1
|
Mian MU, Afzal M, Butt AA, Ijaz M, Khalil K, Abbasi M, Fatima M, Asif M, Nadeem S, Jha S, Panjiyar BK. Neuropharmacology of Neuropathic Pain: A Systematic Review. Cureus 2024; 16:e69028. [PMID: 39385859 PMCID: PMC11464095 DOI: 10.7759/cureus.69028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Neuropathic pain, a debilitating condition, remains challenging to manage effectively. An insight into neuropharmacological mechanisms is critical for optimizing treatment strategies. This systematic review aims to evaluate the role of neuropharmacological agents based on their efficacy, involved neurotransmitters, and receptors. A manual literature search was undertaken in PubMed including Medline, Cochrane Library, Google Scholar, Plos One, Science Direct, and clinicaltrials.gov from 2013 until 2023. Out of the 13 included studies, seven evaluated the role of gabapentinoids. Two main drugs from this group, gabapentin and pregabalin, function by binding voltage-gated calcium channels, lowering neuronal hyperexcitability and pain signal transmission, thereby relieving neuropathic pain. Four of the pooled studies reported the use of tricyclic antidepressants (TCAs) including amitriptyline and nortriptyline which work by blocking the reuptake of norepinephrine and serotonin, their increased concentration is thought to be central to their analgesic effect. Three articles assessed the use of serotonin-norepinephrine reuptake inhibitors (SNRIs) and reported them as effective as the TCAs in managing neuropathic pain. They work by augmenting serotonin and norepinephrine. Three studies focused on the use of selective serotonin reuptake inhibitors (SSRIs), modulating their effect by increasing serotonin levels; however, they were reported as not a highly effective treatment option for neuropathic pain. One of the studies outlined the use of cannabinoids for neuropathic pain by binding to cannabinoid receptors with only mild adverse effects. It is concluded that gabapentinoids, TCAs, and SNRIs were reported as the most effective therapy for neuropathic pain; however, for trigeminal neuralgia, anticonvulsants like carbamazepine were considered the most effective. Opioids were considered second-line drugs for neuropathic pain as they come with adverse effects and a risk of dependence. Ongoing research is exploring novel drugs like ion channels and agents modulating pain pathways for neuropathic pain management. Our review hopes to inspire further research into patient stratification by their physiology, aiding quicker and more accurate management of neuropathic pain while minimizing inadvertent side effects.
Collapse
Affiliation(s)
| | - Mishal Afzal
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Aqsa A Butt
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Muniba Ijaz
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Kashaf Khalil
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Marhaba Fatima
- Internal Medicine, People's University of Medical and Health Sciences for Women-Nawabshah, Nawabshah, PAK
| | - Mariam Asif
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Saad Nadeem
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Shivangi Jha
- Obstetrics and Gynaecology, Pramukh Swami Medical College, Bhaikaka University, Anand, IND
| | - Binay K Panjiyar
- Cardiology/Global Clinical Scholars Research Training, Harvard Medical School, Boston, USA
| |
Collapse
|
2
|
Rana MH, Khan AAG, Khalid I, Ishfaq M, Javali MA, Baig FAH, Kota MZ, Khader MA, Hameed MS, Shaik S, Das G. Therapeutic Approach for Trigeminal Neuralgia: A Systematic Review. Biomedicines 2023; 11:2606. [PMID: 37892981 PMCID: PMC10604820 DOI: 10.3390/biomedicines11102606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/05/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
This umbrella review aimed to determine the various drugs used to treat trigeminal neuralgia (TN) and to evaluate their efficacies as well as side effects by surveying previously published reviews. An online search was conducted using PubMed, CRD, EBSCO, Web of Science, Scopus, and the Cochrane Library with no limits on publication date or patients' gender, age, and ethnicity. Reviews and meta-analyses of randomized controlled trials pertaining to drug therapy for TN, and other relevant review articles added from their reference lists, were evaluated. Rapid reviews, reviews published in languages other than English, and reviews of laboratory studies, case reports, and series were excluded. A total of 588 articles were initially collected; 127 full-text articles were evaluated after removing the duplicates and screening the titles and abstracts, and 11 articles were finally included in this study. Except for carbamazepine, most of the drugs had been inadequately studied. Carbamazepine and oxcarbazepine continue to be the first choice for medication for classical TN. Lamotrigine and baclofen can be regarded as second-line drugs to treat patients not responding to first-line medication or for patients having intolerable side effects from carbamazepine. Drug combinations using carbamazepine, baclofen, gabapentin, ropivacaine, tizanidine, and pimozide can yield satisfactory results and improve the tolerance to the treatment. Intravenous lidocaine can be used to treat acute exaggerations and botulinum toxin-A can be used in refractory cases. Proparacaine, dextromethorphan, and tocainide were reported to be inappropriate for treating TN. Anticonvulsants are successful in managing trigeminal neuralgia; nevertheless, there have been few studies with high levels of proof, making it challenging to compare or even combine their results in a statistically useful way. New research on other drugs, combination therapies, and newer formulations, such as vixotrigine, is awaited. There is conclusive evidence for the efficacy of pharmacological drugs in the treatment of TN.
Collapse
Affiliation(s)
- Muhammad Haseeb Rana
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdul Ahad Ghaffar Khan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Imran Khalid
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Muhammad Ishfaq
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Mukhatar Ahmed Javali
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (M.A.J.); (M.A.K.)
| | - Fawaz Abdul Hamid Baig
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Mohammad Zahir Kota
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Mohasin Abdul Khader
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (M.A.J.); (M.A.K.)
| | - Mohammad Shahul Hameed
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sharaz Shaik
- Department of Prosthetic Dentistry, Lenora Institute of Dental Sciences, Rajahmundry 533101, India;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| |
Collapse
|
3
|
Abstract
Purpose: Spinal cord injury-related pain is often a severe debilitating condition that adversely affects the patient's physical health, psychological wellbeing and quality of life. Opioid medications have historically been prescribed to this population with great frequency. As opioid abuse disorder becomes an ever-worsening public health issue, more attention must be placed upon non-opioid options. This paper reviews non-opioid medications to be considered when treating spinal cord injury-related pain. The pertinent literature is reviewed, and the advantages and pitfalls of various medication options are discussed in the complicated context of the individual with a spinal cord injury.Methods: Peer-reviewed journal articles and medication package insert data are reviewed.Results:. The non-opioid medications with the greatest evidence for efficacy in the treatment of chronic spinal cord injury-related pain are drawn from the antiepileptic drug and antidepressant categories though the specific selection must be nuanced to the particular individual patient. More research is required to understand the role of calcitonin, lithium, and marijuana in treating spinal cord injury-related pain.Conclusions: The complex clinical situation of each individual patient must be weighed against the risks and benefits of each medication, as reviewed in this paper, to determine the ideal treatment strategy for chronic spinal cord injury-related pain.
Collapse
Affiliation(s)
- Mendel Kupfer
- Rehabilitation Medicine, Magee Rehabilitation Hospital/Thomas Jefferson University, Philadelphia, Pennsylvania, USA,Correspondence to: Mendel Kupfer, Rehabilitation Medicine, Magee Rehabilitation Hospital/Thomas Jefferson University, 1513 Race St., Philadelphia, Pennsylvania19102, USA.
| | - Christopher S. Formal
- Rehabilitation Medicine, Magee Rehabilitation Hospital/Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Sloan G, Alam U, Selvarajah D, Tesfaye S. The Treatment of Painful Diabetic Neuropathy. Curr Diabetes Rev 2022; 18:e070721194556. [PMID: 34238163 DOI: 10.2174/1573399817666210707112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Painful diabetic peripheral neuropathy (painful-DPN) is a highly prevalent and disabling condition, affecting up to one-third of patients with diabetes. This condition can have a profound impact resulting in a poor quality of life, disruption of employment, impaired sleep, and poor mental health with an excess of depression and anxiety. The management of painful-DPN poses a great challenge. Unfortunately, currently there are no Food and Drug Administration (USA) approved disease-modifying treatments for diabetic peripheral neuropathy (DPN) as trials of putative pathogenetic treatments have failed at phase 3 clinical trial stage. Therefore, the focus of managing painful- DPN other than improving glycaemic control and cardiovascular risk factor modification is treating symptoms. The recommended treatments based on expert international consensus for painful- DPN have remained essentially unchanged for the last decade. Both the serotonin re-uptake inhibitor (SNRI) duloxetine and α2δ ligand pregabalin have the most robust evidence for treating painful-DPN. The weak opioids (e.g. tapentadol and tramadol, both of which have an SNRI effect), tricyclic antidepressants such as amitriptyline and α2δ ligand gabapentin are also widely recommended and prescribed agents. Opioids (except tramadol and tapentadol), should be prescribed with caution in view of the lack of definitive data surrounding efficacy, concerns surrounding addiction and adverse events. Recently, emerging therapies have gained local licenses, including the α2δ ligand mirogabalin (Japan) and the high dose 8% capsaicin patch (FDA and Europe). The management of refractory painful-DPN is difficult; specialist pain services may offer off-label therapies (e.g. botulinum toxin, intravenous lidocaine and spinal cord stimulation), although there is limited clinical trial evidence supporting their use. Additionally, despite combination therapy being commonly used clinically, there is little evidence supporting this practise. There is a need for further clinical trials to assess novel therapeutic agents, optimal combination therapy and existing agents to determine which are the most effective for the treatment of painful-DPN. This article reviews the evidence for the treatment of painful-DPN, including emerging treatment strategies such as novel compounds and stratification of patients according to individual characteristics (e.g. pain phenotype, neuroimaging and genotype) to improve treatment responses.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine and the Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, and Liverpool University Hospital, NHS Foundation Trust, Liverpool, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
5
|
Treatments that are perceived to be helpful for non-neuropathic pain after traumatic spinal cord injury: a multicenter cross-sectional survey. Spinal Cord 2021; 59:520-528. [PMID: 33742116 DOI: 10.1038/s41393-021-00621-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
STUDY DESIGN Cross-sectional survey. OBJECTIVES The objective of the study was to identify the treatments that people with traumatic spinal cord injury (SCI) used for their non-neuropathic pains (nonNeuPs) and how they subjectively rated the helpfulness of those treatments. SETTING Six centers from the Spinal Cord Injury Model Systems. METHODS Three hundred ninety one individuals who were at least 1-year post-traumatic SCI were enrolled. A telephone survey was conducted for pharmacologic and non-pharmacologic treatments utilized in the last 12 months for each participant's three worst pains and the perceived helpfulness of each treatment for each pain. RESULTS One hundred ninety (49%) participants reported at least one nonNeuP (Spinal Cord Injury Pain Instrument score < 2) in the previous 7 days. NSAIDs/aspirin, acetaminophen, opioids, and cannabinoids were the most commonly used and helpful pharmacologic treatments for overall nonNeuP locations (helpful in 77-89% of treated pains). Body position adjustment, passive exercise, massage, resistive exercise, and heat therapy were reported as the most commonly used non-pharmacological treatments for nonNeuPs. Heat therapy, aerobic exercise, massage, and body position adjustment were the most helpful non-pharmacological treatments for overall nonNeuP locations (helpful in 71-80% of treated pains). Perceived helpfulness of treatments varied by pain locations, which may be due to different mechanisms underlying pains in different locations. CONCLUSIONS Results of the study may help guide clinicians in selecting pain-specific treatments for nonNeuPs. The self-reported helpfulness of heat therapy, exercise, and massage suggests a possible direction for clinical trials investigating these treatments of nonNeuP while limiting the side effects accompanying pharmacologic treatments.
Collapse
|
6
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Letizia Mauro G, Lauricella L, Vecchio M, Tomasello S, Scaturro D. Efficacy and tolerability of a fixed dose combination of cortex phospholipid liposomes and cyanocobalamin for intramuscular use in peripheral neuropathies. Minerva Med 2019; 110:455-463. [PMID: 31368292 DOI: 10.23736/s0026-4806.19.06068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peripheral neuropathies are frequently encountered in clinical practice and are associated with a major impairment in quality of life. However, their management remains poor, and current therapies are often burdened with major side effects and can present poor efficacy on pain and functionality. Therefore, it has been suggested that the combination of two or more different drugs may improve analgesic efficacy and reduce side effects. Tricortin® 1000 is formulated with 12 mg of Brain cortex phospholipid liposomes + 1000 µg of Cyanocobalamin injectable solution (PL+CNCbl) for intramuscular use and is indicated in the treatment of poly-algo-neuropathic syndromes. This combination exerts a marked neurotrophic action by promoting the synthesis of endogenous phospholipids; moreover, the peculiar formulation optimizes the delivery of CNCbl which has analgesic and neurotrophic action. This paper discusses the pharmacotherapy of peripheral neuropathies, including low-back pain, neck pain, postherpetic neuropathy (PHN) and focuses on the fixed dose combination PL+CNCbl clinical efficacy in association with other treatments or in monotherapy.
Collapse
Affiliation(s)
- Giulia Letizia Mauro
- Department of Surgery, Oncology, and Stomatology, University of Palermo, Palermo, Italy -
| | - Lorenza Lauricella
- Department of Surgery, Oncology, and Stomatology, University of Palermo, Palermo, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Dalila Scaturro
- Department of Surgery, Oncology, and Stomatology, University of Palermo, Palermo, Italy
| |
Collapse
|