Abstract
BACKGROUND
Epilepsy is a central nervous system disorder (neurological disorder). Epileptic seizures are the result of excessive and abnormal cortical nerve cell electrical activity in the brain. Despite the development of more than 10 new antiepileptic drugs (AEDs) since the early 2000s, approximately a third of people with epilepsy remain resistant to pharmacotherapy, often requiring treatment with a combination of AEDs. In this review, we summarised the current evidence regarding rufinamide, a novel anticonvulsant medication, which, as a triazole derivative, is structurally unrelated to any other currently used anticonvulsant medication when used as an add-on treatment for drug-resistant epilepsy. In January 2009, rufinamide was approved by the US Food and Drug Administration for the treatment of children four years of age and older with Lennox-Gastaut syndrome. It is also approved as an add-on treatment for adults and adolescents with focal seizures. This is an updated version of the original Cochrane Review published in 2018.
OBJECTIVES
To evaluate the efficacy and tolerability of rufinamide when used as an add-on treatment for people with drug-resistant epilepsy.
SEARCH METHODS
We imposed no language restrictions. We contacted the manufacturers of rufinamide and authors in the field to identify any relevant unpublished studies.
SELECTION CRITERIA
Randomised, double-blind, placebo-controlled, add-on trials of rufinamide, recruiting people (of any age or gender) with drug-resistant epilepsy.
DATA COLLECTION AND ANALYSIS
Two review authors independently selected trials for inclusion and extracted the relevant data. We assessed the following outcomes: 50% or greater reduction in seizure frequency (primary outcome); seizure freedom; treatment withdrawal; and adverse effects (secondary outcomes). Primary analyses were intention-to-treat (ITT) and we presented summary risk ratios (RRs) with 95% confidence intervals (CIs). We evaluated dose response in regression models. We carried out a risk of bias assessment for each included study using the Cochrane 'Risk of bias' tool and assessed the overall certainty of evidence using the GRADE approach.
MAIN RESULTS
The review included six trials, representing 1759 participants. Four trials (1563 participants) included people with uncontrolled focal seizures. Two trials (196 participants) included individuals with established Lennox-Gastaut syndrome. Overall, the age of adults ranged from 18 to 80 years and the age of children ranged from 4 to 16 years. Baseline phases ranged from 28 to 56 days and double-blind phases from 84 to 96 days. Five of the six included trials described adequate methods of concealment of randomisation, and only three described adequate blinding. All analyses were by ITT. Overall, five studies were at low risk of bias and one had unclear risk of bias due to lack of reported information around study design. All trials were sponsored by the manufacturer of rufinamide and therefore were at high risk of funding bias. The overall RR for 50% or greater reduction in seizure frequency was 1.79 (95% CI 1.44 to 2.22; 6 randomised controlled trials (RCTs), 1759 participants; moderate-certainty evidence), indicating that rufinamide (plus conventional AED) was significantly more effective than placebo (plus conventional AED) in reducing seizure frequency by at least 50% when added to conventionally used AEDs in people with drug-resistant focal epilepsy. Data from only one study (73 participants) reported seizure freedom: RR 1.32 (95% CI 0.36 to 4.86; 1 RCT, 73 participants; moderate-certainty evidence). The overall RR for treatment withdrawal (for any reason and due to AED) was 1.83 (95% CI 1.45 to 2.31; 6 RCTs, 1759 participants; moderate-certainty evidence), showing that rufinamide was significantly more likely to be withdrawn than placebo. Most adverse effects were significantly more likely to occur in the rufinamide-treated group. Adverse events significantly associated with rufinamide were headache, dizziness, somnolence, vomiting, nausea, fatigue, and diplopia. The RRs for these adverse effects were as follows: headache 1.36 (95% Cl 1.08 to 1.69; 3 RCTs, 1228 participants; high-certainty evidence); dizziness 2.52 (95% Cl 1.90 to 3.34; 3 RCTs, 1295 participants; moderate-certainty evidence); somnolence 1.94 (95% Cl 1.44 to 2.61; 6 RCTs, 1759 participants; moderate-certainty evidence); vomiting 2.95 (95% Cl 1.80 to 4.82; 4 RCTs, 777 participants; low-certainty evidence); nausea 1.87 (95% Cl 1.33 to 2.64; 3 RCTs, 1295 participants; moderate-certainty evidence); fatigue 1.46 (95% Cl 1.08 to 1.97; 3 RCTs, 1295 participants; moderate-certainty evidence); and diplopia 4.60 (95% Cl 2.53 to 8.38; 3 RCTs, 1295 participants; low-certainty evidence). There was no important heterogeneity between studies for any outcomes. Overall, we assessed the evidence as moderate to low certainty due to wide CIs and potential risk of bias from some studies contributing to the analysis.
AUTHORS' CONCLUSIONS
For people with drug-resistant focal epilepsy, rufinamide when used as an add-on treatment was effective in reducing seizure frequency. However, the trials reviewed were of relatively short duration and provided no evidence for long-term use of rufinamide. In the short term, rufinamide as an add-on was associated with several adverse events. This review focused on the use of rufinamide in drug-resistant focal epilepsy, and the results cannot be generalised to add-on treatment for generalised epilepsies. Likewise, no inference can be made about the effects of rufinamide when used as monotherapy.
Collapse