1
|
Lan J, Ren Y, Liu Y, Chen L, Liu J. A bibliometric analysis of radiation-induced brain injury: a research of the literature from 1998 to 2023. Discov Oncol 2024; 15:364. [PMID: 39172266 PMCID: PMC11341524 DOI: 10.1007/s12672-024-01223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury (RIBI) is a debilitating sequela after cranial radiotherapy. Research on the topic of RIBI has gradually entered the public eye, with more innovations and applications of evidence-based research and biological mechanism research in the field of that. This was the first bibliometric analysis on RIBI, assessing brain injury related to radiation articles that were published during 1998-2023, to provide an emerging theoretical basis for the future development of RIBI. METHODS Literature were obtained from the Web of Science Core Collection (WOSCC) from its inception to December 31, 2023. The column of publications, author details, affiliated institutions and countries, publication year, and keywords were also recorded. RESULTS A total of 2543 journal articles were selected. The annual publications on RIBI fluctuated within a certain range. Journal of Neuro-oncology was the most published journal and Radiation Oncology was the most impactful one. LIMOLI CL was the most prolific author with 37 articles and shared the highest h-index with BARNETT GH. The top one country and institutions were the USA and the University of California System, respectively. Clusters analysis of co-keywords demonstrated that the temporal research trends in this field primarily focused on imaging examination and therapy for RIBI. CONCLUSION This study collects, visualizes, and analyzes the literature within the field of RIBI over the last 25 years to map the development process, research frontiers and hotspots, and cutting-edge directions in clinical practice and mechanisms related to RIBI.
Collapse
Affiliation(s)
- Jinxin Lan
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yifan Ren
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuyang Liu
- Department of Neurosurgery, The 920th Hospital of Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Ling Chen
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA General Hospital, Chinese PLA Institute of Neurosurgery, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jialin Liu
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA General Hospital, Chinese PLA Institute of Neurosurgery, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
2
|
Barrios-González DA, Gonzalez-Salido J, Colado-Martínez J, Philibert-Rosas S, Sotelo-Díaz F, Sebastián-Díaz MA, Gómez-Rodríguez LJ, Kerik-Rotenberg NE, Gutiérrez-Aceves GA, Martínez-Juárez IE. Unmasking the Mimic: Radionecrotic Lesion Masquerading as Brain Neoplasia on Magnetic Resonance Imaging. Cureus 2024; 16:e59259. [PMID: 38813315 PMCID: PMC11134471 DOI: 10.7759/cureus.59259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Corpus callosotomy is a therapeutic approach for drug-resistant epilepsy, with positive outcomes observed in managing atonic seizures. Despite a decline in its usage, radiosurgical callosotomy remains a viable option for drug-resistant epilepsy due to its low risks of post-radiation neoplasia, albeit not with exceptions. Brain radionecrosis is characterized by tissue death and vascular endothelial damage following the procedure. Despite the low risk of intracranial secondary malignancy associated with radiation in some cases, post-radiation lesions might present with distinct characteristics needing a thorough diagnostic approach. Herein, we present a unique case of a patient with focal epilepsy who developed a radionecrotic lesion following radiosurgical callosotomy, affecting the anterior cingulate cortex, and mimicking a central nervous system (CNS) tumor. Molecular imaging techniques, including 18-fluorodeoxyglucose positron emission tomography/computed tomography (18-FDG PET/CT) and 11C-acetate PET/CT scans, were employed to differentiate the lesion from a tumor. This case underscores the importance of considering radionecrosis as a differential diagnosis in patients who undergo radiosurgical callosotomy presenting with ring-like enhancement lesions on magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
| | - Jimena Gonzalez-Salido
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico, Mexico City, MEX
| | | | | | - Fernando Sotelo-Díaz
- Neurosurgery Residency Program, National Institute of Neurology and Neurosurgery, Mexico, MEX
| | | | | | - Nora E Kerik-Rotenberg
- Molecular imaging unit, National Institute of Neurology and Neurosurgery, Mexico City , MEX
| | | | | |
Collapse
|
3
|
Dobeson CB, Birkbeck M, Bhatnagar P, Hall J, Pearson R, West S, English P, Butteriss D, Perthen J, Lewis J. Perfusion MRI in the evaluation of brain metastases: current practice review and rationale for study of baseline MR perfusion imaging prior to stereotactic radiosurgery (STARBEAM-X). Br J Radiol 2023; 96:20220462. [PMID: 37660364 PMCID: PMC10646666 DOI: 10.1259/bjr.20220462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Stereotactic radiosurgery is an established focal treatment for brain metastases with high local control rates. An important side-effect of stereotactic radiosurgery is the development of radionecrosis. On conventional MR imaging, radionecrosis and tumour progression often have similar appearances, but have contrasting management approaches. Perfusion MR imaging is often used in the post-treatment setting in order to help distinguish between the two, but image interpretation can be fraught with challenges.Perfusion MR plays an established role in the baseline and post-treatment evaluation of primary brain tumours and a number of studies have concentrated on the value of perfusion imaging in brain metastases. Of the parameters generated, relative cerebral blood volume is the most widely used variable in terms of its clinical value in differentiating between radionecrosis and tumour progression. Although it has been suggested that the relative cerebral blood volume tends to be elevated in active metastatic disease following treatment with radiosurgery, but not with treatment-related changes, the literature available on interpretation of the ratios provided in the context of defining tumour progression is not consistent.This article aims to provide an overview of the role perfusion MRI plays in the assessment of brain metastases and introduces the rationale for the STARBEAM-X study (Study of assessment of radionecrosis in brain metastases using MR perfusion extra imaging), which will prospectively evaluate baseline perfusion imaging in brain metastases. We hope this will allow insight into the vascular appearance of metastases from different primary sites, and aid in the interpretation of post-treatment perfusion imaging.
Collapse
Affiliation(s)
| | - Matthew Birkbeck
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne, UK
| | - Priya Bhatnagar
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Julie Hall
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rachel Pearson
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Serena West
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip English
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - David Butteriss
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanna Perthen
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanne Lewis
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Weller M, Le Rhun E, Van den Bent M, Chang SM, Cloughesy TF, Goldbrunner R, Hong YK, Jalali R, Jenkinson MD, Minniti G, Nagane M, Razis E, Roth P, Rudà R, Tabatabai G, Wen PY, Short SC, Preusser M. Diagnosis and management of complications from the treatment of primary central nervous system tumors in adults. Neuro Oncol 2023; 25:1200-1224. [PMID: 36843451 PMCID: PMC10326495 DOI: 10.1093/neuonc/noad038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 02/28/2023] Open
Abstract
Central nervous system (CNS) tumor patients commonly undergo multimodality treatment in the course of their disease. Adverse effects and complications from these interventions have not been systematically studied, but pose significant challenges in clinical practice and impact function and quality of life, especially in the management of long-term brain tumor survivors. Here, the European Association of Neuro-Oncology (EANO) has developed recommendations to prevent, diagnose, and manage adverse effects and complications in the adult primary brain CNS tumor (except lymphomas) patient population with a specific focus on surgery, radiotherapy, and pharmacotherapy. Specifically, we also provide recommendations for dose adaptations, interruptions, and reexposure for pharmacotherapy that may serve as a reference for the management of standard of care in clinical trials. We also summarize which interventions are unnecessary, inactive or contraindicated. This consensus paper should serve as a reference for the conduct of standard therapy within and outside of clinical trials.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Emilie Le Rhun
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin Van den Bent
- The Brain Tumour Center at the Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Yong-Kil Hong
- Brain Tumor Center, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Rakesh Jalali
- Neuro Oncology Cancer Management Team, Apollo Proton Cancer Centre, Chennai, India
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust & University of Liverpool, Liverpool, UK
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, Marousi, Athens, Greece
| | - Patrick Roth
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, City of Health and Science and University of Turin, Turin, Italy
| | - Ghazaleh Tabatabai
- Department of Neurology & Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neurooncology, Comprehensive Cancer Center, German Cancer Consortium (DKTK), Partner site Tübingen, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Patrick Y Wen
- Center for Neuro-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan C Short
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine 1, Medical University, Vienna, Austria
| |
Collapse
|
5
|
Iftekharuddin A, Gospodarev V, Hussain NS. Radiation Myelopathy: A Case Report and Literature Review. Cureus 2023; 15:e41362. [PMID: 37546152 PMCID: PMC10399638 DOI: 10.7759/cureus.41362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Proton beam therapy is a common type of radiation treatment that delivers a beam of proton particles to treat cancer and minimize damage to nearby healthy tissue. In this paper, we describe a case of a 20-year-old male patient with osteosarcoma of the distal right femur that eventually metastasized to his thoracic cavity. The patient underwent radiation beam therapy treatment that was directed at his left thorax and nine months later presented with clinical and radiographic findings of delayed radiation myelopathy (RM).
Collapse
Affiliation(s)
| | - Vadim Gospodarev
- Neurological Surgery, Loma Linda University Medical Center, Loma Linda, USA
| | - Namath S Hussain
- Neurological Surgery, Loma Linda University Medical Center, Loma Linda, USA
| |
Collapse
|
6
|
Management of initial and recurrent radiation-induced contrast enhancements following radiotherapy for brain metastases: Clinical and radiological impact of bevacizumab and corticosteroids. Clin Transl Radiat Oncol 2023; 39:100600. [PMID: 36873269 PMCID: PMC9975203 DOI: 10.1016/j.ctro.2023.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Purpose The appearance of radiation-induced contrast enhancements (RICE) after radiotherapy for brain metastases can go along with severe neurological impairments. The aim of our analysis was to evaluate radiological changes, the course and recurrence of RICE and identify associated prognostic factors. Methods We retrospectively identified patients diagnosed with brain metastases, who were treated with radiotherapy and subsequently developed RICE. Patient demographic and clinical data, radiation-, cancer-, and RICE-treatment, radiological results, and oncological outcomes were reviewed in detail. Results A total of 95 patients with a median follow-up of 28.8 months were identified. RICE appeared after a median time of 8.0 months after first radiotherapy and 6.4 months after re-irradiation. Bevacizumab in combination with corticosteroids achieved an improvement of clinical symptoms and imaging features in 65.9% and 75.6% of cases, respectively, both significantly superior compared to treatment with corticosteroids only, and further significantly prolonged RICE-progression-free survival to a median of 5.6 months. Recurrence of RICE after initially improved or stable imaging occurred in 63.1% of cases, significantly more often in patients after re-irradiation and was associated with high mortality of 36.6% after the diagnosis of flare-up. Response of recurrence significantly depended on the applied treatment and multiple courses of bevacizumab achieved good response. Conclusion Our results suggest that bevacizumab in combination with corticosteroids is superior in achieving short-term imaging and symptom improvement of RICE and prolongs the progression-free time compared to corticosteroids alone. Long-term RICE flare-up rates after bevacizumab discontinuation are high, but repeated treatments achieved effective symptomatic control.
Collapse
|
7
|
Warnick RE. Treatment of adverse radiation effects with Boswellia serrata after failure of pentoxifylline and vitamin E: illustrative cases. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE22488. [PMID: 36718863 PMCID: PMC10550708 DOI: 10.3171/case22488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Adverse radiation effects (AREs) can occur after stereotactic radiosurgery (SRS), and symptomatic cases are often treated with corticosteroids, pentoxifylline, and vitamin E. The supplement 5-Loxin (Boswellia serrata) is an extract of Indian frankincense that inhibits vascular endothelial growth factor expression and has been shown to reduce perilesional edema in brain tumor patients undergoing fractionated radiation. OBSERVATIONS Three patients underwent SRS for meningioma or metastasis and developed symptomatic AREs at 4 to 8 months. They were initially treated with corticosteroids, pentoxifylline, and vitamin E with transient improvement followed by recurrent neurological symptoms and imaging findings as steroids were tapered off. All patients were rescued by the administration of 5-Loxin with resolution of neurological symptoms and imaging changes, discontinuation of steroids, and no medication side effects. LESSONS The author's early experience with 5-Loxin has been encouraging, and this supplement has become the author's first-line treatment for acute radiation effects after SRS. The author reserves bevacizumab for significant mass effect or failure of oral therapy. 5-Loxin has many advantages including low cost, ease of use, and patient tolerability. More experience is needed to confirm the role of 5-Loxin in the upfront treatment of AREs.
Collapse
|
8
|
Muacevic A, Adler JR, Moscardini-Martelli J, Barrios-Merino C, Padilla-Leal KE, Suárez-Venegas A, Flores-Vázquez F. A Survey on Prophylactic Corticosteroids Use in Stereotactic Radiosurgery Treatments From Ibero and Latin America Centers. Cureus 2023; 15:e34060. [PMID: 36824549 PMCID: PMC9943024 DOI: 10.7759/cureus.34060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2023] [Indexed: 01/23/2023] Open
Abstract
Introduction Radiosurgery is a treatment in which a high dose of ionizing radiation is administered to a small field with high-precision techniques, and is a common treatment for tumors and other diagnoses. A typical complication is the development of radiation-induced edema that can progress to radiation necrosis in some cases. The administration of corticosteroids has been used empirically as a prophylaxis in patients who will be treated by stereotactic radiosurgery with intracranial tumors and other pathologies with the intention to prevent radiation-induced edema and or necrosis. Objective The aim of our study is to describe the actual use of corticosteroids in hospitals that perform stereotactic radiosurgery treatments in Latin America and Spain through a survey applied to neurosurgeons and radiation oncologists and expose the implications of the results, as well as to analyze the available literature on it. Methods We designed a questionnaire of 15 items related to the use of corticosteroids as prophylaxis in patients who will be treated with radiosurgery. The questionnaire was answered by 121 Ibero-Latin Americans through Google Drive considering a database from the Iberolatinoamerican Radiosurgery Association. Results We found that the preference for the use of corticosteroids as prophylaxis for radiosurgery is associated with informal training in radiosurgery, and it was more used by radiation oncologists compared to neurosurgeons (p=0.023). Side effects can exceed the benefit of its use. Conclusions There is practically no literature on the use of corticosteroids as prophylaxis for radiation necrosis in stereotactic radiosurgery. This is a controversial inter- and intra-specialty issue, and its empirical use has a relatively high prevalence, making us reconsider the value of experience in a medical environment that should be fundamentally guided by evidence-based medicine.
Collapse
|
9
|
Radiation myelopathy following stereotactic body radiation therapy for spine metastases. J Neurooncol 2022; 159:23-31. [PMID: 35737172 DOI: 10.1007/s11060-022-04037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) is now considered a standard of care treatment option in the management of spine metastases. One of the most feared complications of spine SBRT is radiation myelopathy (RM). METHODS We provided a narrative review of RM following spine SBRT based on review of the published literature, including data on spinal cord dose constraints associated with the risk of RM, strategies to mitigate the risk, and management options for RM. RESULTS There are limited published data of cases of RM following spine SBRT with detailed spinal cord dosimetry. The HyTEC report provided recommendations for the point maximal dose (Dmax) for the spinal cord that is associated with a < 5% risk of RM for 1-5 fractions spine SBRT. In the setting of spine SBRT reirradiation after previous conventional external beam radiation therapy (cEBRT), factors associated with RM are: SBRT spinal cord Dmax, cumulative spinal cord Dmax, and the time interval between previous RT and SBRT reirradiation. There are various strategies to mitigate the risk of RM, including accurate delineation of the spinal cord (or thecal sac), strict adherence to the recommended spinal cord dose constraints, and robust treatment immobilisation set-up and delivery. Limited effective treatment options are available for patients who develop RM, and these include corticosteroids, hyperbaric oxygen, and bevacizumab; however, none have been supported by high quality evidence. CONCLUSION RM is a rare but devastating complication following SBRT for spine metastases. There are strategies to minimise the risk of RM to ensure safe delivery of spine SBRT.
Collapse
|
10
|
[Expert Consensus on the Treatment of Antiangiogenic Agents for Radiation Brain Necrosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:291-294. [PMID: 35570144 PMCID: PMC9127755 DOI: 10.3779/j.issn.1009-3419.2022.101.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vascular damage is followed by vascular endothelial growth factor (VEGF) expression at high levels, which is an important mechanism for cerebral radiation necrosis (CRN) development. Antiangiogenic agents (Bevacizumab) alleviates brain edema symptoms caused by CRN through inhibiting VEGF and acting on vascular tissue around the brain necrosis area. Many studies have confirmed that Bevacizumab effectively relieves symptoms caused by brain necrosis, improves patients' performance status and brain necrosis imaging. Considering that the efficacy of antiangiogenic therapy is mainly related to the duration of drug action, low-dose antiangiogenic agents can achieve favorable efficacy. Prevention is the best treatment. The occurrence of CRN is associated with tumor-related factors and treatment-related factors. By controlling these factors, CRN can be effectively prevented.
.
Collapse
|
11
|
Jacob J, Feuvret L, Simon JM, Ribeiro M, Nichelli L, Jenny C, Ricard D, Psimaras D, Hoang-Xuan K, Maingon P. Neurological side effects of radiation therapy. Neurol Sci 2022; 43:2363-2374. [DOI: 10.1007/s10072-022-05944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|
12
|
Ferini G, Viola A, Valenti V, Tripoli A, Molino L, Marchese VA, Illari SI, Rita Borzì G, Prestifilippo A, Umana GE, Martorana E, Mortellaro G, Ferrera G, Cacciola A, Lillo S, Pontoriero A, Pergolizzi S, Parisi S. Whole Brain Irradiation or Stereotactic RadioSurgery for five or more brain metastases (WHOBI-STER): A prospective comparative study of neurocognitive outcomes, level of autonomy in daily activities and quality of life. Clin Transl Radiat Oncol 2021; 32:52-58. [PMID: 34926839 PMCID: PMC8649107 DOI: 10.1016/j.ctro.2021.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023] Open
Abstract
The main aim of MBM treatment is to palliate neurological symptoms and to maintain an adequate QoL. SRT could be the “new standard” over WBI in the management of MBM patients. Neurocognitive functions could deteriorate more after WBI than after SRT.
Aims To evaluate neurocognitive performance, daily activity and quality of life (QoL), other than usual oncologic outcomes, among patients with brain metastasis ≥5 (MBM) from solid tumors treated with Stereotactic Brain Irradiation (SBI) or Whole Brain Irradiation (WBI). Methods This multicentric randomized controlled trial will involve the enrollment of 100 patients (50 for each arm) with MBM ≥ 5, age ≥ 18 years, Karnofsky Performance Status (KPS) ≥ 70, life expectancy > 3 months, known primary tumor, with controlled or controllable extracranial disease, baseline Montreal Cognitive Assessment (MoCA) score ≥ 20/30, Barthel Activities of Daily Living score ≥ 90/100, to be submitted to SBI by LINAC with monoisocentric technique and non-coplanar arcs (experimental arm) or to WBI (control arm). The primary endpoints are neurocognitive performance, QoL and autonomy in daily-life activities variations, the first one assessed by MoCa Score and Hopkins Verbal Learning Test-Revised, the second one through the EORTC QLQ-C15-PAL and QLQ-BN-20 questionnaires, the third one through the Barthel Index, respectively. The secondary endpoints are time to intracranial failure, overall survival, retreatment rate, acute and late toxicities, changing of KPS. It will be considered significant a statistical difference of at least 30% between the two arms (statistical power of 80% with a significance level of 95%). Discussion Several studies debate what is the decisive factor accountable for the development of neurocognitive decay among patients undergoing brain irradiation for MBM: radiation effect on clinically healthy brain tissue or intracranial tumor burden? The answer to this question may come from the recent technological advancement that allows, in a context of a significant time saving, improved patient comfort and minimizing radiation dose to off-target brain, a selective treatment of MBM simultaneously, otherwise attackable only by WBI. The achievement of a local control rate comparable to that obtained with WBI remains the fundamental prerequisite. Trial registration NCT number: NCT04891471.
Collapse
Key Words
- 3D-CRT, 3Dimensional-ConformalRadioTherapy
- Autonomy in daily activities
- BSC, Best Supportive Care
- Brain metastases
- CRF, Case Report Form
- CT, Computerized Tomography
- CTV, Clinical Target Volume
- EORTC QLQ-C15-PAL, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 15 for Palliative Care
- FSRT, Fractionated Stereotactic Radiation Therapy
- GTV, Gross Tumor Volume
- KPS, Karnofsky Performance Status
- LINAC, Linear Accelerator
- MBM, Multiple Brain Metastastes
- MRI, Magnetic Resonance Imaging
- MoCA, Montreal Cognitive Assessment
- NCCN, National Comprehensive Cancer Network
- Neurocognitive decay
- Neurocognitive performance
- Neurocognitive tests
- OAR, Organ At Risk
- OS, Overall Survival
- PTV, Planning Target Volume
- Palliative care
- QLQ-BN20, Quality of Life Questionnaire - Brain Neoplasm 20
- QoL, Quality of Life
- Quality of life
- RT, Radiation Therapy
- RTOG, Radiation Therapy Oncology Group
- Radiotherapy for multiple brain metastases
- SBI, Stereotactic Brain Irradiation
- SRS, Stereotactic RadioSurgery
- SRT, Stereotactic Radiation Therapy
- Stereotactic Brain RadioSurgery
- Stereotactic Brain Radiotherapy
- Supportive care in cancer patients
- VEGF, Vascular Endothelial Growth Factor
- Whole Brain Radiotherapy
Collapse
Affiliation(s)
| | - Anna Viola
- Fondazione IOM, Viagrande, I-95029 Catania, Italy
| | - Vito Valenti
- REM Radioterapia srl, Viagrande, I-95029 Catania, Italy
| | | | - Laura Molino
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy
| | | | | | | | - Angela Prestifilippo
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, I-95125 Catania, Italy
| | | | - Gianluca Mortellaro
- Department of Radiation Oncology, ARNAS Ospedale Civico, I-90127 Palermo, Italy
| | - Giuseppe Ferrera
- Department of Radiation Oncology, ARNAS Ospedale Civico, I-90127 Palermo, Italy
| | - Alberto Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy
| | - Sara Lillo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy
| | - Antonio Pontoriero
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy
| | - Silvana Parisi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy
| |
Collapse
|
13
|
Mantovani C, Gastino A, Cerrato M, Badellino S, Ricardi U, Levis M. Modern Radiation Therapy for the Management of Brain Metastases From Non-Small Cell Lung Cancer: Current Approaches and Future Directions. Front Oncol 2021; 11:772789. [PMID: 34796118 PMCID: PMC8593461 DOI: 10.3389/fonc.2021.772789] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Brain metastases (BMs) represent the most frequent event during the course of Non-Small Cell Lung Cancer (NSCLC) disease. Recent advancements in the diagnostic and therapeutic procedures result in increased incidence and earlier diagnosis of BMs, with an emerging need to optimize the prognosis of these patients through the adoption of tailored treatment solutions. Nowadays a personalized and multidisciplinary approach should rely on several clinical and molecular factors like patient’s performance status, extent and location of brain involvement, extracranial disease control and the presence of any “druggable” molecular target. Radiation therapy (RT), in all its focal (radiosurgery and fractionated stereotactic radiotherapy) or extended (whole brain radiotherapy) declinations, is a cornerstone of BMs management, either alone or combined with surgery and systemic therapies. Our review aims to provide an overview of the many modern RT solutions available for the treatment of BMs from NSCLC in the different clinical scenarios (single lesion, oligo and poly-metastasis, leptomeningeal carcinomatosis). This includes a detailed review of the current standard of care in each setting, with a presentation of the literature data and of the possible technical solutions to offer a “state-of-art” treatment to these patients. In addition to the validated treatment options, we will also discuss the future perspectives on emerging RT technical strategies (e.g., hippocampal avoidance whole brain RT, simultaneous integrated boost, radiosurgery for multiple lesions), and present the innovative and promising findings regarding the combination of novel targeted agents such as tyrosine kinase inhibitors and immune checkpoint inhibitors with brain irradiation.
Collapse
Affiliation(s)
| | | | - Marzia Cerrato
- Department of Oncology, University of Torino, Torino, Italy
| | | | | | - Mario Levis
- Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Lanier CM, Lecompte M, Glenn C, Hughes RT, Isom S, Jenkins W, Cramer CK, Chan M, Tatter SB, Laxton AW. A Single-Institution Retrospective Study of Patients Treated With Laser-Interstitial Thermal Therapy for Radiation Necrosis of the Brain. Cureus 2021; 13:e19967. [PMID: 34984127 PMCID: PMC8714182 DOI: 10.7759/cureus.19967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 11/05/2022] Open
Abstract
Object Laser-interstitial thermal therapy (LITT) has been proposed as an alternative treatment to surgery for radiation necrosis (RN) in patients treated with stereotactic radiosurgery (SRS) for brain metastases. The present study sought to retrospectively analyze LITT outcomes in patients with RN from SRS. Methods This was a single-institution retrospective study of 30 patients treated from 2011-2018 with pathologically-proven RN after SRS for brain metastases (n=28) or proximally treated extracranial lesions treated with external beam radiotherapy (n=2). Same-day biopsy was performed in all cases. Patients were prospectively followed with Functional Assessment of Cancer Therapy - Brain (FACT-Br), EuroQol-5 Dimension (EQ-5D), Hopkins Verbal Learning Test (HVLT) and clinical history and examination. Adjusted means, standard errors and tests comparing visits to pre-LITT were generated. Kaplan-Meier method was used to estimate time overall survival. Competing risk analysis was used to estimate cumulative incidence of LITT failure. Results In our patient population, median time from radiotherapy to LITT was 13.1 months. Median SRS dose and median LITT treatment target volume were 20 Gy (IQR 18-22) and 3.5 cc (IQR 2.2-4.6), respectively. Seventy-seven percent of our patients tapered off steroids within one month. There were only two instances of RN recurrence after LITT, with recurrence defined as recurrence of symptoms after initial improvement. These recurrences occurred at 1.9 and 3.4 months. The three-, six- and nine-month freedom from recurrence rates were 95.7%, 90.9%, and 90.9%. Median survival in our patient population with pathologically confirmed RN treated with LITT was 2.1 years. Regarding the quality of life questionnaires with which some patients were followed as part of different prospective studies, completion rates were 22/30 for FACT-Br, 16/30 for the EQ-5D and 8/30 for HVLT. Quality of life questionnaire results were overall stable from baseline. Mean FACT-Br scores were stable from baseline (17.9, 16.6, 21.4 and 22.8) to three months (18.8, 15.4, 18.4 and 23.4) (p=0.38, 0.53, 0.09 and 0.59). The mean EQ-5D Aggregate score was stable from baseline (7.1) to one month (7.6) (p=0.25). Mean HVLT-R Total Recall was stable from baseline (20.6) to three months (18.4) (p=0.09). There was a statistically significant decrease in mean Karnofsky Performance Scale (KPS) score from baseline (84) to three-month follow-up (75) (p=0.03). Conclusions LITT represents a safe and durably effective treatment option for RN in the brain. Results demonstrate a median survival of 2.1 years from LITT with only two recurrences, both within four months of treatment and salvageable. Patient-reported outcomes showed no severe declines after LITT. Quality of life questionnaires demonstrated stable well-being and functionality from baseline. LITT should be considered for definitive treatment of RN, especially in cases where patients have significant side effects from standards medical therapies such as steroids or if steroids are minimally effective.
Collapse
Affiliation(s)
- Claire M Lanier
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Michael Lecompte
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Chase Glenn
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Ryan T Hughes
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Scott Isom
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Wendy Jenkins
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Christina K Cramer
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Michael Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, USA
| |
Collapse
|
15
|
Richardson GE, Gillespie CS, Mustafa MA, Taweel BA, Bakhsh A, Kumar S, Keshwara SM, Ali T, John B, Brodbelt AR, Chavredakis E, Mills SJ, May C, Millward CP, Islim AI, Jenkinson MD. Clinical Outcomes Following Re-Operations for Intracranial Meningioma. Cancers (Basel) 2021; 13:4792. [PMID: 34638276 PMCID: PMC8507983 DOI: 10.3390/cancers13194792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
The outcomes following re-operation for meningioma are poorly described. The aim of this study was to identify risk factors for a performance status outcome following a second operation for a recurrent meningioma. A retrospective, comparative cohort study was conducted. The primary outcome measure was World Health Organization performance. Secondary outcomes were complications, and overall and progression free survival (OS and PFS respectively). Baseline clinical characteristics, tumor details, and operation details were collected. Multivariable binary logistic regression was used to identify risk factors for performance status outcome following a second operation. Between 1988 and 2018, 712 patients had surgery for intracranial meningiomas, 56 (7.9%) of which underwent a second operation for recurrence. Fifteen patients (26.8%) had worsened performance status after the second operation compared to three (5.4%) after the primary procedure (p = 0.002). An increased number of post-operative complications following the second operation was associated with a poorer performance status following that procedure (odds ratio 2.2 [95% CI 1.1-4.6]). The second operation complication rates were higher than after the first surgery (46.4%, n = 26 versus 32.1%, n = 18, p = 0.069). The median OS was 312.0 months (95% CI 257.8-366.2). The median PFS following the first operation was 35.0 months (95% CI 28.9-41.1). Following the second operation, the median PFS was 68.0 months (95% CI 49.1-86.9). The patients undergoing a second operation for meningioma had higher rates of post-operative complications, which is associated with poorer clinical outcomes. The decisions surrounding second operations must be balanced against the surgical risks and should take patient goals into consideration.
Collapse
Affiliation(s)
- George E. Richardson
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
| | - Conor S. Gillespie
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
| | - Mohammad A. Mustafa
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
| | - Basel A. Taweel
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
| | - Ali Bakhsh
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| | - Siddhant Kumar
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| | - Sumirat M. Keshwara
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
| | - Tamara Ali
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| | - Bethan John
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| | - Andrew R. Brodbelt
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| | - Emmanuel Chavredakis
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| | - Samantha J. Mills
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK;
| | - Chloë May
- Department of Clinical Oncology, Clatterbridge Cancer Trust, Liverpool CH63 4JY, UK;
| | - Christopher P. Millward
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| | - Abdurrahman I. Islim
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| | - Michael D. Jenkinson
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (C.S.G.); (M.A.M.); (B.A.T.); (A.B.); (S.K.); (S.M.K.); (C.P.M.); (A.I.I.); (M.D.J.)
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK; (T.A.); (B.J.); (A.R.B.); (E.C.)
| |
Collapse
|
16
|
Palmisciano P, Haider AS, Nwagwu CD, Wahood W, Aoun SG, Abdullah KG, El Ahmadieh TY. Bevacizumab vs laser interstitial thermal therapy in cerebral radiation necrosis from brain metastases: a systematic review and meta-analysis. J Neurooncol 2021; 154:13-23. [PMID: 34218396 DOI: 10.1007/s11060-021-03802-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Radiation necrosis (RN) represents a serious post-radiotherapy complication in patients with brain metastases. Bevacizumab and laser interstitial thermal therapy (LITT) are viable treatment options, but direct comparative data is scarce. We reviewed the literature to compare the two treatment strategies. METHODS PubMed, EMBASE, Scopus, and Cochrane databases were searched. All studies of patients with RN from brain metastases treated with bevacizumab or LITT were included. Treatment outcomes were analyzed using indirect meta-analysis with random-effect modeling. RESULTS Among the 18 studies included, 143 patients received bevacizumab and 148 underwent LITT. Both strategies were equally effective in providing post-treatment symptomatic improvement (P = 0.187, I2 = 54.8%), weaning off steroids (P = 0.614, I2 = 25.5%), and local lesion control (P = 0.5, I2 = 0%). Mean number of lesions per patient was not statistically significant among groups (P = 0.624). Similarly, mean T1-contrast-enhancing pre-treatment volumes were not statistically different (P = 0.582). Patterns of radiological responses differed at 6-month follow-ups, with rates of partial regression significantly higher in the bevacizumab group (P = 0.001, I2 = 88.9%), and stable disease significantly higher in the LITT group (P = 0.002, I2 = 81.9%). Survival rates were superior in the LITT cohort, and statistical significance was reached at 18 months (P = 0.038, I2 = 73.7%). Low rates of adverse events were reported in both groups (14.7% for bevacizumab and 12.2% for LITT). CONCLUSION Bevacizumab and LITT can be safe and effective treatments for RN from brain metastases. Clinical and radiological outcomes are mostly comparable, but LITT may relate with superior survival benefits in select patients. Further studies are required to identify the best patient candidates for each treatment group.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Ali S Haider
- Texas A&M University College of Medicine, Houston, TX, USA
| | | | - Waseem Wahood
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Salah G Aoun
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Tarek Y El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Liao G, Khan M, Zhao Z, Arooj S, Yan M, Li X. Bevacizumab Treatment of Radiation-Induced Brain Necrosis: A Systematic Review. Front Oncol 2021; 11:593449. [PMID: 33842309 PMCID: PMC8027305 DOI: 10.3389/fonc.2021.593449] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Radiation brain necrosis (RBN) is a serious complication in patients receiving radiotherapy for intracranial disease. Many studies have investigated the efficacy and safety of bevacizumab in patients with RBN. In the present study, we systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab, as well as for studies comparing bevacizumab with corticosteroids. MATERIALS AND METHODS We searched PubMed, Cochrane library, EMBASE, and ClinicalTrials.gov from their inception through 1 March, 2020 for studies that evaluated the efficacy and safety of bevacizumab in patients with RBN. Two investigators independently performed the study selection, data extraction, and data synthesis. RESULTS Overall, the present systematic review included 12 studies (eight retrospective, two prospective, and two randomized control trials [RCTs]) involving 236 patients with RBN treated who were treated with bevacizumab. The two RCTs also had control arms comprising patients with RBN who were treated with corticosteroids/placebo (n=57). Radiographic responses were recorded in 84.7% (200/236) of patients, and radiographic progression was observed in 15.3% (36/236). Clinical improvement was observed in 91% (n=127) of responding patients among seven studies (n=113). All 12 studies reported volume reduction on T1 gadolinium enhancement MRI (median: 50%, range: 26%-80%) and/or T2 FLAIR MRI images (median: 59%, range: 48%-74%). In total, 46 responding patients (34%) had recurrence. The two RCTs revealed significantly improved radiographic response in patients treated with bevacizumab (Levin et al.: p = 0.0013; Xu et al.: p < 0.001). Both also showed clinical improvement (Levin et al.: NA; Xu et al.: p = 0.039) and significant reduction in edema volume on both T1 gadolinium enhancement MRI (Levin et al.: p=0.0058; Xu et al.: p=0.027) and T2 FLAIR MRI (Levin et al.: p=0.0149; Xu et al.: p < 0.001). Neurocognitive improvement was significantly better after 2 months of treatment in patients receiving bevacizumab than in those given corticosteroids, as assessed by the MoCA scale (p = 0.028). The recurrence rate and side effects of the treatments showed no significant differences. CONCLUSIONS Patients with RBN respond to bevacizumab, which can improve clinical outcomes and cognitive function. Bevacizumab appears to be more efficacious than corticosteroid-based treatment. The safety profile was comparable to that of the corticosteroids.
Collapse
Affiliation(s)
- Guixiang Liao
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Muhammad Khan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People’s Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Maosheng Yan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
18
|
Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review & meta-analysis. BMC Cancer 2021; 21:167. [PMID: 33593308 PMCID: PMC7885379 DOI: 10.1186/s12885-021-07889-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background Radiotherapy is the mainstay of brain metastasis (BM) management. Radiation necrosis (RN) is a serious complication of radiotherapy. Bevacizumab (BV), an anti-vascular endothelial growth factor monoclonal antibody, has been increasingly used for RN treatment. We systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab for treatment of RN in BM patients. Materials and methods PubMed, Medline, EMBASE, and Cochrane library were searched with various search keywords such as “bevacizumab” OR “anti-VEGF monoclonal antibody” AND “radiation necrosis” OR “radiation-induced brain necrosis” OR “RN” OR “RBN” AND “Brain metastases” OR “BM” until 1st Aug 2020. Studies reporting the efficacy and safety of BV treatment for BM patients with RN were retrieved. Study selection and data extraction were carried out by independent investigators. Open Meta Analyst software was used as a random effects model for meta-analysis to obtain mean reduction rates. Results Two prospective, seven retrospective, and three case report studies involving 89 patients with RN treated with BV were included in this systematic review and meta-analysis. In total, 83 (93%) patients had a recorded radiographic response to BV therapy, and six (6.7%) had experienced progressive disease. Seven studies (n = 73) reported mean volume reductions on gadolinium-enhanced T1 (mean: 47.03%, +/− 24.4) and T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI images (mean: 61.9%, +/− 23.3). Pooling together the T1 and T2 MRI reduction rates by random effects model revealed a mean of 48.58 (95% CI: 38.32–58.85) for T1 reduction rate and 62.017 (95% CI: 52.235–71.799) for T2W imaging studies. Eighty-five patients presented with neurological symptoms. After BV treatment, nine (10%) had stable symptoms, 39 (48%) had improved, and 34 (40%) patients had complete resolution of their symptoms. Individual patient data was available for 54 patients. Dexamethasone discontinuation or reduction in dosage was observed in 30 (97%) of 31 patients who had recorded dosage before and after BV treatment. Side effects were mild. Conclusions Bevacizumab presents a promising treatment strategy for patients with RN and brain metastatic disease. Radiographic response and clinical improvement was observed without any serious adverse events. Further class I evidence would be required to establish a bevacizumab recommendation in this group of patients.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China.,Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, People's Republic of China
| | - Sumbal Arooj
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China.,Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Guixiang Liao
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China.
| |
Collapse
|
19
|
Baroni LV, Alderete D, Solano-Paez P, Rugilo C, Freytes C, Laughlin S, Fonseca A, Bartels U, Tabori U, Bouffet E, Huang A, Laperriere N, Tsang DS, Sumerauer D, Kyncl M, Ondrová B, Malalasekera VS, Hansford JR, Zápotocký M, Ramaswamy V. Bevacizumab for pediatric radiation necrosis. Neurooncol Pract 2020; 7:409-414. [PMID: 32765892 DOI: 10.1093/nop/npz072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Radiation necrosis is a frequent complication occurring after the treatment of pediatric brain tumors; however, treatment options remain a challenge. Bevacizumab is an anti-VEGF monoclonal antibody that has been shown in small adult cohorts to confer a benefit, specifically a reduction in steroid usage, but its use in children has not been well described. Methods We describe our experience with bevacizumab use for symptomatic radiation necrosis at 5 institutions including patients treated after both initial irradiation and reirradiation. Results We identified 26 patients treated with bevacizumab for symptomatic radiation necrosis, with a wide range of underlying diagnoses. The average age at diagnosis of radiation necrosis was 10.7 years, with a median time between the last dose of radiation and the presentation of radiation necrosis of 3.8 months (range, 0.6-110 months). Overall, we observed that 13 of 26 patients (50%) had an objective clinical improvement, with only 1 patient suffering from significant hypertension. Radiological improvement, defined as reduced T2/fluid-attenuated inversion recovery signal and mass effect, was observed in 50% of patients; however, this did not completely overlap with clinical response. Both early and late radiation necrosis responded equally well to bevacizumab therapy. Overall, bevacizumab was very well tolerated, permitting a reduction of corticosteroid dose and/or duration in the majority of patients. Conclusions Bevacizumab appears to be effective and well-tolerated in children as treatment for symptomatic radiation necrosis and warrants more robust study in the context of controlled clinical trials.
Collapse
Affiliation(s)
- Lorena V Baroni
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.,Service of Hematology/Oncology, Hospital JP Garrahan, Buenos Aires, Argentina.,Arthur and Sonia Labatt Brain Tumour Research Centre, Programme in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel Alderete
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.,Service of Hematology/Oncology, Hospital JP Garrahan, Buenos Aires, Argentina
| | - Palma Solano-Paez
- Service of Pediatric Oncology, Hospital Infantil Virgen del Rocío, Seville, Spain
| | - Carlos Rugilo
- Service of Diagnostic Imaging, Hospital JP Garrahan, Buenos Aires, Argentina
| | - Candela Freytes
- Service of Hematology/Oncology, Hospital JP Garrahan, Buenos Aires, Argentina
| | - Suzanne Laughlin
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Adriana Fonseca
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Ute Bartels
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Eric Bouffet
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Annie Huang
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Normand Laperriere
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - David Sumerauer
- Department of Paediatric Haematology and Oncology, Second Medical School, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Martin Kyncl
- Department of Radiology, University Hospital Motol, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Australia.,Division of Cancer, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne and Monash University, Melbourne, Australia
| | - Michal Zápotocký
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, Programme in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Reduzierte strahleninduzierte Hirnnekrose bei Patienten mit Nasopharynxkarzinom durch Bevacizumab-Monotherapie. Strahlenther Onkol 2019; 195:277-280. [DOI: 10.1007/s00066-019-01425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|