1
|
Zhang D, Kaweme NM, Duan P, Dong Y, Yuan X. Upfront Treatment of Pediatric High-Risk Neuroblastoma With Chemotherapy, Surgery, and Radiotherapy Combination: The CCCG-NB-2014 Protocol. Front Oncol 2021; 11:745794. [PMID: 34868944 PMCID: PMC8634583 DOI: 10.3389/fonc.2021.745794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose The Chinese Children’s Cancer Group developed the CCCG-NB-2014 study to formulate optimal treatment strategies for high-risk (HR) neuroblastoma (NB). The safety and efficacy of this protocol were evaluated. Method Patients with newly diagnosed neuroblastoma and defined as HR according to the Children’s Oncology Group study were included. They were treated with a combination of chemotherapy, surgery, and radiotherapy. The treatment-related toxicities, response rate, 3-year progression-free survival (PFS), and overall survival (OS) were analyzed. Results Of 159 patients enrolled between 2014 and 2018, 80 were eligible, including 19 girls and 61 boys, with a median age of 3.9 years (range 0.9–11). After a median follow-up of 24 months (range 3–40), the median OS was 31.8 months, and 3-year OS was 83.8%. In multivariate analyses, the OS was affected by N-MYC amplification (hazard ratio 0.212, 95% confidence interval (CI) 0.049–0.910; p = 0.037) and giant tumor mass (hazard ratio 0.197, 95% CI 0.071–0.552; p = 0.002). The median 3-year PFS was 25.8 months, and 3-year PFS was 57.5%. The univariate analysis showed that only the giant tumor mass was associated with the outcome. Of the 13 deaths, 11 died from the rapid progression of the disease and two from treatment-related toxicities. The most common adverse reaction was chemotherapy-induced hematological toxicity. Conclusion The PFS and OS reported in our study were similar to Western countries. The CCCG-NB-2014 protocol proved to be an efficient regimen with tolerable side-effect for the treatment of pediatric HR-NB.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Natasha Mupeta Kaweme
- Department of Hematology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan, China
| | - Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Youhong Dong
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiaojun Yuan
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Long-term follow-up of high-risk neuroblastoma survivors treated with high-dose chemotherapy and stem cell transplantation rescue. Bone Marrow Transplant 2021; 56:1984-1997. [PMID: 33824435 DOI: 10.1038/s41409-021-01258-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 11/08/2022]
Abstract
Intensive treatments including high-dose chemotherapy (HDC) with autologous stem cell rescue have improved high-risk neuroblastoma (HRNB) survival. We report the long-term health status of 145 HRNB survivors, alive and disease-free 5 years post HDC. Median follow-up was 15 years (range = 5-34). Six patients experienced late relapses, 11 developed second malignant neoplasms (SMNs), and 9 died. Event-free and overall survivals 20 years post HDC were 82% (95% CI = 70%-90%) and 89% (78%-95%), respectively. Compared with the French general population, the standardized mortality ratio was 19 (95% CI = 8.7-36.1; p < 0.0001) and the absolute excess risk was 37.6 (19.2-73.5). Late effects were observed in 135/145 patients (median = 3 events/patient); 103 had at least one severe event. SMNs arose at a median of 20 years post HDC and included carcinoma (n = 5), sarcoma (2), acute myeloid leukemia (2), melanoma (1), and malignant glioma (1). Non-oncologic health events included dental maldevelopment (60%), severe hearing loss (20% cumulative probability at 15 years), hepatic focal nodular hyperplasia (14%), thyroid (11%), cardiac (8%), and renal (7%) diseases and growth retardation (height-for-age z-score ≤ -2 for 21%). Gonadal insufficiency was near-universal after busulfan (40/43 females, 33/35 males). Severe late effects are frequent and progressive in HRNB survivors needing systematic very long-term follow-up.
Collapse
|
3
|
Wen Y, Zong S, Liu T, Du P, Li H, Xiao H. Tauroursodeoxycholic acid attenuates cisplatin-induced ototoxicity by inhibiting the accumulation and aggregation of unfolded or misfolded proteins in the endoplasmic reticulum. Toxicology 2021; 453:152736. [PMID: 33631298 DOI: 10.1016/j.tox.2021.152736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin-induced ototoxicity is one of the important reasons that limit the drug's clinical application, and its mechanism has not been fully elucidated so far. The aim of this study was to explore the attenuate effect of tauroursodeoxycholic acid (TUDCA), a proteostasis promoter, on cisplatin-induced ototoxicity in vivo and in vitro, and to explore its possible mechanism. Auditory brainstem response (ABR) was measured to identify the attenuate effects of TUDCA administered subcutaneously [500 mg/kg/d × 3d, cisplatin: 4.6 mg/kg/d × 3d, intraperitoneal injection (i.p.)] or trans-tympanically (0.5 mg/mL, cisplatin: 12 mg/kg, i.p. with a pump) in Sprague-Dawley (SD) rats subjected to cisplatin-induced hearing loss. The cochlear explants of neonatal rats and OC1 auditory hair cell-like cell lines cultured in vitro were used to observe the number of apoptotic cells and the endoplasmic reticulum (ER) stress in the control, cisplatin (5 μM for 48 h for cochlear explants, 10 μM for 24 h for OC1 cells), and cisplatin + TUDCA (1 mM for 24 h for cochlear explants, 1.6 mM for 24 h for OC1 cells) groups. Differences in the expression of key proteins in the ER protein quality control (ERQC) system were detected. The changes in the attenuate effect of TUDCA on cisplatin-induced ototoxicity after down-regulating calreticulin (CRT), UDP-glucose ceramide glucosyltransferase-like 1 (UGGT1), and OS9 ER lectin (OS9) were also measured. The effect of TUDCA (10 mM) on stabilizing unfolded or misfolded proteins (UFP/MFP) was analyzed in a cell-free 0.2 % bovine serum albumin (BSA) aggregation system in vitro. Both the subcutaneous and trans-tympanic TUDCA administration alleviated cisplatin-induced increase in ABR thresholds in rats. TUDCA was able to reduce cisplatin-induced apoptosis and alleviate ER stress in cochlear explants and OC1 cells. Under the cisplatin treatment, the expression levels of CRT, UGGT1, and OS9 in the auditory hair cell increased, and the expression of total ubiquitinated proteins decreased. TUDCA attenuated the effect of cisplatin on UGGT1 and OS9, and recovered the protein ubiquitination levels. After down-regulating CRT, UGGT1, or OS9, the protective effect of TUDCA decreased. In the cell-free experimental system, TUDCA inhibited the aggregation of denatured BSA molecules. In summary, TUDCA can attenuate cisplatin-induced ototoxicity, possibly by inhibiting the accumulation and aggregation of UFP/MFP and the associated ER stress.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianyi Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S, Wang A. Ursolic acid protects against cisplatin‑induced ototoxicity by inhibiting oxidative stress and TRPV1‑mediated Ca2+‑signaling. Int J Mol Med 2020; 46:806-816. [PMID: 32626955 PMCID: PMC7307815 DOI: 10.3892/ijmm.2020.4633] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CDDP) is widely used in clinical settings for the treatment of various cancers. However, ototoxicity is a major side effect of CDDP, and there is an associated risk of irreversible hearing loss. We previously demonstrated that CDDP could induce ototoxicity via activation of the transient receptor potential vanilloid receptor 1 (TRPV1) pathway and subsequent induction of oxidative stress. The present study investigated whether ursolic acid (UA) treatment could protect against CDDP‑induced ototoxicity. UA is a triterpenoid with strong antioxidant activity widely used in China for the treatment of liver diseases. This traditional Chinese medicine is mainly isolated from bearberry, a Chinese herb. The present results showed that CDDP increased auditory brainstem response threshold shifts in frequencies associated with observed damage to the outer hair cells. Moreover, CDDP increased the expression of TRPV1, calpain 2 and caspase‑3 in the cochlea, and the levels of Ca2+ and 4‑hydroxynonenal. UA co‑treatment significantly attenuated CDDP‑induced hearing loss and inhibited TRPV1 pathway activation. In addition, UA enhanced CDDP‑induced growth inhibition in the human ovarian cancer cell line SKOV3, suggesting that UA synergizes with CDDP in vitro. Collectively, the present data suggested that UA could effectively attenuate CDDP‑induced hearing loss by inhibiting the TRPV1/Ca²+/calpain‑oxidative stress pathway without impairing the antitumor effects of CDDP.
Collapse
Affiliation(s)
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
van As JW, van den Berg H, van Dalen EC. Different infusion durations for preventing platinum-induced hearing loss in children with cancer. Cochrane Database Syst Rev 2020; 1:CD010885. [PMID: 31961948 PMCID: PMC6984653 DOI: 10.1002/14651858.cd010885.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Platinum-based therapy, including cisplatin, carboplatin or oxaliplatin, or a combination of these, is used to treat a variety of paediatric malignancies. Unfortunately, one of the most important adverse effects is the occurrence of hearing loss or ototoxicity. In an effort to prevent this ototoxicity, different platinum infusion durations have been studied. This review is the third update of a previously published Cochrane Review. OBJECTIVES To assess the effects of different durations of platinum infusion to prevent hearing loss or tinnitus, or both, in children with cancer. Secondary objectives were to assess possible effects of these infusion durations on: a) anti-tumour efficacy of platinum-based therapy, b) adverse effects other than hearing loss or tinnitus, and c) quality of life. SEARCH METHODS We searched the electronic databases Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library 14 November 2019), MEDLINE (PubMed) (1945 to 14 November 2019) and Embase (Ovid) (1980 to 14 November 2019). In addition, we handsearched reference lists of relevant articles and we assessed the conference proceedings of the International Society for Paediatric Oncology (2009 up to and including 2019) and the American Society of Pediatric Hematology/Oncology (2014 up to and including 2019). We scanned ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP; apps.who.int/trialsearch) for ongoing trials (both searched on 4 November 2019). SELECTION CRITERIA Randomised controlled trials (RCTs) or controlled clinical trials (CCTs) comparing different platinum infusion durations in children with cancer. Only the platinum infusion duration could differ between the treatment groups. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection, 'Risk of bias' assessment and GRADE assessment of included studies, and data extraction including adverse effects. Analyses were performed according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions. MAIN RESULTS We identified one RCT and no CCTs; in this update no additional eligible studies were identified. The RCT (total number of children = 91) evaluated the use of a continuous cisplatin infusion (N = 43) versus a one-hour bolus cisplatin infusion (N = 48) in children with neuroblastoma. For the continuous infusion, cisplatin was administered on days one to five of the cycle, but it is unclear if the infusion duration was a total of five days. Risk of bias was present. Only results from shortly after induction therapy were provided. No clear evidence of a difference in hearing loss (defined as asymptomatic and symptomatic disease combined) between the different infusion durations was identified as results were imprecise (risk ratio (RR) 1.39, 95% confidence interval (CI) 0.47 to 4.13, low-quality evidence). Although the numbers of children were not provided, it was stated that tumour response was equivalent in both treatment arms. With regard to adverse effects other than ototoxicity, we were only able to assess toxic deaths. Again, the confidence interval of the estimated effect was too wide to exclude differences between the treatment groups (RR 1.12, 95% CI 0.07 to 17.31, low-quality evidence). No data were available for the other outcomes of interest (i.e. tinnitus, overall survival, event-free survival and quality of life) or for other (combinations of) infusion durations or other platinum analogues. AUTHORS' CONCLUSIONS Since only one eligible RCT evaluating the use of a continuous cisplatin infusion versus a one-hour bolus cisplatin infusion was found, and that had methodological limitations, no definitive conclusions can be made. It should be noted that 'no evidence of effect', as identified in this review, is not the same as 'evidence of no effect'. For other (combinations of) infusion durations and other platinum analogues no eligible studies were identified. More high-quality research is needed.
Collapse
Affiliation(s)
- Jorrit W van As
- Princess Máxima Center for Pediatric Oncologyc/o Cochrane Childhood CancerHeidelberglaan 25UtrechtNetherlands3584 CS
| | - Henk van den Berg
- Emma Children's Hospital, Amsterdam UMC, University of AmsterdamDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
| | - Elvira C van Dalen
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
| | | |
Collapse
|
6
|
Abstract
Tinnitus is a common symptom for which there is in most cases no causal therapy. The search for an improvement of tinnitus through pharmacological interventions has a long tradition. The observation that tinnitus can be transiently suppressed by the use of lidocaine has shown that the symptom is susceptible to pharmacotherapy. So far, however, no medication has been found for either acute or chronic subjective tinnitus that reliably leads to a long-term reduction or even complete disappearance of the symptom for the majority of tinnitus sufferers. Nevertheless, in everyday clinical life, drugs are frequently used, usually off-label, to relieve tinnitus or tinnitus-associated symptoms (e.g. sleep disturbance, depression, anxiety disorder or hearing loss). This chapter shows the different approaches to acute and chronic subjective tinnitus by means of pharmacotherapeutic interventions. Furthermore, this review reports on the scientific studies carried out in this area in recent years and explains the difficulties in finding a suitable medication for most forms of tinnitus. In addition, it reports on the pharmacotherapeutic options for objective tinnitus and describes the development of tinnitus as a side effect of certain drugs. Finally, possible target structures are mentioned, which should possibly be addressed in pharmacological studies in the near future.
Collapse
Affiliation(s)
- Tobias Kleinjung
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, Interdisciplinary Tinnitus Center, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Abstract
Modern research on ototoxicity goes back to the 1940s, when streptomycin was introduced into clinical practice. Today, aminoglycoside antibiotics and platinum-based chemotherapy, mainly cisplatin, are the most important drugs that damage the inner ear and cause hearing loss. The mode of drug administration as well as drug characteristics influence the likelihood that adequate monitoring of drug pharmacokinetics can be performed. It is not possible to predict the individual risk of treatment with an ototoxic drug, but identification of high-risk treatment protocols is important. There are many studies ongoing with the aim of discovering and developing drugs to treat different types of inner ear disorders. The mechanisms of ototoxicity and subsequent loss of hearing function have been mapped in various experimental models and have provided us with useful information for developing protective treatment. When an ototoxic lesion is established, restoration of hearing function becomes more difficult. For both aminoglycoside antibiotics and cisplatin, a large number of otoprotectors have been suggested. Systemic co-administration of an otoprotector would be the easiest approach to avoid ototoxicity in patients but it may negatively affect the intended pharmacotherapeutic aim of the ototoxic drug. New pharmacological formulations are being developed for local otoprotective treatment. This short review focuses on results from clinical reports on otoprotection in patients treated with aminoglycoside antibiotics and cisplatin. So far there is limited evidence for the safe management of otoprotection in patients. Further high-quality studies are needed to provide reliable data on the safety and effectiveness of pharmacological interventions to reduce drug-induced hearing loss.
Collapse
|
8
|
van As JW, van den Berg H, van Dalen EC. Medical interventions for the prevention of platinum-induced hearing loss in children with cancer. Cochrane Database Syst Rev 2019; 5:CD009219. [PMID: 31063591 PMCID: PMC6504134 DOI: 10.1002/14651858.cd009219.pub5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Platinum-based therapy, including cisplatin, carboplatin, oxaliplatin or a combination of these, is used to treat a variety of paediatric malignancies. One of the most significant adverse effects is the occurrence of hearing loss or ototoxicity. In an effort to prevent this ototoxicity, different otoprotective medical interventions have been studied. This review is the third update of a previously published Cochrane Review. OBJECTIVES To assess the efficacy of medical interventions to prevent hearing loss and to determine possible effects of these interventions on antitumour efficacy, toxicities other than hearing loss and quality of life in children with cancer treated with platinum-based therapy as compared to placebo, no additional treatment or another protective medical intervention. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials, MEDLINE (PubMed) and Embase (Ovid) to 8 January 2019. We handsearched reference lists of relevant articles and assessed the conference proceedings of the International Society for Paediatric Oncology (2006 up to and including 2018), the American Society of Pediatric Hematology/Oncology (2007 up to and including 2018) and the International Conference on Long-Term Complications of Treatment of Children and Adolescents for Cancer (2010 up to and including 2015). We scanned ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP; apps.who.int/trialsearch) for ongoing trials (on 2 January 2019). SELECTION CRITERIA Randomized controlled trials (RCTs) or controlled clinical trials (CCTs) evaluating platinum-based therapy with an otoprotective medical intervention versus platinum-based therapy with placebo, no additional treatment or another protective medical intervention in children with cancer. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection, data extraction, risk of bias assessment and GRADE assessment of included studies, including adverse effects. We performed analyses according to the Cochrane Handbook for Systematic Reviews of Interventions. MAIN RESULTS We identified two RCTs and one CCT (total number of participants 149) evaluating the use of amifostine versus no additional treatment in the original version of the review; the updates identified no additional studies. Two studies included children with osteosarcoma, and the other study included children with hepatoblastoma. Children received cisplatin only or a combination of cisplatin and carboplatin, either intra-arterially or intravenously. Pooling of results of the included studies was not possible. From individual studies the effect of amifostine on symptomatic ototoxicity only (i.e. National Cancer Institute Common Toxicity Criteria version 2 (NCICTCv2) or modified Brock grade 2 or higher) and combined asymptomatic and symptomatic ototoxicity (i.e. NCICTCv2 or modified Brock grade 1 or higher) were uncertain (low-certainty evidence). Only one study including children with osteosarcoma treated with intra-arterial cisplatin provided information on tumour response, defined as the number of participants with a good or partial remission. The available-data analysis (data were missing for one participant), best-case scenario analysis and worst-case scenario analysis showed a difference in favour of amifostine, although the certainty of evidence for this effect was low. There was no information on survival for any of the included studies. Only one study, including children with osteosarcoma treated with intra-arterial cisplatin, provided data on the number of participants with adverse effects other than ototoxicity grade 3 or higher (on NCICTCv2 scale). There was low-certainty evidence that grade 3 or 4 vomiting was higher with amifostine (risk ratio (RR) 9.04, 95% confidence interval (CI) 1.99 to 41.12). The effects on cardiotoxicity and renal toxicity grade 3 or 4 were uncertain (low-certainty evidence). None of the studies evaluated quality of life.In the recent update, we also identified one RCT including 109 children with localized hepatoblastoma evaluating the use of sodium thiosulfate versus no additional treatment. Children received intravenous cisplatin only (one child also received carboplatin). There was moderate-certainty evidence that both symptomatic ototoxicity only (i.e. Brock criteria grade 2 or higher) and combined asymptomatic and symptomatic ototoxicity (i.e. Brock criteria grade 1 or higher) was lower with sodium thiosulfate (combined asymptomatic and symptomatic ototoxicity: RR 0.52, 95% CI 0.33 to 0.81; symptomatic ototoxicity only: RR 0.39, 95% CI 0.19 to 0.83). The effect of sodium thiosulfate on tumour response (defined as number of participants with a complete or partial response at the end of treatment), overall survival (calculated from time of randomization to death or last follow-up), event-free survival (calculated from time of randomization until disease progression, disease relapse, second primary cancer, death, or last follow-up, whichever came first) and adverse effects other than hearing loss and tinnitus grade 3 or higher (according to National Cancer Institute Common Toxicity Criteria Adverse Effects version 3 (NCICTCAEv3) criteria) was uncertain (low-certainty evidence for all these outcomes). Quality of life was not assessed.We found no eligible studies for possible otoprotective medical interventions other than amifostine and sodium thiosulfate and for other types of malignancies. AUTHORS' CONCLUSIONS At the moment there is no evidence from individual studies in children with osteosarcoma or hepatoblastoma treated with different platinum analogues and dosage schedules that underscores the use of amifostine as an otoprotective intervention as compared to no additional treatment. Since pooling of results was not possible and the evidence was of low certainty, no definitive conclusions can be made. Since we found only one RCT evaluating the use of sodium thiosulfate in children with localized hepatoblastoma treated with cisplatin, no definitive conclusions on benefits and harms can be drawn. It should be noted that 'no evidence of effect', as identified in this review, is not the same as 'evidence of no effect'. We identified no eligible studies for other possible otoprotective medical interventions and other types of malignancies, so no conclusions can be made about their efficacy in preventing ototoxicity in children treated with platinum-based therapy. More high-quality research is needed.
Collapse
Affiliation(s)
- Jorrit W van As
- Princess Máxima Center for Pediatric Oncologyc/o Cochrane Childhood CancerHeidelberglaan 25UtrechtNetherlands3584 CS
| | - Henk van den Berg
- Emma Children's Hospital, Amsterdam UMC, University of AmsterdamDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
| | - Elvira C van Dalen
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
| | | |
Collapse
|
9
|
Brennan-Jones CG, McMahen C, Van Dalen EC. Cochrane corner: platinum-induced hearing loss after treatment for childhood cancer. Int J Audiol 2018; 58:181-184. [PMID: 30545270 DOI: 10.1080/14992027.2018.1539808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This Cochrane Corner features the review entitled "Platinum-induced hearing loss after treatment for childhood cancer" published in 2016. In their review, van As et al. identified 13 cohort studies including 2837 participants with a hearing test after treatment with a platinum-based therapy for different types of childhood cancers. All studies had problems related to quality of the evidence. The reported frequency of hearing loss varied between 1.7% and 90.1% for studies that included a definition of hearing loss; none of the studies provided data on tinnitus. Only two studies evaluated possible risk factors. One study found a higher risk of hearing loss in people treated with the combination of cisplatin plus carboplatin compared to treatment with cisplatin only and for exposure to aminoglycosides. The other found that age at treatment (lower risk in older children) and single maximum cisplatin dose (higher risk with an increasing dose) were significant predictors for hearing loss, while gender was not. This systematic review shows that children treated with platinum analogues are at risk of developing hearing loss, but the exact prevalence and risk factors remain unclear.
Collapse
Affiliation(s)
- Christopher G Brennan-Jones
- a Ear Health Group, Telethon Kids Institute , The University of Western Australia , Perth , Australia.,b Division of Paediatrics, UWA School of Medicine , The University of Western Australia , Perth , Australia.,c Department of Audiology , Perth Children's Hospital , Perth , Australia
| | - Courtney McMahen
- c Department of Audiology , Perth Children's Hospital , Perth , Australia
| | - Elvira C Van Dalen
- d Emma Children's Hospital, Amsterdam UMC , University of Amsterdam, Pediatric Oncology , Amsterdam , The Netherlands.,e Princess Máxima Center for Pediatric Oncology , Utrecht , The Netherlands.,f Department of Pediatric Oncology , Cochrane Childhood Cancer, Emma Children's Hospital , Amsterdam , The Netherlands
| |
Collapse
|