1
|
Bulder RM, van der Vorst JR, van Schaik J, Bedene A, Lijfering WM, Bastiaannet E, Hamming JF, Lindeman JH. Persistent High Long-term Excess Mortality After Elective AAA Repair Especially in Women: A Large Population-based Study. Ann Surg 2023; 278:815-822. [PMID: 37497631 PMCID: PMC10549885 DOI: 10.1097/sla.0000000000006044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The aim of this time-trend analysis is to estimate long-term excess mortality and associated cardiovascular risk for abdominal aortic aneurysm (AAA) patients after elective repair while addressing the changes in AAA management and patient selection over time. BACKGROUND Despite the intensification of endovascular aneurysm repair and cardiovascular risk management, Swedish population data suggest that AAA patients retain a persistently high long-term mortality after elective repair. The question is whether this reflects suboptimal treatment, a changing patient population over time, or a national phenomenon. METHODS Nationwide time-trend analysis including 40,730 patients (87% men) following elective AAA repair between 1995 and 2017. Three timeframes were compared, each reflecting changes in the use of endovascular aneurysm repair and intensification of cardiovascular risk management. Relative survival analyses were used to estimate disease-specific excess mortality. Competing risk of death analysis evaluated the risk of cardiovascular versus noncardiovascular death. Sensitivity analysis evaluated the impact of changes in patient selection over time. RESULTS Short-term excess mortality significantly improved over time. Long-term excess mortality remained high with a doubled mortality risk for women (relative excess risk=1.87, 95% CI: 1.73-2.02). Excess mortality did not differ between age categories. The risk of cardiovascular versus noncardiovascular death remained similar over time, with a higher risk of cardiovascular death for women. Changes in patient population (ie, older and more comorbid patients in the latter period) marginally impacted excess mortality (2%). CONCLUSIONS Despite changes in AAA care, patients retain a high long-term excess mortality after elective repair with a persistent high cardiovascular mortality risk. In this, a clear sex - but no age - disparity stands out.
Collapse
Affiliation(s)
- Ruth M.A. Bulder
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost R. van der Vorst
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan van Schaik
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ajda Bedene
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem M. Lijfering
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther Bastiaannet
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Jaap F. Hamming
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H.N. Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Ogino H, Iida O, Akutsu K, Chiba Y, Hayashi H, Ishibashi-Ueda H, Kaji S, Kato M, Komori K, Matsuda H, Minatoya K, Morisaki H, Ohki T, Saiki Y, Shigematsu K, Shiiya N, Shimizu H, Azuma N, Higami H, Ichihashi S, Iwahashi T, Kamiya K, Katsumata T, Kawaharada N, Kinoshita Y, Matsumoto T, Miyamoto S, Morisaki T, Morota T, Nanto K, Nishibe T, Okada K, Orihashi K, Tazaki J, Toma M, Tsukube T, Uchida K, Ueda T, Usui A, Yamanaka K, Yamauchi H, Yoshioka K, Kimura T, Miyata T, Okita Y, Ono M, Ueda Y. JCS/JSCVS/JATS/JSVS 2020 Guideline on Diagnosis and Treatment of Aortic Aneurysm and Aortic Dissection. Circ J 2023; 87:1410-1621. [PMID: 37661428 DOI: 10.1253/circj.cj-22-0794] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Affiliation(s)
- Hitoshi Ogino
- Department of Cardiovascular Surgery, Tokyo Medical University
| | - Osamu Iida
- Cardiovascular Center, Kansai Rosai Hospital
| | - Koichi Akutsu
- Cardiovascular Medicine, Nippon Medical School Hospital
| | - Yoshiro Chiba
- Department of Cardiology, Mito Saiseikai General Hospital
| | | | | | - Shuichiro Kaji
- Department of Cardiovascular Medicine, Kansai Electric Power Hospital
| | - Masaaki Kato
- Department of Cardiovascular Surgery, Morinomiya Hospital
| | - Kimihiro Komori
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine
| | - Hitoshi Matsuda
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | | | - Takao Ohki
- Division of Vascular Surgery, Department of Surgery, The Jikei University School of Medicine
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Graduate School of Medicine, Tohoku University
| | - Kunihiro Shigematsu
- Department of Vascular Surgery, International University of Health and Welfare Mita Hospital
| | - Norihiko Shiiya
- First Department of Surgery, Hamamatsu University School of Medicine
| | | | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University
| | - Hirooki Higami
- Department of Cardiology, Japanese Red Cross Otsu Hospital
| | | | - Toru Iwahashi
- Department of Cardiovascular Surgery, Tokyo Medical University
| | - Kentaro Kamiya
- Department of Cardiovascular Surgery, Tokyo Medical University
| | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | - Nobuyoshi Kawaharada
- Department of Cardiovascular Surgery, Sapporo Medical University School of Medicine
| | | | - Takuya Matsumoto
- Department of Vascular Surgery, International University of Health and Welfare
| | | | - Takayuki Morisaki
- Department of General Medicine, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo
| | - Tetsuro Morota
- Department of Cardiovascular Surgery, Nippon Medical School Hospital
| | | | - Toshiya Nishibe
- Department of Cardiovascular Surgery, Tokyo Medical University
| | - Kenji Okada
- Department of Surgery, Division of Cardiovascular Surgery, Kobe University Graduate School of Medicine
| | | | - Junichi Tazaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Masanao Toma
- Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center
| | - Takuro Tsukube
- Department of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital
| | - Keiji Uchida
- Cardiovascular Center, Yokohama City University Medical Center
| | - Tatsuo Ueda
- Department of Radiology, Nippon Medical School
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine
| | - Kazuo Yamanaka
- Cardiovascular Center, Nara Prefecture General Medical Center
| | - Haruo Yamauchi
- Department of Cardiac Surgery, The University of Tokyo Hospital
| | | | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | | | - Yutaka Okita
- Department of Surgery, Division of Cardiovascular Surgery, Kobe University Graduate School of Medicine
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo
| | | |
Collapse
|
3
|
BRACALE UM, PELUSO A, PANAGROSSO M, CECERE F, DEL GUERCIO L, MINICI R, GIANNOTTA N, IELAPI N, LICASTRO N, SERRAINO GF, MASTROROBERTO P, ANDREUCCI M, SERRA R. Ankle-Brachial Index evaluation in totally percutaneous approach vs. femoral artery cutdown for endovascular aortic repair of abdominal aortic aneurysms. Chirurgia (Bucur) 2022. [DOI: 10.23736/s0394-9508.22.05381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Pratesi C, Esposito D, Apostolou D, Attisani L, Bellosta R, Benedetto F, Blangetti I, Bonardelli S, Casini A, Fargion AT, Favaretto E, Freyrie A, Frola E, Miele V, Niola R, Novali C, Panzera C, Pegorer M, Perini P, Piffaretti G, Pini R, Robaldo A, Sartori M, Stigliano A, Taurino M, Veroux P, Verzini F, Zaninelli E, Orso M. Guidelines on the management of abdominal aortic aneurysms: updates from the Italian Society of Vascular and Endovascular Surgery (SICVE). THE JOURNAL OF CARDIOVASCULAR SURGERY 2022; 63:328-352. [PMID: 35658387 DOI: 10.23736/s0021-9509.22.12330-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The objective of these Guidelines was to revise and update the previous 2016 Italian Guidelines on Abdominal Aortic Aneurysm Disease, in accordance with the National Guidelines System (SNLG), to guide every practitioner toward the most correct management pathway for this pathology. The methodology applied in this update was the GRADE-SIGN version methodology, following the instructions of the AGREE quality of reporting checklist as well. The first methodological step was the formulation of clinical questions structured according to the PICO (Population, Intervention, Comparison, Outcome) model according to which the Recommendations were issued. Then, systematic reviews of the Literature were carried out for each PICO question or for homogeneous groups of questions, followed by the selection of the articles and the assessment of the methodological quality for each of them using qualitative checklists. Finally, a Considered Judgment form was filled in for each clinical question, in which the features of the evidence as a whole are assessed to establish the transition from the level of evidence to the direction and strength of the recommendations. These guidelines outline the correct management of patients with abdominal aortic aneurysm in terms of screening and surveillance. Medical management and indication for surgery are discussed, as well as preoperative assessment regarding patients' background and surgical risk evaluation. Once the indication for surgery has been established, the options for traditional open and endovascular surgery are described and compared, focusing specifically on patients with ruptured abdominal aortic aneurysms as well. Finally, indications for early and late postoperative follow-up are explained. The most recent evidence in the Literature has been able to confirm and possibly modify the previous recommendations updating them, likewise to propose new recommendations on prospectively relevant topics.
Collapse
Affiliation(s)
- Carlo Pratesi
- Department of Vascular Surgery, Careggi University Hospital, Florence, Italy
| | - Davide Esposito
- Department of Vascular Surgery, Careggi University Hospital, Florence, Italy -
| | | | - Luca Attisani
- Department of Vascular Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Raffaello Bellosta
- Department of Vascular Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Filippo Benedetto
- Department of Vascular Surgery, AOU Policlinico Martino, Messina, Italy
| | | | | | - Andrea Casini
- Department of Intensive Care, Careggi University Hospital, Florence, Italy
| | - Aaron T Fargion
- Department of Vascular Surgery, Careggi University Hospital, Florence, Italy
| | - Elisabetta Favaretto
- Department of Angiology and Blood Coagulation, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Antonio Freyrie
- Department of Vascular Surgery, Parma University Hospital, Parma, Italy
| | - Edoardo Frola
- Department of Vascular Surgery, AO S. Croce e Carle, Cuneo, Italy
| | - Vittorio Miele
- Department of Diagnostic Imaging, Careggi University Hospital, Florence, Italy
| | - Raffaella Niola
- Department of Vascular and Interventional Radiology, AORN Cardarelli, Naples, Italy
| | - Claudio Novali
- Department of Vascular Surgery, GVM Maria Pia Hospital, Turin, Italy
| | - Chiara Panzera
- Department of Vascular Surgery, AOU Sant'Andrea, Rome, Italy
| | - Matteo Pegorer
- Department of Vascular Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Paolo Perini
- Department of Vascular Surgery, Parma University Hospital, Parma, Italy
| | | | - Rodolfo Pini
- Department of Vascular Surgery, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Alessandro Robaldo
- Department of Vascular Surgery, Ticino Vascular Center - Lugano Regional Hospital, Lugano, Switzerland
| | - Michelangelo Sartori
- Department of Angiology and Blood Coagulation, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | | | | | | | - Fabio Verzini
- Department of Vascular Surgery, AOU Città della Salute e della Scienza, Turin, Italy
| | - Erica Zaninelli
- Department of General Medical Practice, ATS Bergamo - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Massimiliano Orso
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| |
Collapse
|
5
|
Hemostatic Biomarkers and Volumetry Help to Identify High-Risk Abdominal Aortic Aneurysms. Life (Basel) 2022; 12:life12060823. [PMID: 35743854 PMCID: PMC9225361 DOI: 10.3390/life12060823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Predicting the progression of small aneurysms is a main challenge in abdominal aortic aneurysm (AAA) management. The combination of circulating biomarkers and image techniques might provide an alternative for risk stratification. We evaluated the association of plasma TAT complexes (TAT) and D-dimer with AAA severity in 3 groups of patients: group 1, without AAA (n = 52), group 2, AAA 40−50 mm (n = 51) and group 3, AAA > 50 mm (n = 50). TAT (p < 0.001) and D-dimer (p < 0.001) were increased in patients with AAA (groups 2 and 3) vs. group 1. To assess the association between baseline TAT and D-dimer concentrations, and AAA growth, aortic diameter and volume (volumetry) were measured by computed tomography angiography (CTA) in group 2 at recruitment (baseline) and 1-year after inclusion. Baseline D-dimer and TAT levels were associated with AAA diameter and volume variations at 1-year independently of confounding factors (p ≤ 0.044). Additionally, surgery incidence, recorded during a 4-year follow-up in group 2, was associated with larger aneurysms, assessed by aortic diameter and volumetry (p ≤ 0.036), and with elevated TAT levels (sub-hazard ratio 1.3, p ≤ 0.029), while no association was found for D-dimer. The combination of hemostatic parameters and image techniques might provide valuable tools to evaluate AAA growth and worse evolution.
Collapse
|
6
|
Xin H, He X, Li J, Guan X, Liu X, Wang Y, Niu L, Qiu D, Wu X, Wang H. Profiling of the full-length transcriptome in abdominal aortic aneurysm using nanopore-based direct RNA sequencing. Open Biol 2022; 12:210172. [PMID: 35104432 PMCID: PMC8807055 DOI: 10.1098/rsob.210172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common and serious disease with a high mortality rate, but its genetic determinants have not been fully identified. In this feasibility study, we aimed to elucidate the transcriptome profile of AAA and further reveal its molecular mechanisms through the Oxford Nanopore Technologies (ONT) MinION platform. Overall, 9574 novel transcripts and 781 genes were identified by comparing and analysing the redundant-removed transcripts of all samples with known reference genome annotations. We characterized the alternative splicing, alternative polyadenylation events and simple sequence repeat (SSR) loci information based on full-length transcriptome data, which would help us further understand the genome annotation and gene structure of AAA. Moreover, we proved that ONT methods were suitable for the identification of lncRNAs via identifying the comprehensive expression profile of lncRNAs in AAA. The results of differentially expressed transcript (DET) analysis showed that a total of 7044 transcripts were differentially expressed, of which 4278 were upregulated and 2766 were downregulated among two groups. In the KEGG analysis, 4071 annotated DETs were involved in human diseases, organismal systems and environmental information processing. These pilot findings might provide novel insights into the pathogenesis of AAA and provide new ideas for the optimization of personalized treatment of AAA, which is worthy of further study in subsequent studies.
Collapse
Affiliation(s)
- Hai Xin
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Xingqiang He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 169 West Changle Road, Xi'an 710032, People's Republic of China
| | - Jun Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Xiaomei Guan
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Xukui Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Yuewei Wang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Liyuan Niu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Deqiang Qiu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Haofu Wang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| |
Collapse
|
7
|
Pilecki B, de Carvalho PVSD, Kirketerp-Møller KL, Schlosser A, Kejling K, Dubik M, Madsen NP, Stubbe J, Hansen PBL, Andersen TL, Moeller JB, Marcussen N, Azevedo V, Hvidsten S, Baun C, Shi GP, Lindholt JS, Sorensen GL. MFAP4 Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation Through Regulation of Macrophage Infiltration and Activity. Front Cardiovasc Med 2021; 8:764337. [PMID: 34805319 PMCID: PMC8602692 DOI: 10.3389/fcvm.2021.764337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 01/14/2023] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein involved in the induction of vascular remodeling. This study aimed to investigate if MFAP4 facilitates the development of AAA and characterize the underlying MFAP4-mediated mechanisms. Approach and Results: Double apolipoprotein E- and Mfap4-deficient (ApoE−/−Mfap4−/−) and control apolipoprotein E-deficient (ApoE−/−) mice were infused subcutaneously with angiotensin II (Ang II) for 28 days. Mfap4 expression was localized within the adventitial and medial layers and was upregulated after Ang II treatment. While Ang II-induced blood pressure increase was independent of Mfap4 genotype, ApoE−/−Mfap4−/− mice exhibited significantly lower AAA incidence and reduced maximal aortic diameter compared to ApoE−/− littermates. The ApoE−/−Mfap4−/− AAAs were further characterized by reduced macrophage infiltration, matrix metalloproteinase (MMP)-2 and MMP-9 activity, proliferative activity, collagen content, and elastic membrane disruption. MFAP4 deficiency also attenuated activation of integrin- and TGF-β-related signaling within the adventitial layer of AAA tissues. Finally, MFAP4 stimulation promoted human monocyte migration and significantly upregulated MMP-9 activity in macrophage-like THP-1 cells. Conclusion: This study demonstrates that MFAP4 induces macrophage-rich inflammation, MMP activity, and maladaptive remodeling of the ECM within the vessel wall, leading to an acceleration of AAA development and progression. Collectively, our findings suggest that MFAP4 is an essential aggravator of AAA pathology that acts through regulation of monocyte influx and MMP production.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Paulo V S D de Carvalho
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Mathematics and Informatics, University of Southern Denmark, Odense, Denmark
| | - Katrine L Kirketerp-Møller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karin Kejling
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Magdalena Dubik
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nicklas P Madsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pernille B L Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Thomas L Andersen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Pathology Research Unit, Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper B Moeller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Vasco Azevedo
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Svend Hvidsten
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jes S Lindholt
- Department of Thoracic, Heart and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Grith L Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Ni XQ, Zhang YR, Jia LX, Lu WW, Zhu Q, Ren JL, Chen Y, Zhang LS, Liu X, Yu YR, Jia MZ, Ning ZP, Du J, Tang CS, Qi YF. Inhibition of Notch1-mediated inflammation by intermedin protects against abdominal aortic aneurysm via PI3K/Akt signaling pathway. Aging (Albany NY) 2021; 13:5164-5184. [PMID: 33535178 PMCID: PMC7950288 DOI: 10.18632/aging.202436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
The Notch1-mediated inflammatory response participates in the development of abdominal aortic aneurysm (AAA). The vascular endogenous bioactive peptide intermedin (IMD) plays an important role in maintaining vascular homeostasis. However, whether IMD inhibits AAA by inhibiting Notch1-mediated inflammation is unclear. In this study, we found Notch intracellular domain (NICD) and hes1 expression were higher in AAA patients’ aortas than in healthy controls. In angiotensin II (AngII)-induced AAA mouse model, IMD treatment significantly reduced AAA incidence and maximal aortic diameter. IMD inhibited AngII-enlarged aortas and -degraded elastic lamina, reduced NICD, hes1 and inflammatory factors expression, decreased infiltration of CD68 positive macrophages and the NOD-like receptor family pyrin domain containing 3 protein level. IMD inhibited lipopolysaccharide-induced macrophage migration in vitro and regulated macrophage polarization. Moreover, IMD overexpression significantly reduced CaCl2-induced AAA incidence and down-regulated NICD and hes1 expression. However, IMD deficiency showed opposite results. Mechanically, IMD treatment significantly decreased cleavage enzyme-a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) level. Pre-incubation with IMD17-47 (IMD receptors blocking peptide) and the phosphatidylinositol 3-kinase/protein kinase b (PI3K/Akt) inhibitor LY294002 reversed ADAM10 level. In conclusion, exogenous and endogenous IMD could inhibit the development of AAA by inhibiting Notch1 signaling-mediated inflammation via reducing ADAM10 through IMD receptor and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Li-Xin Jia
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing 100029, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Xin Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing 100029, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| |
Collapse
|
9
|
The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res 2020; 42:1235-1481. [PMID: 31375757 DOI: 10.1038/s41440-019-0284-9] [Citation(s) in RCA: 1091] [Impact Index Per Article: 272.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Chowdhury MM, Zieliński LP, Sun JJ, Lambracos S, Boyle JR, Harrison SC, Rudd JHF, Coughlin PA. Editor's Choice - Calcification of Thoracic and Abdominal Aneurysms is Associated with Mortality and Morbidity. Eur J Vasc Endovasc Surg 2018; 55:101-108. [PMID: 29225032 PMCID: PMC5772171 DOI: 10.1016/j.ejvs.2017.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Cardiovascular events are common in people with aortic aneurysms. Arterial calcification is a recognised predictor of cardiovascular outcomes in coronary artery disease. Whether calcification within abdominal and thoracic aneurysm walls is correlated with poor cardiovascular outcomes is not known. PATIENTS AND METHODS Calcium scores were derived from computed tomography (CT) scans of consecutive patients with either infrarenal (AAA) or descending thoracic aneurysms (TAA) using the modified Agatston score. The primary outcome was subsequent all cause mortality during follow-up. Secondary outcomes were cardiovascular mortality and morbidity. RESULTS A total of 319 patients (123 TAA and 196 AAA; median age 77 [71-84] years, 72% male) were included with a median follow-up of 30 months. The primary outcome occurred in 120 (37.6%) patients. In the abdominal aortic aneurysm group, the calcium score was significantly related to both all cause mortality and cardiac mortality (odds ratios (OR) of 2.246 (95% CI 1.591-9.476; p < 0.001) and 1.321 (1.076-2.762; p = 0.003)) respectively. In the thoracic aneurysm group, calcium score was significantly related to all cause mortality (OR 6.444; 95% CI 2.574-6.137; p < 0.001), cardiac mortality (OR 3.456; 95% CI 1.765-4.654; p = 0.042) and cardiac morbidity (OR 2.128; 95% CI 1.973-4.342; p = 0.002). CONCLUSIONS Aortic aneurysm calcification, in either the thoracic or the abdominal territory, is significantly associated with both higher overall and cardiovascular mortality. Calcium scoring, rapidly derived from routine CT scans, may help identify high risk patients for treatment to reduce risk.
Collapse
Affiliation(s)
- Mohammed M Chowdhury
- Division of Vascular and Endovascular Surgery, Addenbrooke's Hospital, Cambridge University Hospital Trust, Cambridge, UK.
| | - Lukasz P Zieliński
- Division of Vascular and Endovascular Surgery, Addenbrooke's Hospital, Cambridge University Hospital Trust, Cambridge, UK
| | - James J Sun
- Division of Vascular and Endovascular Surgery, Addenbrooke's Hospital, Cambridge University Hospital Trust, Cambridge, UK
| | - Simon Lambracos
- Division of Vascular and Endovascular Surgery, Addenbrooke's Hospital, Cambridge University Hospital Trust, Cambridge, UK
| | - Jonathan R Boyle
- Division of Vascular and Endovascular Surgery, Addenbrooke's Hospital, Cambridge University Hospital Trust, Cambridge, UK
| | - Seamus C Harrison
- Division of Vascular and Endovascular Surgery, Addenbrooke's Hospital, Cambridge University Hospital Trust, Cambridge, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Patrick A Coughlin
- Division of Vascular and Endovascular Surgery, Addenbrooke's Hospital, Cambridge University Hospital Trust, Cambridge, UK
| |
Collapse
|
11
|
Robertson L, Atallah E, Stansby G. Pharmacological treatment of vascular risk factors for reducing mortality and cardiovascular events in patients with abdominal aortic aneurysm. Cochrane Database Syst Rev 2017; 1:CD010447. [PMID: 28079254 PMCID: PMC6464734 DOI: 10.1002/14651858.cd010447.pub3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pharmacological prophylaxis has been proven to reduce the risk of cardiovascular events in individuals with atherosclerotic occlusive arterial disease. However, the role of prophylaxis in individuals with abdominal aortic aneurysm (AAA) remains unclear. Several studies have shown that despite successful repair, those people with AAA have a poorer rate of survival than healthy controls. People with AAA have an increased prevalence of coronary heart disease and risk of cardiovascular events. Despite this association, little is known about the effectiveness of pharmacological prophylaxis in reducing cardiovascular risk in people with AAA. This is an update of a Cochrane review first published in 2014. OBJECTIVES To determine the long-term effectiveness of antiplatelet, antihypertensive or lipid-lowering medication in reducing mortality and cardiovascular events in people with abdominal aortic aneurysm (AAA). SEARCH METHODS For this update the Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register (14 April 2016). In addition, the CIS searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2016, Issue 3) and trials registries (14 April 2016) and We also searched the reference lists of relevant articles. SELECTION CRITERIA Randomised controlled trials in which people with AAA were randomly allocated to one prophylactic treatment versus another, a different regimen of the same treatment, a placebo, or no treatment were eligible for inclusion in this review. Primary outcomes included all-cause mortality and cardiovascular mortality. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies for inclusion, and completed quality assessment and data extraction. We resolved any disagreements by discussion. Only one study met the inclusion criteria of the review, therefore we were unable to perform meta-analysis. MAIN RESULTS No new studies met the inclusion criteria for this update. We included one randomised controlled trial in the review. A subgroup of 227 participants with AAA received either metoprolol (N = 111) or placebo (N = 116). There was no clear evidence that metoprolol reduced all-cause mortality (odds ratio (OR) 0.17, 95% confidence interval (CI) 0.02 to 1.41), cardiovascular death (OR 0.20, 95% CI 0.02 to 1.76), AAA-related death (OR 1.05, 95% CI 0.06 to 16.92) or increased nonfatal cardiovascular events (OR 1.44, 95% CI 0.58 to 3.57) 30 days postoperatively. Furthermore, at six months postoperatively, estimated effects were compatible with benefit and harm for all-cause mortality (OR 0.71, 95% CI 0.26 to 1.95), cardiovascular death (OR 0.73, 95% CI 0.23 to 2.39) and nonfatal cardiovascular events (OR 1.41, 95% CI 0.59 to 3.35). Adverse drug effects were reported for the whole study population and were not available for the subgroup of participants with AAA. We considered the study to be at a generally low risk of bias. We downgraded the quality of the evidence for all outcomes to low. We downgraded the quality of evidence for imprecision as only one study with a small number of participants was available, the number of events was small and the result was consistent with benefit and harm. AUTHORS' CONCLUSIONS Due to the limited number of included trials, there is insufficient evidence to draw any conclusions about the effectiveness of cardiovascular prophylaxis in reducing mortality and cardiovascular events in people with AAA. Further good-quality randomised controlled trials that examine many types of prophylaxis with long-term follow-up are required before firm conclusions can be made.
Collapse
Affiliation(s)
- Lindsay Robertson
- Freeman HospitalDepartment of Vascular SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustHigh HeatonNewcastle upon TyneUKNE7 7DN
| | - Edmond Atallah
- United Lincolnshire Hospitals NHS TrustGastroenterologyGreetwell RoadLincolnEast MidlandsUKLN2 5QY
| | - Gerard Stansby
- Freeman HospitalNorthern Vascular CentreNewcastle upon TyneUKNE7 7DN
| | | |
Collapse
|