriously restrict the exploitation of abundant mineral resources in plateau areas. To regulate the hypoxia environment and improve the comfort of workers engaged in intense physical labor like tunnel excavation operations in plateau mines, an individual oxygen-supply device for tunnel of plateau mine was proposed to create local oxygen enrichment in the area around the human nose. The Computational Fluid Dynamics (CFD) method was used to judge the application’s effect of the individual oxygen-supply device in plateau mine, revealing the oxygen diffusion law under the influence of different oxygen enrichment factors. The orthogonal design and range analysis were used to measure the degree of influence of major factors such as oxygen-supply velocity, oxygen-supply concentration, and tunnel airflow velocity. The results demonstrate that the oxygen mass fraction of the air inhaled by the human had a positive correlation exponential function, a positive correlation linear function, and a negative correlation exponential function, respectively, concerning oxygen-supply velocity, oxygen-supply concentration, and tunnel airflow velocity. The range analysis revealed that the major influencing factors of oxygen enrichment in the tunnel of the plateau mine were, in a descending sequence, as follows: oxygen-supply concentration, tunnel airflow velocity, and oxygen-supply velocity, and the corresponding ranges were 2.86, 2.63, and 1.83, respectively. The individual oxygen-supply device achieved the best oxygen enrichment effect when the oxygen-supply velocity was 5 m/s, the oxygen-supply concentration was 60%, and the tunnel airflow velocity was 0.2 m/s, which increased the oxygen mass fraction of air inhaled by the human to 30.42%. This study has a positive guiding significance for the improvement of the respiration environment in the tunnel of plateau mine.
Collapse
|
20
|
Furuto Y, Kawamura M, Namikawa A, Takahashi H, Shibuya Y. Health risk of travel for chronic kidney disease patients. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2020; 25:22. [PMID: 32419779 PMCID: PMC7213004 DOI: 10.4103/jrms.jrms_459_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
Abstract
The number of people with chronic kidney disease (CKD) has increased and so has their demand for travel. However, the health risk posed by travel in these patients is unclear. Few reports document the travel risk in CKD and dialysis patients. The aim of this study is to summarize the existing evidence of the influence of travel on risks in CKD patients. We aim to describe the association between the impact of travel risks and patients with CKD. A detailed review of recent literature was performed by reviewing PubMed, Google Scholar, and Ichushi Web from the Japan Medical Abstracts Society. Screened involved the following keywords: “traveler's thrombosis,” “venous thromboembolism,” “deep vein thrombosis,” “altitude sickness,” “traveler's diarrhea,” “jet lag syndrome,” “melatonin,” with “chronic kidney disease” only, or/and “dialysis.” We present a narrative review summary of the literature from these screenings. The increased prevalence of thrombosis among travelers with CKD is related to a decrease in the estimated glomerular filtration rate and an increase in urine protein levels. CKD patients who remain at high altitudes are at an increased risk for progression of CKD, altitude sickness, and pulmonary edema. Traveler's diarrhea can become increasingly serious in patients with CKD because of decreased immunity. Microbial substitution colitis is also common in CKD patients. Moreover, time differences and disturbances in the circadian rhythm increase cardiovascular disease events for CKD patients. The existing literature shows that travel-related conditions pose an increased risk for patients with CKD.
Collapse
Affiliation(s)
- Yoshitaka Furuto
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, Shinagawa-ku, Tokyo, Japan
| | - Mariko Kawamura
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, Shinagawa-ku, Tokyo, Japan
| | - Akio Namikawa
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, Shinagawa-ku, Tokyo, Japan
| | - Hiroko Takahashi
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, Shinagawa-ku, Tokyo, Japan
| | - Yuko Shibuya
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
21
|
Wang Y, Xu M, Shi Y. Efficacy of spinal chiropractic manipulative therapy for adjusting the relationship between cervical facet joints to treat headache caused by acute mountain sickness. J Int Med Res 2020; 48:300060519898005. [PMID: 31948301 PMCID: PMC7113709 DOI: 10.1177/0300060519898005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yuan Wang
- Department of Geriatrics, Beijing Geriatric Hospital, Beijing, China
| | - Mengzi Xu
- Department of Orthopedics, Beijing Haidian Hospital, Beijing, China
| | - Yan Shi
- Department of Orthopedics, Beijing Haidian Hospital, Beijing, China
| |
Collapse
|
22
|
Tapia L, Irarrázaval S. Acetazolamide for the treatment of acute mountain sickness. Medwave 2019; 19:e7737. [DOI: 10.5867/medwave.2019.11.7736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022] Open
|
23
|
Molano Franco D, Nieto Estrada VH, Gonzalez Garay AG, Martí‐Carvajal AJ, Arevalo‐Rodriguez I. Interventions for preventing high altitude illness: Part 3. Miscellaneous and non-pharmacological interventions. Cochrane Database Syst Rev 2019; 4:CD013315. [PMID: 31012483 PMCID: PMC6477878 DOI: 10.1002/14651858.cd013315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND High altitude illness (HAI) is a term used to describe a group of mainly cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (˜ 8200 feet). Acute mountain sickness (AMS), high altitude cerebral oedema (HACE), and high altitude pulmonary oedema (HAPE) are reported as potential medical problems associated with high altitude ascent. In this, the third of a series of three reviews about preventive strategies for HAI, we assessed the effectiveness of miscellaneous and non-pharmacological interventions. OBJECTIVES To assess the clinical effectiveness and adverse events of miscellaneous and non-pharmacological interventions for preventing acute HAI in people who are at risk of developing high altitude illness in any setting. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) in January 2019. We adapted the MEDLINE strategy for searching the other databases. We used a combination of thesaurus-based and free-text search terms. We scanned the reference lists and citations of included trials and any relevant systematic reviews that we identified for further references to additional trials. SELECTION CRITERIA We included randomized controlled trials conducted in any setting where non-pharmacological and miscellaneous interventions were employed to prevent acute HAI, including preacclimatization measures and the administration of non-pharmacological supplements. We included trials involving participants who are at risk of developing high altitude illness (AMS or HACE, or HAPE, or both). We included participants with, and without, a history of high altitude illness. We applied no age or gender restrictions. We included trials where the relevant intervention was administered before the beginning of ascent. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures employed by Cochrane. MAIN RESULTS We included 20 studies (1406 participants, 21 references) in this review. Thirty studies (14 ongoing, and 16 pending classification (awaiting)) will be considered in future versions of this suite of three reviews as appropriate. We report the results for the primary outcome of this review (risk of AMS) by each group of assessed interventions.Group 1. Preacclimatization and other measures based on pressureUse of simulated altitude or remote ischaemic preconditioning (RIPC) might not improve the risk of AMS on subsequent exposure to altitude, but this effect is uncertain (simulated altitude: risk ratio (RR) 1.18, 95% confidence interval (CI) 0.82 to 1.71; I² = 0%; 3 trials, 140 participants; low-quality evidence. RIPC: RR 3.0, 95% CI 0.69 to 13.12; 1 trial, 40 participants; low-quality evidence). We found evidence of improvement of this risk using positive end-expiratory pressure (PEEP), but this information was derived from a cross-over trial with a limited number of participants (OR 3.67, 95% CI 1.38 to 9.76; 1 trial, 8 participants; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions.Group 2. Supplements and vitaminsSupplementation of antioxidants, medroxyprogesterone, iron or Rhodiola crenulata might not improve the risk of AMS on exposure to high altitude, but this effect is uncertain (antioxidants: RR 0.58, 95% CI 0.32 to 1.03; 1 trial, 18 participants; low-quality evidence. Medroxyprogesterone: RR 0.71, 95% CI 0.48 to 1.05; I² = 0%; 2 trials, 32 participants; low-quality evidence. Iron: RR 0.65, 95% CI 0.38 to 1.11; I² = 0%; 2 trials, 65 participants; low-quality evidence. R crenulata: RR 1.00, 95% CI 0.78 to 1.29; 1 trial, 125 participants; low-quality evidence). We found evidence of improvement of this risk with the administration of erythropoietin, but this information was extracted from a trial with issues related to risk of bias and imprecision (RR 0.41, 95% CI 0.20 to 0.84; 1 trial, 39 participants; very low-quality evidence). Regarding administration of ginkgo biloba, we did not perform a pooled estimation of RR for AMS due to considerable heterogeneity between the included studies (I² = 65%). RR estimates from the individual studies were conflicting (from 0.05 to 1.03; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions.Group 3. Other comparisonsWe found heterogeneous evidence regarding the risk of AMS when ginkgo biloba was compared with acetazolamide (I² = 63%). RR estimates from the individual studies were conflicting (estimations from 0.11 (95% CI 0.01 to 1.86) to 2.97 (95% CI 1.70 to 5.21); low-quality evidence). We found evidence of improvement when ginkgo biloba was administered along with acetazolamide, but this information was derived from a single trial with issues associated to risk of bias (compared to ginkgo biloba alone: RR 0.43, 95% CI 0.26 to 0.71; 1 trial, 311 participants; low-quality evidence). Administration of medroxyprogesterone plus acetazolamide did not improve the risk of AMS when compared to administration of medroxyprogesterone or acetazolamide alone (RR 1.33, 95% CI 0.50 to 3.55; 1 trial, 12 participants; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions. AUTHORS' CONCLUSIONS This Cochrane Review is the final in a series of three providing relevant information to clinicians, and other interested parties, on how to prevent high altitude illness. The assessment of non-pharmacological and miscellaneous interventions suggests that there is heterogeneous and even contradictory evidence related to the effectiveness of these prophylactic strategies. Safety of these interventions remains as an unclear issue due to lack of assessment. Overall, the evidence is limited due to its quality (low to very low), the relative paucity of that evidence and the number of studies pending classification for the three reviews belonging to this series (30 studies either awaiting classification or ongoing). Additional studies, especially those comparing with pharmacological alternatives (such as acetazolamide) are required, in order to establish or refute the strategies evaluated in this review.
Collapse
Affiliation(s)
- Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Víctor H Nieto Estrada
- Los Cobos Medical Centre. Grupo Investigacion GRIBOSDepartment of Critical CareBogotaBogotaColombia
| | | | | | - Ingrid Arevalo‐Rodriguez
- Hospital Universitario Ramón y Cajal (IRYCIS), CIBER Epidemiology and Public Health (CIBERESP)Clinical Biostatistics UnitCtra. Colmenar Km. 9,100MadridSpain28034
- Cochrane Associate Centre of MadridMadridSpain
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica EquinoccialCochrane EcuadorQuitoEcuador
| | | |
Collapse
|
24
|
Wang H, Zhu X, Xiang H, Liao Z, Gao M, Luo Y, Wu P, Zhang Y, Ren M, Zhao H, Xu M. Effects of altitude changes on mild-to-moderate closed-head injury in rats following acute high-altitude exposure. Exp Ther Med 2019; 17:847-856. [PMID: 30651871 DOI: 10.3892/etm.2018.7020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/12/2018] [Indexed: 11/05/2022] Open
Abstract
Mild-to-moderate closed-head injury (mmCHI) is an acute disease induced by high-altitudes. It is general practice to transfer patients to lower altitudes for treatment, but the pathophysiological changes at different altitudes following mmCHI remain unknown. The present study simulated acute high-altitude exposure (6,000 m above sea level) in rats to establish a model of mmCHI and recorded their vital signs. The rats were then randomly assigned into different altitude exposure groups (6,000, 4,500 and 3,000 m) and neurological severity score (NSS), body weight (BW), brain magnetic resonance imaging (MRI), brain water content (BWC) and the ratio of BW/BWC at 6, 12 and 24 h following mmCHI, and the glial fibrillary acidic protein levels were analysed in all groups. The results revealed that within the first 24 h following acute high-altitude exposure, mmCHI induced dehydration, brain oedema and neuronal damage. Brain injury in rats was significantly reversed following descent to 4,500 m compared with the results from 6,000 or 3,000 m. The results indicated that subjects should be transported as early as possible. Furthermore, avoiding large-span descent altitude was beneficial to reduce neurological impairment. The examination of brain-specific biomarkers and MRI may further be useful in determining the prognosis of high-altitude mmCHI. These results may provide guidance for rescuing high altitude injuries.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiyan Zhu
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hongyi Xiang
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zhikang Liao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Mou Gao
- Affiliated Bayi Brain Hospital P.L.A Army General Hospital, Beijing 100038, P.R. China
| | - Yetao Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Pengfei Wu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yihua Zhang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Mingliang Ren
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hui Zhao
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Institute for Traffic Medicine, Third Military Medical University, Chongqing 400042, P.R. China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|