1
|
Won YK, Kim ES, Jo IY, Oh HJ, Lee SM, Yoo ID, Hong SP, Lee JW, Song JH, Kang N, Jang HS. Comparative analysis of hypofractionated short-course versus standard radiation therapy in elderly patients with glioblastoma: analysis of nationwide database. J Neurooncol 2025; 171:463-472. [PMID: 39432028 DOI: 10.1007/s11060-024-04853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Hypofractionated short-course radiation therapy (SCRT) is an alternative treatment option for elderly or frail patients with newly diagnosed glioblastoma (GBM) post-surgery. This study compares survival outcomes and treatment costs between patients receiving SCRT and those undergoing standard long-course radiation therapy (LCRT). METHODS This retrospective study utilized health insurance claims and national cancer registry data from Korea to compare overall survival (OS) and treatment costs between patients receiving SCRT and LCRT across all ages and sub-group analysis within the subgroup of cases aged 65 and older from 2016 onwards, a period when intensity-modulated radiotherapy (IMRT) was widely adopted. RESULTS A total of 1,598 patients were included. Median OS since the first day of radiation therapy was 10.4 months (95% CI [9.6; 12.8]) for SCRT (n = 197) versus 16.2 months (95% CI [15.5; 16.9]) for LCRT (n = 1401) respectively. Subgroup analysis using stabilized inverse probability of treatment weighting (S-IPTW) showed indicating non-inferiority in elderly patients in median OS for elderly patients (≥ 65) with 10.6 months (95% CI [8.9; 14.0]) for SCRT (n = 147) versus 13.2 months (95% CI [8.9; 14.0]) for LCRT (n = 541). The median treatment cost of SCRT is about 6,000 USD lower, 25% less than LCRT. Compliance with the standard TMZ regimen post-radiation improved OS across all age groups. CONCLUSION Considering comparable OS and shorter treatment duration, SCRT offers a viable, cost-effective option for elderly GBM patients. Adhering to standard TMZ also contributes to OS improvement. Further research reflecting key prognostic factors is essential to refining the role of SCRT.
Collapse
Affiliation(s)
- Yong Kyun Won
- Department of Radiation Oncology, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Eun Seog Kim
- Department of Radiation Oncology, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - In Young Jo
- Department of Radiation Oncology, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Hyuk-Jin Oh
- Department of Neurosurgery, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam- gu, Cheonan, 31151, Republic of Korea
| | - Sang Mi Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Sun-Pyo Hong
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Jeong Won Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-Gu, Seoul, 06591, South Korea
| | | | - Hong Seok Jang
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-Gu, Seoul, 06591, South Korea.
| |
Collapse
|
2
|
Kosianova А, Pak O, Bryukhovetskiy I. Regulation of cancer stem cells and immunotherapy of glioblastoma (Review). Biomed Rep 2024; 20:24. [PMID: 38170016 PMCID: PMC10758921 DOI: 10.3892/br.2023.1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Glioblastoma (GB) is one of the most adverse diagnoses in oncology. Complex current treatment results in a median survival of 15 months. Resistance to treatment is associated with the presence of cancer stem cells (CSCs). The present review aimed to analyze the mechanisms of CSC plasticity, showing the particular role of β-catenin in regulating vital functions of CSCs, and to describe the molecular mechanisms of Wnt-independent increase of β-catenin levels, which is influenced by the local microenvironment of CSCs. The present review also analyzed the reasons for the low effectiveness of using medication in the regulation of CSCs, and proposed the development of immunotherapy scenarios with tumor cell vaccines, containing heterogenous cancer cells able of producing a multidirectional antineoplastic immune response. Additionally, the possibility of managing lymphopenia by transplanting hematopoietic stem cells from a healthy sibling and using clofazimine or other repurposed drugs that reduce β-catenin concentration in CSCs was discussed in the present study.
Collapse
Affiliation(s)
- Аleksandra Kosianova
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Oleg Pak
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Igor Bryukhovetskiy
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| |
Collapse
|
3
|
Luan J, Zhang D, Liu B, Yang A, Lv K, Hu P, Yu H, Shmuel A, Zhang C, Ma G. Immune-related lncRNAs signature and radiomics signature predict the prognosis and immune microenvironment of glioblastoma multiforme. J Transl Med 2024; 22:107. [PMID: 38279111 PMCID: PMC10821572 DOI: 10.1186/s12967-023-04823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. This study aimed to construct immune-related long non-coding RNAs (lncRNAs) signature and radiomics signature to probe the prognosis and immune infiltration of GBM patients. METHODS We downloaded GBM RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) project database, and MRI data were obtained from The Cancer Imaging Archive (TCIA). Then, we conducted a cox regression analysis to establish the immune-related lncRNAs signature and radiomics signature. Afterward, we employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways. Besides, we used CIBERSORT to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, we investigated the relationship between the immune-related lncRNAs signature, radiomics signature and immune checkpoint genes. Finally, we constructed a multifactors prognostic model and compared it with the clinical prognostic model. RESULTS We identified four immune-related lncRNAs and two radiomics features, which show the ability to stratify patients into high-risk and low-risk groups with significantly different survival rates. The risk score curves and Kaplan-Meier curves confirmed that the immune-related lncRNAs signature and radiomics signature were a novel independent prognostic factor in GBM patients. The GSEA suggested that the immune-related lncRNAs signature were involved in L1 cell adhesion molecular (L1CAM) interactions and the radiomics signature were involved signaling by Robo receptors. Besides, the two signatures was associated with the infiltration of immune cells. Furthermore, they were linked with the expression of critical immune genes and could predict immunotherapy's clinical response. Finally, the area under the curve (AUC) (0.890,0.887) and C-index (0.737,0.817) of the multifactors prognostic model were greater than those of the clinical prognostic model in both the training and validation sets, indicated significantly improved discrimination. CONCLUSIONS We identified the immune-related lncRNAs signature and tradiomics signature that can predict the outcomes, immune cell infiltration, and immunotherapy response in patients with GBM.
Collapse
Affiliation(s)
- Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China.
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Qiu X, Gao J, Yang J, Hu J, Hu W, Huang Q, Kong L, Lu JJ. Carbon-ion radiotherapy boost with standard dose proton radiation for incomplete-resected high-grade glioma: a phase 1 study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1193. [PMID: 36544659 PMCID: PMC9761177 DOI: 10.21037/atm-20-7750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022]
Abstract
Background To investigate the maximal tolerated dose (MTD) of a carbon-ion radiotherapy (CIRT) boost prior to standard dose proton radiotherapy (PRT) for newly diagnosed glioblastoma (GBM) and anaplastic astrocytoma (AA) patients with residual lesion after resection. Methods In total, 18 patients with high-grade glioma (HGG) (16 with GBM and 2 with AA) were enrolled in a prospective 3×3 design phase 1 trial. We investigated four dose-levels of CIRT boost [9 (starting level), 12, 15, and 18 Gy relative biological effectiveness (RBE)] delivered in three equal fractions prior to the standard dose PRT (60 Gy RBE in 30 fractions). Concurrent temozolomide (TMZ) was not provided during the CIRT boost but was initiated on the first day of PRT. Acute and late toxicities were scored based on the Common Terminology Criteria for Adverse Events (CTCAE, v 4.03). Dose-limiting toxicities (DLTs) were defined as radiation-induced severe toxicities (≥ grade 3). Results With a median follow-up of 17.9 months, no severe (≥ grade 3) acute or late toxicities were observed in patients treated with the first three dose levels (CIRT boost doses of 9, 12, 15 Gy RBE). Severe late toxicity (grade 3 radiation necrosis) was observed in the first patient treated with the 18 Gy RBE CIRT boost level. Therefore, this trial was terminated and the MTD of the induction CIRT boost was determined at 15 Gy RBE in 3 fractions. At the time of this analysis, both patients with AA were alive without disease progression. The progression-free survival (PFS) and overall survival (OS) for GBM at 12 months were 50.6% and 78.6%, respectively. Conclusions Particle beam radiotherapy consisting of a CIRT boost of 15 Gy RBE (in 3 fractions) following standard dose PRT (60 Gy RBE in 30 fractions), and used in conjunction with TMZ, is safe and potentially effective for patients with HGG.
Collapse
Affiliation(s)
- Xianxin Qiu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China;,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China;,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Center, Shanghai, China;,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China;,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China;,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China;,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China;,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China;,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China;,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China;,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China;,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China;,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China;,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
| | - Lin Kong
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China;,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Center, Shanghai, China;,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
| | - Jiade J. Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China;,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China;,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
| |
Collapse
|
5
|
Liu L, Li X, Wu H, Tang Y, Li X, Shi Y. The COX10-AS1/miR-641/E2F6 Feedback Loop Is Involved in the Progression of Glioma. Front Oncol 2021; 11:648152. [PMID: 34381702 PMCID: PMC8350443 DOI: 10.3389/fonc.2021.648152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is the most common primary tumour of the central nervous system and is considered one of the greatest challenges for neurosurgery. Mounting evidence has shown that lncRNAs participate in various biological processes of tumours, including glioma. This study aimed to reveal the role and relevant mechanism of COX10-AS1 in glioma. The expression of COX10-AS1, miR-641 and E2F6 was measured by qRT-PCR and/or western blot. Clone formation assays, EdU assays, Transwell assays and tumour xenograft experiments were performed to evaluate the effects of COX10-AS1, miR-641 and E2F6 on glioma proliferation, migration and invasion. Luciferase reporter assays, RNA pull-down assays and ChIP assays were conducted to analyse the relationship among COX10-AS1, miR-641 and E2F6. We demonstrated that COX10-AS1 was upregulated in glioma tissues and cell lines, which was related to the grade of glioma and patient survival. Next, through functional assays, we found that COX10-AS1 influenced the proliferation, migration and invasion of glioma cell lines. Then, with the help of bioinformatics analysis, we confirmed that COX10-AS1 regulated glioma progress by acting as a sponge of miR-641 to regulate E2F6. Moreover, further study indicated that E2F6 could promote COX10-AS1 expression by binding to its promoter region. Taken together, the data indicated that COX10-AS1 acts as an oncogene in combination with COX10-AS1/miR-641/E2F6 in glioma, which may be beneficial to the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Heming Wu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Tang
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Hoeller U, Borgmann K, Oertel M, Haverkamp U, Budach V, Eich HT. Late Sequelae of Radiotherapy—The Effect of Technical and Conceptual Innovations in Radiation Oncology. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:205-211. [PMID: 34024324 PMCID: PMC8278127 DOI: 10.3238/arztebl.m2021.0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/25/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Approximately half of all patients with tumors need radiotherapy. Long-term survivors may suffer from late sequelae of the treatment. The existing radiotherapeutic techniques are being refined so that radiation can be applied more precisely, with the goal of limiting the radiation exposure of normal tissue and reducing late sequelae. METHODS This review is based on the findings of a selective search in PubMed for publications on late sequelae of conventional percutaneous radiotherapy, January 2000 to May 2020. Late sequelae affecting the central nervous system, lungs, and heart and the development of second tumors are presented, and radiobiological mechanisms and the relevant technical and conceptual considerations are discussed. RESULTS The current standard of treatment involves the use of linear accelerators, intensity-modulated radiotherapy (IMRT), image-guided and respiratory-gated radiotherapy, and the integration of positron emission tomography combined with computed tomography (PET-CT) in radiation treatment planning. Cardiotoxicity has been reduced with regard to the risk of coronary heart disease after radiotherapy for Hodgkin's lymphoma (hazard ratio [HR] 0.44 [0.23; 0.85]). It was also found that the rate of radiation- induced pneumonitis dropped from 7.9% with conformal treatment to 3.5% with IMRT in a phase III lung cancer trial. It is hoped that neurocognitive functional impairment will be reduced by hippocampal avoidance in modern treatment planning: an initial phase III trial yielded a hazard ratio of 0.74 [0.58; 0.94]. It is estimated that 8% of second solid tumors in adults are induced by radiotherapy (3 additional tumors per 1000 patients at 10 years). CONCLUSION Special challenges for research in this field arise from the long latency of radiation sequelae and the need for largescale, well-documented patient collectives in order to discern dose-effect relationships, and take account of cofactors, when the overall number of events is small. It is hoped that further technical and conceptual advances will be made in the areas of adaptive radiotherapy, proton and heavy-ion therapy, and personalized therapy.
Collapse
|
7
|
EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 2020; 18:170-186. [PMID: 33293629 PMCID: PMC7904519 DOI: 10.1038/s41571-020-00447-z] [Citation(s) in RCA: 920] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/16/2023]
Abstract
In response to major changes in diagnostic algorithms and the publication of mature results from various large clinical trials, the European Association of Neuro-Oncology (EANO) recognized the need to provide updated guidelines for the diagnosis and management of adult patients with diffuse gliomas. Through these evidence-based guidelines, a task force of EANO provides recommendations for the diagnosis, treatment and follow-up of adult patients with diffuse gliomas. The diagnostic component is based on the 2016 update of the WHO Classification of Tumors of the Central Nervous System and the subsequent recommendations of the Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy — Not Officially WHO (cIMPACT-NOW). With regard to therapy, we formulated recommendations based on the results from the latest practice-changing clinical trials and also provide guidance for neuropathological and neuroradiological assessment. In these guidelines, we define the role of the major treatment modalities of surgery, radiotherapy and systemic pharmacotherapy, covering current advances and cognizant that unnecessary interventions and expenses should be avoided. This document is intended to be a source of reference for professionals involved in the management of adult patients with diffuse gliomas, for patients and caregivers, and for health-care providers. Herein, the European Association of Neuro-Oncology (EANO) provides recommendations for the diagnosis, treatment and follow-up of adult patients with diffuse gliomas. These evidence-based guidelines incorporate major changes in diagnostic algorithms based on the 2016 update of the WHO Classification of Tumors of the Central Nervous System as well as on evidence from recent large clinical trials.
Collapse
|