1
|
Wang S, Xie O, Wu M, Xiang H, Tan C, Wan X. Cost-effectiveness of atezolizumab plus bevacizumab as first-line therapy for metastatic renal cell carcinoma. Expert Rev Pharmacoecon Outcomes Res 2024:1-6. [PMID: 39215475 DOI: 10.1080/14737167.2024.2399246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Recently, the IMmotion151 trial evaluated the safety and efficacy of atezolizumab plus bevacizumab in metastatic renal cell carcinoma (mRCC) and found that this combination led to longer progression-free survival. However, no studies have evaluated the cost-effectiveness of atezolizumab plus bevacizumab. METHODS We constructed a Markov model to evaluate the cost-effectiveness of atezolizumab plus bevacizumab, using costs and utilities from the published studies. We set the willingness-to-pay (WTP) threshold at $150,000. One-way and probabilistic sensitivity analyses were performed to ensure that our results were robust. We performed a threshold analysis to explore a more appropriate price for atezolizumab. RESULTS Our results found that although atezolizumab plus bevacizumab provided more quality-adjusted life years (QALYs), its incremental cost-effectiveness ratio (ICER) was $1,640,532/QALY, well above the WTP threshold. One-way and probabilistic sensitivity analysis results confirmed the robust of this conclusion. Based on the threshold analysis, for atezolizumab plus bevacizumab to be cost-effective, the price of them would need to be reduced by 46.3% or more. CONCLUSIONS From the perspective of US payers, atezolizumab plus bevacizumab is not cost-effective for mRCC patients. To make this combination cost-effective in the future, the price of atezolizumab and bevacizumab needs to be reduced.
Collapse
Affiliation(s)
- Siying Wang
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Ouyang Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Meiyu Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Heng Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Chongqing Tan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Xiaomin Wan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Nwankwo OC, Lara-Salazar FM, Lara-Salazar S, Abdulrahim AO, Chijioke I, Singh J, Koradia I, Gomez NM, Prakash R, Gopagoni R, Joshi M, Rai M. Immune Checkpoint Inhibitors in Cancer Treatment and Incidence of Pancreatitis. Cureus 2024; 16:e68043. [PMID: 39347217 PMCID: PMC11433468 DOI: 10.7759/cureus.68043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are an approved therapy for the management of various advanced neoplasms. Limited reviews focus on the influence of this therapy resulting in pancreatitis. This review discusses the relationship between ICIs and their effects on the pancreas, including the incidence of pancreatitis, immunotherapy, programmed cell death 1 (PD-1) receptors, driver mutations, programmed death ligand 1 (PD-L1), and immune-related adverse events. Additionally, it focuses on the clinical presentations, diagnosis, case studies, and mechanisms by which ICIs activate different pathways to cause pancreatitis. We conducted a comprehensive literature search using PubMed, Cochrane Library, and Google Scholar databases to identify relevant studies on ICI-associated pancreatitis. The review explores the incidence and epidemiology of ICI-induced pancreatitis, its clinical presentation, diagnostic criteria, and management strategies.The overall incidence of ICI-induced pancreatitis is estimated at 1-2%, with higher rates observed in combination therapy. Clinical presentations range from asymptomatic enzyme elevations to severe pancreatitis. Diagnosis relies on a combination of clinical symptoms, elevated pancreatic enzymes, and imaging findings, with MRI and endoscopic ultrasound showing promise in early detection. Management strategies include IV fluid administration, pain control, and nutritional support. The efficacy of corticosteroids remains controversial, and alternative immunosuppressants are being explored for steroid-refractory cases. Long-term monitoring is crucial due to the risk of chronic pancreatitis and pancreatic insufficiency. This review highlights the need for further research to elucidate the exact mechanisms of ICI-associated pancreatic injury, develop predictive biomarkers, and refine treatment protocols. As ICI use continues to expand, a thorough understanding of this adverse event is essential for optimizing patient care and outcomes in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Santiago Lara-Salazar
- Internal Medicine, Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Guadalajara, MEX
| | | | - Ijeoma Chijioke
- Internal Medicine, Ross University School of Medicine, Bridgetown, BRB
| | - Jyoti Singh
- Surgery, King George's Medical College, Lucknow, IND
| | - Ikhlaq Koradia
- Internal Medicine, Rajiv Gandhi Medical College, Thane, IND
| | - Nicole M Gomez
- Medicine, Universidad Iberoamericana, Santo Domingo, DOM
| | - Rohit Prakash
- Orthopaedics and Trauma, Medway NHS Foundation Trust, Gillingham, GBR
| | - Ragini Gopagoni
- Internal Medicine, Malla Reddy institute of Medical Sciences, Hyderabad, IND
| | - Megha Joshi
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Manju Rai
- Biotechnology, Shri Venkateshwara University, Gajraula, IND
| |
Collapse
|
3
|
Yang S, Yang X, Hou Z, Zhu L, Yao Z, Zhang Y, Chen Y, Teng J, Fang C, Chen S, Jia M, Liu Z, Kang S, Chen Y, Li G, Niu Y, Cai Q. Rationale for immune checkpoint inhibitors plus targeted therapy for advanced renal cell carcinoma. Heliyon 2024; 10:e29215. [PMID: 38623200 PMCID: PMC11016731 DOI: 10.1016/j.heliyon.2024.e29215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Renal cell carcinoma (RCC) is a frequent urological malignancy characterized by a high rate of metastasis and lethality. The treatment strategy for advanced RCC has moved through multiple iterations over the past three decades. Initially, cytokine treatment was the only systemic treatment option for patients with RCC. With the development of medicine, antiangiogenic agents targeting vascular endothelial growth factor and mammalian target of rapamycin and immunotherapy, immune checkpoint inhibitors (ICIs) have emerged and received several achievements in the therapeutics of advanced RCC. However, ICIs have still not brought completely satisfactory results due to drug resistance and undesirable side effects. For the past years, the interests form researchers have been attracted by the combination of ICIs and targeted therapy for advanced RCC and the angiogenesis and immunogenic tumor microenvironmental variations in RCC. Therefore, we emphasize the potential principle and the clinical progress of ICIs combined with targeted treatment of advanced RCC, and summarize the future direction.
Collapse
Affiliation(s)
- Siwei Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xianrui Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zekai Hou
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Liang Zhu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhili Yao
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Yanzhuo Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jie Teng
- Affiliated Hospital of Hebei University, Baoding, China
| | - Cheng Fang
- Taihe County People's Hospital, Anhui, China
| | - Songmao Chen
- Department of Urology, Fujian Provincial Hospital, Fujian, China
- Provincial Clinical Medical College of Fujian Medical University, Fujian, China
| | - Mingfei Jia
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Zhifei Liu
- Department of Urology, Tangshan People's Hospital, Hebei, China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Yegang Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiliang Cai
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Heravi G, Liu Z, Herroon M, Wilson A, Fan YY, Jiang Y, Vakeesan N, Tao L, Peng Z, Zhang K, Li J, Chapkin RS, Podgorski I, Liu W. Targeting Fatty Acid Desaturase I Inhibits Renal Cancer Growth Via ATF3-mediated ER Stress Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586426. [PMID: 38586033 PMCID: PMC10996531 DOI: 10.1101/2024.03.23.586426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Monounsaturated fatty acids (MUFAs) play a pivotal role in maintaining endoplasmic reticulum (ER) homeostasis, an emerging hallmark of cancer. However, the role of polyunsaturated fatty acid (PUFAs) desaturation in persistent ER stress driven by oncogenic abnormalities remains elusive. Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain PUFAs. Our previous research has demonstrated the significant role of FADS1 in cancer survival, especially in kidney cancers. We explored the underlying mechanism in this study. We found that pharmacological inhibition or knockdown of the expression of FADS1 effectively inhibits renal cancer cell proliferation and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo. Mechanistically, we show that while FADS1 inhibition induces ER stress, its expression is also augmented by ER-stress inducers. Notably, FADS1-inhibition sensitized cellular response to ER stress inducers, providing evidence of FADS1's role in modulating the ER stress response in cancer cells. We show that, while FADS1 inhibition-induced ER stress leads to activation of ATF3, ATF3-knockdown rescues the FADS1 inhibition-induced ER stress and cell growth suppression. In addition, FADS1 inhibition results in the impaired biosynthesis of nucleotides and decreases the level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response. Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Zhenjie Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexis Wilson
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Yang-Yi Fan
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
| | - Yang Jiang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Nivisa Vakeesan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Tao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Jing Li
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Robert S. Chapkin
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Feng YN, Xie GY, Xiao L, Mo DC, Huang JF, Luo PH, Liang XJ. Severe and fatal adverse events of immune checkpoint inhibitor combination therapy in patients with metastatic renal cell carcinoma: a systematic review and meta-analysis. Front Immunol 2023; 14:1196793. [PMID: 37404816 PMCID: PMC10315618 DOI: 10.3389/fimmu.2023.1196793] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Immune checkpoint inhibitor (ICI) combination therapy has changed the treatment landscape for metastatic renal cell carcinoma (mRCC). However, little evidence exists on the treatment-related severe adverse events (SAEs) and fatal adverse events (FAEs) of ICI combination therapy in mRCC. Method We searched PubMed, Embase, and Cochrane Library databases to evaluate randomized controlled trials (RCTs) of ICI combination therapy versus conventional tyrosine kinase inhibitor (TKI)-targeted therapy in mRCC. Data on SAEs and FAEs were analyzed using revman5.4 software. Results Eight RCTs (n=5380) were identified. The analysis showed no differences in SAEs (60.5% vs. 64.5%) and FAEs (1.2% vs. 0.8%) between the ICI and TKI groups (odds ratio [OR], 0.83; 95%CI 0.58-1.19, p=0.300 and OR, 1.54; 95%CI 0.89-2.69, p=0.120, respectively). ICI-combination therapy was associated with less risk of hematotoxicities, including anemia (OR, 0.24, 95%CI 0.15-0.38, p<0.001), neutropenia (OR, 0.07, 95%CI 0.03-0.14, p<0.001), and thrombocytopenia (OR, 0.05, 95%CI 0.02-0.12, p<0.001), but with increased risks of hepatotoxicities (ALT increase [OR, 3.39, 95%CI 2.39-4.81, p<0.001] and AST increase [OR, 2.71, 95%CI 1.81-4.07, p<0.001]), gastrointestinal toxicities (amylase level increase [OR, 2.32, 95%CI 1.33-4.05, p=0.003] and decreased appetite [OR, 1.77, 95%CI 1.08-2.92, p=0.020]), endocrine toxicity (adrenal insufficiency [OR, 11.27, 95%CI 1.55-81.87, p=0.020]) and nephrotoxicity of proteinuria (OR, 2.21, 95%CI 1.06-4.61, p=0.030). Conclusions Compared with TKI, ICI combination therapy has less hematotoxicity in mRCC but more specific hepatotoxicity, gastrointestinal toxicity, endocrine toxicity, and nephrotoxicity, with a similar severe toxicity profile. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023412669.
Collapse
Affiliation(s)
- Yao-Ning Feng
- Urology Surgery Department, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guang-Yu Xie
- Urology Surgery Department, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Xiao
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dun-Chang Mo
- Radiotherapy Department, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Feng Huang
- Radiotherapy Department, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peng-Hui Luo
- Radiotherapy Department, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiu-Juan Liang
- Radiotherapy Department, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Comprehensive Analysis of Transcriptomic Profiles Identified the Prediction of Prognosis and Drug Sensitivity of Aminopeptidase-Like 1 (NPEPL1) for Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4732242. [PMID: 36816355 PMCID: PMC9931475 DOI: 10.1155/2023/4732242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 02/10/2023]
Abstract
Aminopeptidase-like 1 (NPEPL1) is a member of the aminopeptidase group that plays a role in the development and progression of various diseases. Expression of NPEPL1 has been reported to be involved in prostate, breast, and colorectal cancers. However, the role and mechanism of NPEPL1 in clear cell renal cell carcinoma (ccRCC) are unclear. The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) databases were used to predict the relationship between clinicopathological features and NPEPL1 expression. Changes in immune status and drug sensitivity with NPEPL1 expression were analyzed by the "CIBERSORT" function in R software. The results found that NPEPL1 expression was upregulated in ccRCC tissues, with expression progressively increasing with ccRCC stage and grade. Patients with high NPEPL1 expression presented with a poor prognosis across different clinicopathological features. Univariate and multivariate Cox regression analyses indicated that aberrant NPEPL1 expression was an independent risk factor for ccRCC. The nomogram showed that NPEPL1 expression improved the accuracy of predicting the prognosis of ccRCC patients. The Gene Ontology (GO) term enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that NPEPL1 may be involved in the development of ccRCC through the voltage-gated calcium channel complex, channel activity, cAMP signaling pathway, and oxytocin signaling pathway. The coexpression analysis found that NPEPL1 altered tumor characteristics by interacting with related genes. The "CIBERSORT" analysis showed that elevated NPEPL1 expression was followed by an enrichment of regulatory T cells and follicular helper T cells in the microenvironment. The drug sensitivity analysis found patients with high NPEPL1 expression had a higher benefit from axitinib, cisplatin, and GSK429286A. In conclusion, upregulation of NPEPL1 expression was involved in ccRCC prognosis and treatment. NPEPL1 could be used as a therapeutic target to guide clinical dosing.
Collapse
|
7
|
Beirat AF, Menakuru SR, Khan I, Siddiqui S. Pathological Complete Response of Metastatic Clear Cell Renal Carcinoma with Pembrolizumab and Axitinib: A Case Report and Review of Literature. Case Rep Oncol 2023; 16:30-35. [PMID: 36743880 PMCID: PMC9896169 DOI: 10.1159/000529124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The role of cytoreductive nephrectomy has become unclear since the introduction of immunotherapy which is now the backbone of the treatment for metastatic renal cell carcinoma. Different combinations are used based on the prognosis. Achieving a complete response would be ideal and includes radiographic disappearance of lesions. However, there have been a few reported cases of pathological complete response with persistent radiographic evidence of cancer. The authors report a case of pathological complete response despite persistent radiographic evidence of residual disease in a patient with metastatic renal cell carcinoma treated with pembrolizumab and axitinib. The patient subsequently underwent cytoreductive nephrectomy after the 13th dose of pembrolizumab. The resected mass consisted of scar tissue with no viable tumor cells seen on pathology but only scar tissue. This case reveals that persistent radiographic evidence of the tumor may be explained by scar tissue, challenging the role of cytoreductive nephrectomy in the era of immunotherapy.
Collapse
Affiliation(s)
- Amir F. Beirat
- Internal Medicine, Indiana University School of Medicine, Ball Memorial Hospital, Muncie, IN, USA
| | - Sasmith R. Menakuru
- Internal Medicine, Indiana University School of Medicine, Ball Memorial Hospital, Muncie, IN, USA
| | - Ibrahim Khan
- Internal Medicine, Indiana University School of Medicine, Ball Memorial Hospital, Muncie, IN, USA
| | - Salahuddin Siddiqui
- Hematology-Oncology, Indiana University School of Medicine, Ball Memorial Hospital, Muncie, IN, USA
| |
Collapse
|
8
|
NFE2L3 as a Potential Functional Gene Regulating Immune Microenvironment in Human Kidney Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9085186. [DOI: 10.1155/2022/9085186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
With the increasing incidence and mortality of renal cancer, it is pressing to find new biomarkers and drug targets for diagnosis and treatment. However, as one negative upstream regulator of p53, the prognostic and immunological role of NFE2L3 in renal cancer is still barely known. We investigated the expression, prognostic value, and relevant pathways of NFE2L3 using the datasets from public databases, including The Cancer Genome Atlas Program (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and UALCAN. Furthermore, we analyzed the relationship between NFE2L3 expression and the immune microenvironment using distinct methods. We found that NFE2L3 was higher expressed in kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) tissues than adjacent normal tissues. Additionally, we identified NFE2L3 as one survival-related factor for KIRC and KIRP. The enrichment analyses revealed that NFE2L3 was associated with a variety of immune-relevant pathways in KIRC and related to the infiltration ratios of 17 types of immune cells in KIRC patients. Ultimately, we demonstrated nine significantly enriched mutations, such as TP53 and MET, in NFE2L3-expression-changing groups. The elevated expression of NFE2L3 in renal cancerous tissues versus normal tissues is associated with poor outcomes in patients. Besides, NFE2L3 has a role in the regulation of the immune microenvironment in renal cancer patients. The findings of our study provide a potential prognostic biomarker and a new drug target for renal cancer.
Collapse
|
9
|
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev 2022; 41:17-31. [PMID: 34741716 PMCID: PMC10045462 DOI: 10.1007/s10555-021-09996-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Omid Yazdanpanah
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Larry H Matherly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA. .,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
10
|
Zhang G, Zhang L, Sun S, Chen M. Identification of a Novel Defined Immune-Autophagy-Related Gene Signature Associated With Clinical and Prognostic Features of Kidney Renal Clear Cell Carcinoma. Front Mol Biosci 2022; 8:790804. [PMID: 34988121 PMCID: PMC8721006 DOI: 10.3389/fmolb.2021.790804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: As a common cancer of the urinary system in adults, renal clear cell carcinoma is metastatic in 30% of patients, and 1-2 years after diagnosis, 60% of patients die. At present, the rapid development of tumor immunology and autophagy had brought new directions to the treatment of renal cancer. Therefore, it was extremely urgent to find potential targets and prognostic biomarkers for immunotherapy combined with autophagy. Methods: Through GSE168845, immune-related genes, autophagy-related genes, and immune-autophagy-related differentially expressed genes (IAR-DEGs) were identified. Independent prognostic value of IAR-DEGs was determined by differential expression analysis, prognostic analysis, and univariate and multivariate Cox regression analyses. Then, the lasso Cox regression model was established to evaluate the correlation of IAR-DEGs with the immune score, immune checkpoint, iron death, methylation, and one-class logistic regression (OCLR) score. Results: In this study, it was found that CANX, BID, NAMPT, and BIRC5 were immune-autophagy-related genes with independent prognostic value, and the risk prognostic model based on them was well constructed. Further analysis showed that CANX, BID, NAMPT, and BIRC5 were significantly correlated with the immune score, immune checkpoint, iron death, methylation, and OCLR score. Further experimental results were consistent with the bioinformatics analysis. Conclusion: CANX, BID, NAMPT, and BIRC5 were potential targets and effective prognostic biomarkers for immunotherapy combined with autophagy in kidney renal clear cell carcinoma.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.,Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Wulff-Burchfield E. Supportive and Palliative Care for Genitourinary Malignancies. Urol Oncol 2022. [DOI: 10.1007/978-3-030-89891-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Xu W, Anwaier A, Ma C, Liu W, Tian X, Su J, Zhu W, Shi G, Wei S, Xu H, Qu Y, Ye D, Zhang H. Prognostic Immunophenotyping Clusters of Clear Cell Renal Cell Carcinoma Defined by the Unique Tumor Immune Microenvironment. Front Cell Dev Biol 2021; 9:785410. [PMID: 34938737 PMCID: PMC8685518 DOI: 10.3389/fcell.2021.785410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The tumor microenvironment affects the occurrence and development of cancers, including clear cell renal cell carcinoma (ccRCC). However, how the immune contexture interacts with the cancer phenotype remains unclear. Methods: We identified and evaluated immunophenotyping clusters in ccRCC using machine-learning algorithms. Analyses for functional enrichment, DNA variation, immune cell distribution, association with independent clinicopathological features, and predictive responses for immune checkpoint therapies were performed and validated. Results: Three immunophenotyping clusters with gradual levels of immune infiltration were identified. The intermediate and high immune infiltration clusters (Clusters B and C) were associated with a worse prognosis for ccRCC patients. Tumors in the immune-hot Clusters B and C showed pro-tumorigenic immune infiltration, and these patients showed significantly worse survival compared with patients in the immune-cold Cluster A in the training and testing cohorts (n = 422). In addition to distinct immune cell infiltrations of immunophenotyping, we detected significant differences in DNA variation among clusters, suggesting a high degree of genetic heterogeneity. Furthermore, expressions of multiple immune checkpoint molecules were significantly increased. Clusters B and C predicted favorable outcomes in 64 ccRCC patients receiving immune checkpoint therapies from the FUSCC cohort. In 360 ccRCC patients from the FUSCC validation cohort, Clusters B and C significantly predicted worse prognosis compared with Cluster A. After immunophenotyping of ccRCC was confirmed, significantly increased tertiary lymphatic structures, aggressive phenotype, elevated glycolysis and PD-L1 expression, higher abundance of CD8+ T cells, and TCRn cell infiltration were found in the immune-hot Clusters B and C. Conclusion: This study described immunophenotyping clusters that improved the prognostic accuracy of the immune contexture in the ccRCC microenvironment. Our discovery of the novel independent prognostic indicators in ccRCC highlights the relationship between tumor phenotype and immune microenvironment.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunguang Ma
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangrui Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqi Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenkai Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hong Xu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Shpilsky J, Catalano PJ, McDermott DF. First-Line Immunotherapy Combinations in Advanced Renal Cell Carcinoma: A Rapid Review and Meta-Analysis. KIDNEY CANCER 2021. [DOI: 10.3233/kca-210120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND: Combination or multi-agent therapy including immune checkpoint inhibitors has shifted the landscape of the treatment of advanced/metastatic renal cell carcinoma. There are several approved immune checkpoint inhibitor (ICI) combinations featuring antibodies against programmed cell death protein 1 (PD-1) receptor or its ligand 1 (PD-L1) combined with other immune checkpoint inhibitors, multi-targeted tyrosine kinase inhibitors (TKIs), or other agents active in renal cell carcinoma. OBJECTIVE: This study aims to compile the evidence of available first-line combination therapies compared to sunitinib monotherapy in advanced renal cell carcinoma. METHODS: A systematic literature search was conducted according to the PRISMA statement to identify all randomized Phase III clinical trial data in previously untreated metastatic renal cell carcinoma featuring an immune checkpoint inhibitor combination compared against sunitinib. A two-stage selection process was utilized to determine eligible studies. Of a total of 124 studies and 94 additional abstracts, 6 studies were considered for final analysis. These studies were evaluated for progression free survival (PFS), overall survival (OS), Grade III or higher adverse events (AEs), objective response rate (ORR), and complete response rate (CRR). RESULTS: 6 studies with 5,121 patients met our search criteria. For OS, ICI combination therapy was favored over sunitinib with an estimated combined hazard ratio of 0.74 (0.67–0.81 95% CI). For PFS, ICI combination therapy was favored over sunitinib with an estimated combined hazard ratio of 0.65 (0.52–0.82, 95% CI). The combination of nivolumab and ipilimumab had the longest duration of response and less incidence of grade III or higher adverse events compared to the combination of anti-PD-1/PD-L1 with TKI. The combination of anti-PD-1/PD-L1 with TKI had higher rates of overall response and longer PFS than the combination of nivolumab/ipilimumab. CONCLUSIONS: This meta-analysis supports the recommendation of immune checkpoint inhibitor combination therapy over sunitinib monotherapy for previously untreated advanced renal cell carcinoma by virtue of improved PFS and OS. The choice of which ICI combination therapy to use may be guided by patient-specific characteristics including IMDC risk status, adverse effect profile, and need for early response.
Collapse
Affiliation(s)
- Jason Shpilsky
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Paul J. Catalano
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - David F. McDermott
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Dana Farber/Harvard Cancer Center Kidney Cancer Program, Boston, MA, USA
| |
Collapse
|
14
|
Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 2021; 40:4625-4651. [PMID: 34145400 DOI: 10.1038/s41388-021-01863-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This review provides a comprehensive landscape of HGF/c-MET (hepatocyte growth factor (HGF) /mesenchymal-epithelial transition factor (c-MET)) signaling pathway in cancers. First, we generalize the compelling influence of HGF/c-MET pathway on multiple cellular processes. Then, we present the genomic characterization of HGF/c-MET pathway in carcinogenesis. Furthermore, we extensively illustrate the malignant biological behaviors of HGF/c-MET pathway in cancers, in which hyperactive HGF/c-MET signaling is considered as a hallmark. In addition, we investigate the current clinical trials of HGF/c-MET-targeted therapy in cancers. We find that although HGF/c-MET-targeted therapy has led to breakthroughs in certain cancers, monotherapy of targeting HGF/c-MET has failed to demonstrate significant clinical efficacy in most cancers. With the advantage of the combinations of HGF/c-MET-targeted therapy, the exploration of more options of combinational targeted therapy in cancers may be the major challenge in the future.
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Zhihua Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiawei Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| |
Collapse
|
15
|
Frey L, Klümper N, Schmidt D, Kristiansen G, Toma M, Ritter M, Alajati A, Ellinger J. CircEHD2, CircNETO2 and CircEGLN3 as Diagnostic and Prognostic Biomarkers for Patients with Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13092177. [PMID: 33946584 PMCID: PMC8124893 DOI: 10.3390/cancers13092177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Circular RNA (circRNA) plays an important role in cancer, but little is known about its role in clear cell renal cell carcinoma (ccRCC). The study was designed to analyze the role of circRNAs in ccRCC. We show that circEHD2, circENGLN3, and circNETO2 are upregulated in ccRCC compared with non-malignant renal tissue. Increased circEHD2 levels were significant and independent predictors of progression-free and cancer-specific survival of ccRCC patients. Thus, the analysis of circRNAs may be of diagnostic and prognostic relevance in patients with ccRCC. Abstract Background: Circular RNA (circRNA) plays an important role in the carcinogenesis of various tumors. It is assumed that circRNAs have a high tissue and tumor specificity, thus they are discussed as cancer biomarkers. The knowledge about circRNAs in clear cell renal carcinoma (ccRCC) is limited so far, and thus we studied the expression profile of seven circRNAs (circCOL5A1, circEHD2, circEDEM2, circEGNL3, circNETO2, circSCARB1, circSOD2) in a cohort of ccRCC patients. Methods: Fresh-frozen normal and cancerous tissues were prospectively collected from patients with ccRCC undergoing partial/radical nephrectomy. Total RNA was isolated from 121 ccRCC and 91 normal renal tissues, and the circRNA expression profile was determined using quantitative real-time PCR. Results: circEHD2, circENGLN3, and circNETO2 were upregulated in ccRCC compared with non-malignant renal tissue. circENGLN3 expression was highly discriminative between normal and cancerous tissue. None of the circRNAs was correlated with clinicopathological parameters. High circEHD2 and low circNETO2 levels were an independent predictor of a shortened progression-free survival, cancer-specific survival, and overall survival in patients with ccRCC undergoing nephrectomy. Conclusions: The analysis of circRNAs may provide diagnostic and prognostic information. Thus, circRNAs could help to optimize the individual treatment and ultimately improve ccRCC patients’ survival.
Collapse
Affiliation(s)
- Lisa Frey
- Department of Urology, University Hospital Bonn, 53127 Bonn, Germany; (L.F.); (N.K.); (D.S.); (M.R.); (A.A.)
| | - Niklas Klümper
- Department of Urology, University Hospital Bonn, 53127 Bonn, Germany; (L.F.); (N.K.); (D.S.); (M.R.); (A.A.)
| | - Doris Schmidt
- Department of Urology, University Hospital Bonn, 53127 Bonn, Germany; (L.F.); (N.K.); (D.S.); (M.R.); (A.A.)
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (G.K.); (M.T.)
| | - Marieta Toma
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (G.K.); (M.T.)
| | - Manuel Ritter
- Department of Urology, University Hospital Bonn, 53127 Bonn, Germany; (L.F.); (N.K.); (D.S.); (M.R.); (A.A.)
| | - Abdullah Alajati
- Department of Urology, University Hospital Bonn, 53127 Bonn, Germany; (L.F.); (N.K.); (D.S.); (M.R.); (A.A.)
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, 53127 Bonn, Germany; (L.F.); (N.K.); (D.S.); (M.R.); (A.A.)
- Correspondence: ; Tel.: +49 228-287-14180; Fax: +49-228-287-14185
| |
Collapse
|
16
|
Hah YS, Koo KC. Immunology and Immunotherapeutic Approaches for Advanced Renal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22094452. [PMID: 33923219 PMCID: PMC8123195 DOI: 10.3390/ijms22094452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor associated with various tumor microenvironments (TMEs). The immune system is activated by the development of cancer and drives T cell anti-tumor response. CD8 T cells are known to improve clinical outcomes and sensitivity to immunotherapy, and play a crucial role against tumors. In contrast, tumor-associated macrophages (TAMs) suppress immunity against malignancy and lead to tumor progression. TAMs are promoted from damaged TMEs and mount proinflammatory responses to pathogens. Initial immunotherapy consists of interferon-α and interleukin-2. However, response to such therapy is unclear in most patients, and it is associated with high levels of toxicity. Immune checkpoint inhibitors (ICIs), which up-regulate immune responses by blocking the programed cell death protein 1 (PD-1) receptor, the ligand of PD-1, or cytotoxic T-lymphocyte-associated protein 4 T cells, have led to a new era of immunotherapy. Furthermore, combination strategies with ICIs have proven effective through several randomized controlled trials. We expect the next generation of immunotherapy to lead to better outcomes based on ongoing trials and inspire new therapeutic strategies.
Collapse
Affiliation(s)
- Yoon-Soo Hah
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu 42472, Korea;
| | - Kyo-Chul Koo
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Korea
- Correspondence: ; Tel.: +82-2-2019-3470
| |
Collapse
|
17
|
Krabbe LM. [Treatment of metastatic renal cell carcinoma using targeted therapy]. Urologe A 2020; 60:89-93. [PMID: 33373009 DOI: 10.1007/s00120-020-01424-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Laura-Maria Krabbe
- Klinik für Urologie und Kinderurologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland. .,UroEvidence@Deutsche Gesellschaft für Urologie, Berlin, Deutschland.
| |
Collapse
|
18
|
Hofmann F, Hwang EC, Lam TB, Bex A, Yuan Y, Marconi LS, Ljungberg B. Targeted therapy for metastatic renal cell carcinoma. Cochrane Database Syst Rev 2020; 10:CD012796. [PMID: 33058158 PMCID: PMC8094280 DOI: 10.1002/14651858.cd012796.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several comparative randomised controlled trials (RCTs) have been performed including combinations of tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors since the publication of a Cochrane Review on targeted therapy for metastatic renal cell carcinoma (mRCC) in 2008. This review represents an update of that original review. OBJECTIVES To assess the effects of targeted therapies for clear cell mRCC in patients naïve to systemic therapy. SEARCH METHODS We performed a comprehensive search with no restrictions on language or publication status. The date of the latest search was 18 June 2020. SELECTION CRITERIA We included randomised controlled trials, recruiting patients with clear cell mRCC naïve to previous systemic treatment. The index intervention was any TKI-based targeted therapy. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the included studies and extracted data for the primary outcomes: progression-free survival (PFS), overall survival (OS) and serious adverse events (SAEs); and the secondary outcomes: health-related quality of life (QoL), response rate and minor adverse events (AEs). We performed statistical analyses using a random-effects model and rated the certainty of evidence according to the GRADE approach. MAIN RESULTS We included 18 RCTs reporting on 11,590 participants randomised across 18 comparisons. This abstract focuses on the primary outcomes of select comparisons. 1. Pazopanib versus sunitinib Pazopanib may result in little to no difference in PFS as compared to sunitinib (hazard ratio (HR) 1.05, 95% confidence interval (CI) 0.90 to 1.23; 1 study, 1110 participants; low-certainty evidence). Based on the control event risk of 420 per 1000 in this trial at 12 months, this corresponds to 18 fewer participants experiencing PFS (95% CI 76 fewer to 38 more) per 1000 participants. Pazopanib may result in little to no difference in OS compared to sunitinib (HR 0.92, 95% CI 0.80 to 1.06; 1 study, 1110 participants; low-certainty evidence). Based on the control event risk of 550 per 1000 in this trial at 12 months, this corresponds to 27 more OSs (95% CI 19 fewer to 70 more) per 1000 participants. Pazopanib may result in little to no difference in SAEs as compared to sunitinib (risk ratio (RR) 1.01, 95% CI 0.94 to 1.09; 1 study, 1102 participants; low-certainty evidence). Based on the control event risk of 734 per 1000 in this trial, this corresponds to 7 more participants experiencing SAEs (95% CI 44 fewer to 66 more) per 1000 participants. 2. Sunitinib versus avelumab and axitinib Sunitinib probably reduces PFS as compared to avelumab plus axitinib (HR 1.45, 95% CI 1.17 to 1.80; 1 study, 886 participants; moderate-certainty evidence). Based on the control event risk of 550 per 1000 in this trial at 12 months, this corresponds to 130 fewer participants experiencing PFS (95% CI 209 fewer to 53 fewer) per 1000 participants. Sunitinib may result in little to no difference in OS (HR 1.28, 95% CI 0.92 to 1.79; 1 study, 886 participants; low-certainty evidence). Based on the control event risk of 890 per 1000 in this trial at 12 months, this would result in 29 fewer OSs (95% CI 78 fewer to 8 more) per 1000 participants. Sunitinib may result in little to no difference in SAEs (RR 1.01, 95% CI 0.93 to 1.10; 1 study, 873 participants; low-certainty evidence). Based on the control event risk of 705 per 1000 in this trial, this corresponds to 7 more SAEs (95% CI 49 fewer to 71 more) per 1000 participants. 3. Sunitinib versus pembrolizumab and axitinib Sunitinib probably reduces PFS as compared to pembrolizumab plus axitinib (HR 1.45, 95% CI 1.19 to 1.76; 1 study, 861 participants; moderate-certainty evidence). Based on the control event risk of 590 per 1000 in this trial at 12 months, this corresponds to 125 fewer participants experiencing PFS (95% CI 195 fewer to 56 fewer) per 1000 participants. Sunitinib probably reduces OS (HR 1.90, 95% CI 1.36 to 2.65; 1 study, 861 participants; moderate-certainty evidence). Based on the control event risk of 880 per 1000 in this trial at 12 months, this would result in 96 fewer OSs (95% CI 167 fewer to 40 fewer) per 1000 participants. Sunitinib may reduce SAEs as compared to pembrolizumab plus axitinib (RR 0.90, 95% CI 0.81 to 1.02; 1 study, 854 participants; low-certainty evidence) although the CI includes the possibility of no effect. Based on the control event risk of 604 per 1000 in this trial, this corresponds to 60 fewer SAEs (95% CI 115 fewer to 12 more) per 1000 participants. 4. Sunitinib versus nivolumab and ipilimumab Sunitinib may reduce PFS as compared to nivolumab plus ipilimumab (HR 1.30, 95% CI 1.11 to 1.52; 1 study, 847 participants; low-certainty evidence). Based on the control event risk of 280 per 1000 in this trial at 30 months' follow-up, this corresponds to 89 fewer PFSs (95% CI 136 fewer to 37 fewer) per 1000 participants. Sunitinib reduces OS (HR 1.52, 95% CI 1.23 to 1.89; 1 study, 847 participants; high-certainty evidence). Based on the control event risk 600 per 1000 in this trial at 30 months, this would result in 140 fewer OSs (95% CI 219 fewer to 67 fewer) per 1000 participants. Sunitinib probably increases SAEs (RR 1.37, 95% CI 1.22 to 1.53; 1 study, 1082 participants; moderate-certainty evidence). Based on the control event risk of 457 per 1000 in this trial, this corresponds to 169 more SAEs (95% CI 101 more to 242 more) per 1000 participants. AUTHORS' CONCLUSIONS Based on the low to high certainty of evidence, several combinations of immune checkpoint inhibitors appear to be superior to single-agent targeted therapy in terms of PFS and OS, and with a favourable AE profile. Some single-agent targeted therapies demonstrated a similar or improved oncological outcome compared to others; minor differences were observed for AE within this group. The certainty of evidence was variable ranging from high to very low and all comparisons were based on single trials.
Collapse
Key Words
- adult
- humans
- antibodies, monoclonal, humanized
- antibodies, monoclonal, humanized/adverse effects
- antibodies, monoclonal, humanized/therapeutic use
- antineoplastic agents
- antineoplastic agents/adverse effects
- antineoplastic agents/therapeutic use
- antineoplastic agents, immunological
- antineoplastic agents, immunological/therapeutic use
- axitinib
- axitinib/adverse effects
- axitinib/therapeutic use
- bevacizumab
- bevacizumab/adverse effects
- bevacizumab/therapeutic use
- bias
- carcinoma, renal cell
- carcinoma, renal cell/drug therapy
- carcinoma, renal cell/mortality
- everolimus
- everolimus/adverse effects
- everolimus/therapeutic use
- indazoles
- ipilimumab
- ipilimumab/adverse effects
- ipilimumab/therapeutic use
- kidney neoplasms
- kidney neoplasms/drug therapy
- kidney neoplasms/mortality
- kidney neoplasms/pathology
- phenylurea compounds
- phenylurea compounds/adverse effects
- phenylurea compounds/therapeutic use
- progression-free survival
- protein kinase inhibitors
- protein kinase inhibitors/adverse effects
- protein kinase inhibitors/therapeutic use
- pyrimidines
- pyrimidines/adverse effects
- pyrimidines/therapeutic use
- quality of life
- quinolines
- quinolines/adverse effects
- quinolines/therapeutic use
- randomized controlled trials as topic
- receptors, vascular endothelial growth factor
- receptors, vascular endothelial growth factor/antagonists & inhibitors
- sirolimus
- sirolimus/adverse effects
- sirolimus/analogs & derivatives
- sirolimus/therapeutic use
- sorafenib
- sorafenib/adverse effects
- sorafenib/therapeutic use
- sulfonamides
- sulfonamides/adverse effects
- sulfonamides/therapeutic use
- sunitinib
- sunitinib/adverse effects
- sunitinib/therapeutic use
Collapse
Affiliation(s)
- Fabian Hofmann
- Department of Urology, Sunderby Sjukhus, Umeå University, Luleå, Sweden
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea, South
| | - Thomas Bl Lam
- Academic Urology Unit, University of Aberdeen, Aberdeen, UK
| | - Axel Bex
- Department of Urology and UCL Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust, London, UK
| | - Yuhong Yuan
- Department of Medicine, Division of Gastroenterology, McMaster University, Hamilton, Canada
| | - Lorenzo So Marconi
- Department of Urology and Renal Transplantation, Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|