1
|
Fasano M, Pirozzi M, De Falco V, Miceli CC, Farese S, Zotta A, Famiglietti V, Vitale P, Di Giovanni I, Brancati C, Carfora V, Solari D, Somma T, Cavallo LM, Cappabianca P, Conson M, Pacelli R, Ciardiello F, Addeo R. Temozolomide based treatment in glioblastoma: 6 vs. 12 months. Oncol Lett 2024; 28:418. [PMID: 39006948 PMCID: PMC11240269 DOI: 10.3892/ol.2024.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 07/16/2024] Open
Abstract
The Stupp regimen remains the standard treatment for newly diagnosed glioblastomas, although the prognosis remains poor. Several temozolomide alternative schedules have been studied, with extended adjuvant treatment (>6 cycles of temozolomide) frequently used, although different trials have indicated contrasting results. Survival data of 87 patients who received 6 ('6C' group) or 12 ('12C' group) cycles of temozolomide were collected between 2012 and 2022. A total of 45 patients were included in the 6C group and 42 patients were included in the 12C group. Data on isocitrate dehydrogenase mutation and methylguanine-DNA-methyltransferase (MGMT) promoter methylation status were also collected. The 12C group exhibited statistically significantly improved overall survival [OS; 22.8 vs. 17.5 months; hazard ratio (HR), 0.47; 95% CI, 0.30-0.73; P=0.001] and progression-free survival (15.3 vs. 9 months; HR, 0.39; 95% CI, 0.25-0.62; P=0.001). However, in the subgroup analysis according to MGMT status, OS in the 12C group was significantly superior to OS in the 6C group only in the MGMT unmethylated tumors. The present data suggested that extended adjuvant temozolomide appeared to be more effective than the conventional six cycles.
Collapse
Affiliation(s)
- Morena Fasano
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Mario Pirozzi
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Vincenzo De Falco
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| | - Chiara Carmen Miceli
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Stefano Farese
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Alessia Zotta
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Vincenzo Famiglietti
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Pasquale Vitale
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| | - Ilaria Di Giovanni
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| | - Christian Brancati
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| | - Vincenzo Carfora
- Radiation Oncology Unit, Department of Radiation Oncology, 'San Pio' Hospital, I-82100 Benevento, Italy
| | - Domenico Solari
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Luigi Maria Cavallo
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Paolo Cappabianca
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Raffaele Addeo
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| |
Collapse
|
2
|
Brugada-Bellsolà F, Rodríguez PT, González-Crespo A, Menéndez-Girón S, Panisello CH, Garcia-Armengol R, Alonso CJD. Intraoperative ultrasound and magnetic resonance comparative analysis in brain tumor surgery: a valuable tool to flatten ultrasound's learning curve. Acta Neurochir (Wien) 2024; 166:337. [PMID: 39138764 DOI: 10.1007/s00701-024-06228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Intraoperative ultrasound (IOUS) is a profitable tool for neurosurgical procedures' assistance, especially in neuro-oncology. It is a rapid, ergonomic and reproducible technique. However, its known handicap is a steep learning curve for neurosurgeons. Here, we describe an interesting postoperative analysis that provides extra feedback after surgery, accelerating the learning process. METHOD We conducted a descriptive retrospective unicenter study including patients operated from intra-axial brain tumors using neuronavigation (Curve, Brainlab) and IOUS (BK-5000, BK medical) guidance. All patients had preoperative Magnetic Resonance Imaging (MRI) prior to tumor resection. During surgery, 3D neuronavigated IOUS studies (n3DUS) were obtained through craniotomy N13C5 transducer's integration to the neuronavigation system. At least two n3DUS studies were obtained: prior to tumor resection and at the resection conclusion. A postoperative MRI was performed within 48 h. MRI and n3DUS studies were posteriorly fused and analyzed with Elements (Brainlab) planning software, permitting two comparative analyses: preoperative MRI compared to pre-resection n3DUS and postoperative MRI to post-resection n3DUS. Cases with incomplete MRI or n3DUS studies were withdrawn from the study. RESULTS From April 2022 to March 2024, 73 patients were operated assisted by IOUS. From them, 39 were included in the study. Analyses comparing preoperative MRI and pre-resection n3DUS showed great concordance of tumor volume (p < 0,001) between both modalities. Analysis comparing postoperative MRI and post-resection n3DUS also showed good concordance in residual tumor volume (RTV) in cases where gross total resection (GTR) was not achieved (p < 0,001). In two cases, RTV detected on MRI that was not detected intra-operatively with IOUS could be reviewed in detail to recheck its appearance. CONCLUSIONS Post-operative comparative analyses between IOUS and MRI is a valuable tool for novel ultrasound users, as it enhances the amount of feedback provided by cases and could accelerate the learning process, flattening this technique's learning curve.
Collapse
Affiliation(s)
- Ferran Brugada-Bellsolà
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain.
| | - Pilar Teixidor Rodríguez
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Antonio González-Crespo
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Sebastián Menéndez-Girón
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Cristina Hostalot Panisello
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Roser Garcia-Armengol
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Carlos J Domínguez Alonso
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| |
Collapse
|
3
|
Frisk H, Persson O, Fagerlund M, Jensdottir M, El-Hajj VG, Burström G, Sunesson A, Kits A, Majing T, Edström E, Kaijser M, Elmi-Terander A. Intraoperative MRI without an intraoperative MRI suite: a workflow for glial tumor surgery. Acta Neurochir (Wien) 2024; 166:292. [PMID: 38985352 PMCID: PMC11236858 DOI: 10.1007/s00701-024-06165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Intraoperative MRI (iMRI) has emerged as a useful tool in glioma surgery to safely improve the extent of resection. However, iMRI requires a dedicated operating room (OR) with an integrated MRI scanner solely for this purpose. Due to physical or economical restraints, this may not be feasible in all centers. The aim of this study was to investigate the feasibility of using a non-dedicated MRI scanner at the radiology department for iMRI and to describe the workflow with special focus on time expenditure and surgical implications. METHODS In total, 24 patients undergoing glioma surgery were included. When the resection was deemed completed, the wound was temporarily closed, and the patient, under general anesthesia, was transferred to the radiology department for iMRI, which was performed using a dedicated protocol on 1.5 or 3 T scanners. After performing iMRI the patient was returned to the OR for additional tumor resection or final wound closure. All procedural times, timestamps, and adverse events were recorded. RESULT The median time from the decision to initiate iMRI until reopening of the wound after scanning was 68 (52-104) minutes. Residual tumors were found on iMRI in 13 patients (54%). There were no adverse events during the surgeries, transfers, transportations, or iMRI-examinations. There were no wound-related complications or infections in the postoperative period or at follow-up. There were no readmissions within 30 or 90 days due to any complication. CONCLUSION Performing intraoperative MRI using an MRI located outside the OR department was feasible and safe with no adverse events. It did not require more time than previously reported data for dedicated iMRI scanners. This could be a viable alternative in centers without access to a dedicated iMRI suite.
Collapse
Affiliation(s)
- Henrik Frisk
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Oscar Persson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Fagerlund
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Margret Jensdottir
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | | | - Gustav Burström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Sunesson
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Kits
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Majing
- Department of Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
- Capio Spine Center Stockholm, Löwenströmska Hospital, Stockholm, Sweden
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Magnus Kaijser
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
- Capio Spine Center Stockholm, Löwenströmska Hospital, Stockholm, Sweden
- Department of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Pichardo-Rojas PS, Zarate C, Arguelles-Hernández J, Barrón-Lomelí A, Sanchez-Velez R, Hjeala-Varas A, Gutierrez-Herrera E, Tandon N, Esquenazi Y. Intraoperative ultrasound for surgical resection of high-grade glioma and glioblastoma: a meta-analysis of 732 patients. Neurosurg Rev 2024; 47:120. [PMID: 38498065 DOI: 10.1007/s10143-024-02354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE Here, we conducted a meta-analysis to explore the use of intraoperative ultrasound (iUS)-guided resection in patients diagnosed with high-grade glioma (HGG) or glioblastoma (GBM). Our aim was to determine whether iUS improves clinical outcomes compared to conventional neuronavigation (CNN). METHODS Databases were searched until April 21, 2023 for randomized controlled trials (RCTs) and observational cohort studies that compared surgical outcomes for patients with HGG or GBM with the use of either iUS in addition to standard approach or CNN. The primary outcome was overall survival (OS). Secondary outcomes include volumetric extent of resection (EOR), gross total resection (GTR), and progression-free survival (PFS). Outcomes were analyzed by determining pooled relative risk ratios (RR), mean difference (MD), and standardized mean difference (SMD) using random-effects model. RESULTS Of the initial 867 articles, only 7 articles specifically met the inclusion criteria (1 RCT and 6 retrospective cohorts). The analysis included 732 patients. Compared to CNN, the use of iUS was associated with higher OS (SMD = 0.26,95%CI=[0.12,0.39]) and GTR (RR = 2.02; 95% CI=[1.31,3.1]) for both HGG and GBM. There was no significant difference in PFS or EOR. CONCLUSION The use of iUS in surgical resections for HGG and GBM can improve OS and GTR compared to CNN, but it did not affect PFS. These results suggest that iUS reduces mortality associated with HGG and GBM but not the risk of recurrence. These results can provide valuable cost-effective interventions for neurosurgeons in HGG and GBM surgery.
Collapse
Affiliation(s)
- Pavel S Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Jesse H. Jones Building, 1133 John Freeman Blvd, Suite 431.1, 77030, Houston, TX, U.S.A..
| | - Carlos Zarate
- Facultad de Medicina, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | | | - Aldo Barrón-Lomelí
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Amir Hjeala-Varas
- Universidad Católica Boliviana "San Pablo" Regional Santa Cruz, Santa Cruz, Bolivia
| | - Ernesto Gutierrez-Herrera
- Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Jesse H. Jones Building, 1133 John Freeman Blvd, Suite 431.1, 77030, Houston, TX, U.S.A
| | - Yoshua Esquenazi
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Jesse H. Jones Building, 1133 John Freeman Blvd, Suite 431.1, 77030, Houston, TX, U.S.A
| |
Collapse
|
5
|
Kaijser M, Frisk H, Persson O, Burström G, Suneson A, El-Hajj VG, Fagerlund M, Edström E, Elmi-Terander A. Two years of neurosurgical intraoperative MRI in Sweden - evaluation of use and costs. Acta Neurochir (Wien) 2024; 166:80. [PMID: 38349473 PMCID: PMC10864221 DOI: 10.1007/s00701-024-05978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND The current shortage of radiology staff in healthcare provides a challenge for departments all over the world. This leads to more evaluation of how the radiology resources are used and a demand to use them in the most efficient way. Intraoperative MRI is one of many recent advancements in radiological practice. If radiology staff is performing intraoperative MRI at the operation ward, they may be impeded from performing other examinations at the radiology department, creating costs in terms of exams not being performed. Since this is a kind of cost whose importance is likely to increase, we have studied the practice of intraoperative MRI in Sweden. METHODS The study includes data from the first four hospitals in Sweden that installed MRI scanners adjacent to the operating theaters. In addition, we included data from Karolinska University Hospital in Solna where intraoperative MRI is carried out at the radiology department. RESULTS Scanners that were moved into the operation theater and doing no or few other scans were used 11-12% of the days. Stationary scanners adjacent to the operation room were used 35-41% of the days. For scanners situated at the radiology department doing intraoperative scans interspersed among all other scans, the proportion was 92%. CONCLUSION Our study suggests that performing exams at the radiology department rather than at several locations throughout the hospital may be an efficient approach to tackle the simultaneous trends of increasing demands for imaging and increasing staff shortages at radiology departments.
Collapse
Affiliation(s)
- Magnus Kaijser
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Frisk
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Oscar Persson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Gustav Burström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Suneson
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Michael Fagerlund
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Capio Spine Center Stockholm, Löwenströmska Hospital, Stockholm, Sweden
- Department of Medical Sciences, Örebro University, Orebro, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Capio Spine Center Stockholm, Löwenströmska Hospital, Stockholm, Sweden
- Department of Medical Sciences, Örebro University, Orebro, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Wu O, Clift GW, Hilliard S, Ip M. Evaluating the use of intraoperative magnetic resonance imaging in paediatric brain tumour resection surgeries: a literature review. J Med Radiat Sci 2023; 70:479-490. [PMID: 37434551 PMCID: PMC10715358 DOI: 10.1002/jmrs.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
Brain tumours are the most common solid neoplasm in children, posing a significant challenge in oncology due to the limited range of treatment. Intraoperative magnetic resonance imaging (iMRI) has recently emerged to aid surgical intervention in neurosurgery resection with the potential to delineate tumour boundaries. This narrative literature review aimed to provide an updated evaluation of the clinical implementation of iMRI in paediatric neurosurgical resection, with an emphasis on the extent of brain tumour resection, patient outcomes and its drawbacks. Databases including MEDLINE, PubMed, Scopus and Web of Science were used to investigate this topic with key terms: paediatric, brain tumour, and iMRI. Exclusion criteria included literature comprised of adult populations and the use of iMRI in neurosurgery in the absence of brain tumours. The limited body of research evaluating the clinical implementation of iMRI in paediatric cohorts has been predominantly positive. Current evidence demonstrates the potential for iMRI use to increase rates of gross total resection (GTR), assess the extent of resection, and improve patient outcomes, such as progression-free survival. Limitations regarding the use of iMRI include prolonged operation times and complications associated with head immobilisation devices. iMRI has the potential to aid in the achievement of maximal brain tumour resection in paediatric patients. Future prospective randomised controlled trials are necessary to determine the clinical significance and benefits of using iMRI during neurosurgical resection for clinical management of brain neoplasms in children.
Collapse
Affiliation(s)
- Olivia Wu
- Discipline of Medical Radiation Sciences, Sydney School of Health SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Georgina Williamson Clift
- Discipline of Medical Radiation Sciences, Sydney School of Health SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Sonia Hilliard
- Discipline of Medical Radiation Sciences, Sydney School of Health SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Miranda Ip
- Discipline of Medical Radiation Sciences, Sydney School of Health SciencesThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
7
|
Wei R, Chen H, Cai Y, Chen J. Application of intraoperative ultrasound in the resection of high-grade gliomas. Front Neurol 2023; 14:1240150. [PMID: 37965171 PMCID: PMC10640994 DOI: 10.3389/fneur.2023.1240150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
The incidence of gliomas is approximately 3-5/100,000, with high-grade gliomas accounting for approximately 30-40% of these tumors. Surgery is a confirmed positive factor in prolonging the survival of these patients, and a larger resection range means a longer survival time. Therefore, surgery for high-grade glioma patients should aim to maximize the extent of resection while preserving neurological function to achieve a better quality of life. There is consensus regarding the need to lengthen progression-free survival (PFS) and overall survival (OS) times. In glioma surgery, methods such as intraoperative computed tomography (ICT), intraoperative magnetic resonance imaging (IMRI), navigation, 5-aminolevulinic acid (5-ALA), and intraoperative ultrasound (IOUS) are used to achieve an expanded resection during the surgical procedure. IOUS has been increasingly used in the surgery of high-grade gliomas and various tumors due to its convenient intraoperative use, its flexible repeatability, and the relatively low cost of operating room construction. With the continuous upgrading of ultrasound equipment, IOUS has been able to better assist surgeons in achieving an increased extent of resection. This review aims to summarize the application of ultrasound in the surgery of high-grade gliomas in the past decade, its improvement in patient prognosis, and its prospects.
Collapse
Affiliation(s)
- RenJie Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - YuXiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JingCao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y, Chen X. A review on surgical treatment options in gliomas. Front Oncol 2023; 13:1088484. [PMID: 37007123 PMCID: PMC10061125 DOI: 10.3389/fonc.2023.1088484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Gliomas are one of the most common primary central nervous system tumors, and surgical treatment remains the principal role in the management of any grade of gliomas. In this study, based on the introduction of gliomas, we review the novel surgical techniques and technologies in support of the extent of resection to achieve long-term disease control and summarize the findings on how to keep the balance between cytoreduction and neurological morbidity from a list of literature searched. With modern neurosurgical techniques, gliomas resection can be safely performed with low morbidity and extraordinary long-term functional outcomes.
Collapse
Affiliation(s)
- Zhongxi Yang
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Chen Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Shan Zong
- Department of Gynecology Oncology, The First Hospital of Jilin University, Jilin, China
| | - Jianmin Piao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- *Correspondence: Xuan Chen,
| |
Collapse
|
9
|
Zhang M, Xiao X, Gu G, Zhang P, Wu W, Wang Y, Pan C, Wang L, Li H, Wu Z, Zhang J, Zhang L. Role of neuronavigation in the surgical management of brainstem gliomas. Front Oncol 2023; 13:1159230. [PMID: 37205194 PMCID: PMC10185888 DOI: 10.3389/fonc.2023.1159230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 05/21/2023] Open
Abstract
Objective NeuroNavigation (NN) is a widely used intraoperative imaging guidance technique in neurosurgical operations; however, its value in brainstem glioma (BSG) surgery is inadequately reported and lacks objective proof. This study aims to investigate the applicational value of NN in BSG surgery. Method A retrospective analysis was performed on 155 patients with brainstem gliomas who received craniotomy from May 2019 to January 2022 at Beijing Tiantan Hospital. Eighty-four (54.2%) patients received surgery with NN. Preoperative and postoperative cranial nerve dysfunctions, muscle strength, and Karnofsky (KPS) were evaluated. Patients' radiological features, tumor volume, and extent of resection (EOR) were obtained from conventional MRI data. Patients' follow-up data were also collected. Comparative analyses on these variables were made between the NN group and the non-NN group. Result The usage of NN is independently related to a higher EOR in diffuse intrinsic pontine glioma (DIPG) (p=0.005) and non-DIPG group (p<0.001). It was observed that fewer patients in the NN group suffered from deterioration of KPS (p=0.032) and cranial nerve function (p=0.017) in non-DIPG group, and deterioration of muscle strength (p=0.040) and cranial nerve function (p=0.038) in DIPG group. Moreover, the usage of NN is an independent protective factor for the deterioration of KPS (p=0.04) and cranial nerve function (p=0.026) in non-DIPG patients and the deterioration of muscle strength (p=0.009) in DIPG patients. Furthermore, higher EOR subgroups were found to be independently related to better prognoses in DIPG patients (p=0.008). Conclusion NN has significant value in BSG surgery. With the assistance of NN, BSG surgery achieved higher EOR without deteriorating patients' functions. In addition, DIPG patients may benefit from the appropriate increase of EOR.
Collapse
Affiliation(s)
- Mingxin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liwei Zhang,
| |
Collapse
|
10
|
Kuppler P, Strenge P, Lange B, Spahr-Hess S, Draxinger W, Hagel C, Theisen-Kunde D, Brinkmann R, Huber R, Tronnier V, Bonsanto MM. The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study. Front Oncol 2023; 13:1151149. [PMID: 37139150 PMCID: PMC10150702 DOI: 10.3389/fonc.2023.1151149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose In brain tumor surgery, it is crucial to achieve complete tumor resection while conserving adjacent noncancerous brain tissue. Several groups have demonstrated that optical coherence tomography (OCT) has the potential of identifying tumorous brain tissue. However, there is little evidence on human in vivo application of this technology, especially regarding applicability and accuracy of residual tumor detection (RTD). In this study, we execute a systematic analysis of a microscope integrated OCT-system for this purpose. Experimental design Multiple 3-dimensional in vivo OCT-scans were taken at protocol-defined sites at the resection edge in 21 brain tumor patients. The system was evaluated for its intraoperative applicability. Tissue biopsies were obtained at these locations, labeled by a neuropathologist and used as ground truth for further analysis. OCT-scans were visually assessed with a qualitative classifier, optical OCT-properties were obtained and two artificial intelligence (AI)-assisted methods were used for automated scan classification. All approaches were investigated for accuracy of RTD and compared to common techniques. Results Visual OCT-scan classification correlated well with histopathological findings. Classification with measured OCT image-properties achieved a balanced accuracy of 85%. A neuronal network approach for scan feature recognition achieved 82% and an auto-encoder approach 85% balanced accuracy. Overall applicability showed need for improvement. Conclusion Contactless in vivo OCT scanning has shown to achieve high values of accuracy for RTD, supporting what has well been described for ex vivo OCT brain tumor scanning, complementing current intraoperative techniques and even exceeding them in accuracy, while not yet in applicability.
Collapse
Affiliation(s)
- Patrick Kuppler
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Luebeck, Germany
- *Correspondence: Patrick Kuppler,
| | | | | | - Sonja Spahr-Hess
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | | | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ralf Brinkmann
- Medical Laser Center Luebeck, Luebeck, Germany
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Matteo Mario Bonsanto
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
11
|
García-García S, Höhne J, Martinez-Pérez R, Cepeda S. Editorial: Assessment of intraoperative image technologies to optimize clinical outcomes in neurosurgical oncology. Front Oncol 2023; 13:1202240. [PMID: 37213295 PMCID: PMC10192890 DOI: 10.3389/fonc.2023.1202240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Affiliation(s)
- Sergio García-García
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
- *Correspondence: Sergio García-García,
| | - Julius Höhne
- Neurosurgery Department, University Medical Center Regensburg, Regensburg, Germany
| | | | - Santiago Cepeda
- Neurosurgery Department, Hospital Universitario Río Hortega, Valladolid, Spain
| |
Collapse
|
12
|
Haddad AF, Aghi MK, Butowski N. Novel intraoperative strategies for enhancing tumor control: Future directions. Neuro Oncol 2022; 24:S25-S32. [PMID: 36322096 PMCID: PMC9629473 DOI: 10.1093/neuonc/noac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Maximal safe surgical resection plays a key role in the care of patients with gliomas. A range of technologies have been developed to aid surgeons in distinguishing tumor from normal tissue, with the goal of increasing tumor resection and limiting postoperative neurological deficits. Technologies that are currently being investigated to aid in improving tumor control include intraoperative imaging modalities, fluorescent tumor makers, intraoperative cell and molecular profiling of tumors, improved microscopic imaging, intraoperative mapping, augmented and virtual reality, intraoperative drug and radiation delivery, and ablative technologies. In this review, we summarize the aforementioned advancements in neurosurgical oncology and implications for improving patient outcomes.
Collapse
Affiliation(s)
- Alexander F Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Mosteiro A, Di Somma A, Ramos PR, Ferrés A, De Rosa A, González-Ortiz S, Enseñat J, González JJ. Is intraoperative ultrasound more efficient than magnetic resonance in neurosurgical oncology? An exploratory cost-effectiveness analysis. Front Oncol 2022; 12:1016264. [PMID: 36387079 PMCID: PMC9650059 DOI: 10.3389/fonc.2022.1016264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Intraoperative imaging is a chief asset in neurosurgical oncology, it improves the extent of resection and postoperative outcomes. Imaging devices have evolved considerably, in particular ultrasound (iUS) and magnetic resonance (iMR). Although iUS is regarded as a more economically convenient and yet effective asset, no formal comparison between the efficiency of iUS and iMR in neurosurgical oncology has been performed. Methods A cost-effectiveness analysis comparing two single-center prospectively collected surgical cohorts, classified according to the intraoperative imaging used. iMR (2013-2016) and iUS (2021-2022) groups comprised low- and high-grade gliomas, with a maximal safe resection intention. Units of health gain were gross total resection and equal or increased Karnofsky performance status. Surgical and health costs were considered for analysis. The incremental cost-effectiveness ratio (ICER) was calculated for the two intervention alternatives. The cost-utility graphic and the evolution of surgical duration with the gained experience were also analyzed. Results 50 patients followed an iMR-assisted operation, while 17 underwent an iUS-guided surgery. Gross total resection was achieved in 70% with iMR and in 60% with iUS. Median postoperative Karnofsky was similar in both group (KPS 90). Health costs were € 3,220 higher with iMR, and so were surgical-related costs (€ 1,976 higher). The ICER was € 322 per complete resection obtained with iMR, and € 644 per KPS gained or maintained with iMR. When only surgical-related costs were analyzed, ICER was € 198 per complete resection with iMR and € 395 per KPS gained or maintained. Conclusion This is an unprecedented but preliminary cost-effectiveness analysis of the two most common intraoperative imaging devices in neurosurgical oncology. iMR, although being costlier and time-consuming, seems cost-effective in terms of complete resection rates and postoperative performance status. However, the differences between both techniques are small. Possibly, iMR and iUS are complementary aids during the resection: iUS real-time images assist while advancing towards the tumor limits, informing about the distance to relevant landmarks and correcting neuronavigation inaccuracy due to brain shift. Yet, at the end of resection, it is the iMR that reliably corroborates whether residual tumor remains.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Alejandra Mosteiro,
| | - Alberto Di Somma
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Roldán Ramos
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Andrea De Rosa
- Division of Neurosurgery, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sofía González-Ortiz
- Division of Neurosurgery, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Jose Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Sharma M, Wang D, Palmisciano P, Ugiliweneza B, Woo S, Nelson M, Miller D, Savage J, Boakye M, Andaluz N, Mistry AM, Chen CC, Williams BJ. Is intraoperative MRI use in malignant brain tumor surgery a health care burden? A matched analysis of MarketScan Database. J Neurooncol 2022; 160:331-339. [DOI: 10.1007/s11060-022-04142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022]
|
15
|
Lam FC, Tsedev U, Kasper EM, Belcher AM. Forging the Frontiers of Image-Guided Neurosurgery—The Emerging Uses of Theranostics in Neurosurgical Oncology. Front Bioeng Biotechnol 2022; 10:857093. [PMID: 35903794 PMCID: PMC9315239 DOI: 10.3389/fbioe.2022.857093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fred C. Lam
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Neurosurgery, Saint Elizabeth’s Medical Center, Brighton, MA, United States
- *Correspondence: Fred C. Lam,
| | - Uyanga Tsedev
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ekkehard M. Kasper
- Division of Neurosurgery, Saint Elizabeth’s Medical Center, Brighton, MA, United States
| | - Angela M. Belcher
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
16
|
Prada F, Ciocca R, Corradino N, Gionso M, Raspagliesi L, Vetrano IG, Doniselli F, Del Bene M, DiMeco F. Multiparametric Intraoperative Ultrasound in Oncological Neurosurgery: A Pictorial Essay. Front Neurosci 2022; 16:881661. [PMID: 35516800 PMCID: PMC9063404 DOI: 10.3389/fnins.2022.881661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Intraoperative ultrasound (ioUS) is increasingly used in current neurosurgical practice. This is mainly explained by its affordability, handiness, multimodal real-time nature, and overall by its image spatial and temporal resolution. Identification of lesion and potential residue, analysis of the vascularization pattern, and characterization of the nature of the mass are only some of the advantages that ioUS offers to guide safe and efficient tumor resection. Technological advances in ioUS allow to achieve both structural and functional imaging. B-mode provides high-resolution visualization of the lesion and of its boundaries and relationships. Pioneering modes, such as contrast-enhanced ultrasound (CEUS), ultrasensitive Doppler, and elastosonography, are tools with great potential in characterizing different functional aspects of the lesion in a qualitative and quantitative manner. As already happening for many organs and pathologies, the combined use of different US modalities offers new insights in a multiparametric fashion. In this study, we present the potential of our multiparametric approach for ioUS during neuro-oncological surgery. In this effort, we provide a pictorial essay focusing on the most frequent pathologies: low- and high-grade gliomas, meningiomas, and brain metastases.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
- Focused Ultrasound Foundation, Charlottesville, VA, United States
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Francesco Prada,
| | - Riccardo Ciocca
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Faculty of Medicine and Surgery, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Corradino
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Faculty of Medicine and Surgery, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gionso
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Faculty of Medicine and Surgery, Humanitas University, Pieve Emanuele, Italy
| | - Luca Raspagliesi
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurosurgery, Humanitas Clinical and Research Center, Milan, Italy
| | | | - Fabio Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, United States
| |
Collapse
|
17
|
Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res 2022; 41:142. [PMID: 35428347 PMCID: PMC9013078 DOI: 10.1186/s13046-022-02349-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/26/2022] [Indexed: 04/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common high-grade primary malignant brain tumor with an extremely poor prognosis. Given the poor survival with currently approved treatments for GBM, new therapeutic strategies are urgently needed. Advances in decades of investment in basic science of glioblastoma are rapidly translated into innovative clinical trials, utilizing improved genetic and epigenetic profiling of glioblastoma as well as the brain microenvironment and immune system interactions. Following these encouraging findings, immunotherapy including immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have offered new hope for improving GBM outcomes; ongoing studies are using combinatorial therapies with the aim of minimizing adverse side-effects and augmenting antitumor immune responses. In addition, techniques to overcome the blood-brain barrier (BBB) for targeted delivery are being tested in clinical trials in patients with recurrent GBM. Here, we set forth the rationales for these promising therapies in treating GBM, review the potential novel agents, the current status of preclinical and clinical trials, and discuss the challenges and future perspectives in glioblastoma immuno-oncology.
Collapse
Affiliation(s)
- Liang Rong
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ni Li
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| |
Collapse
|
18
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
19
|
Neidert N, Straehle J, Erny D, Sacalean V, El Rahal A, Steybe D, Schmelzeisen R, Vlachos A, Reinacher PC, Coenen VA, Mizaikoff B, Heiland DH, Prinz M, Beck J, Schnell O. Stimulated Raman histology in the neurosurgical workflow of a major European neurosurgical center - part A. Neurosurg Rev 2021; 45:1731-1739. [PMID: 34914024 PMCID: PMC8976801 DOI: 10.1007/s10143-021-01712-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022]
Abstract
Histopathological diagnosis is the current standard for the classification of brain and spine tumors. Raman spectroscopy has been reported to allow fast and easy intraoperative tissue analysis. Here, we report data on the intraoperative implementation of a stimulated Raman histology (SRH) as an innovative strategy offering intraoperative near real-time histopathological analysis. A total of 429 SRH images from 108 patients were generated and analyzed by using a Raman imaging system (Invenio Imaging Inc.). We aimed at establishing a dedicated workflow for SRH serving as an intraoperative diagnostic, research, and quality control tool in the neurosurgical operating room (OR). First experiences with this novel imaging modality were reported and analyzed suggesting process optimization regarding tissue collection, preparation, and imaging. The Raman imaging system was rapidly integrated into the surgical workflow of a large neurosurgical center. Within a few minutes of connecting the device, the first high-quality images could be acquired in a “plug-and-play” manner. We did not encounter relevant obstacles and the learning curve was steep. However, certain prerequisites regarding quality and acquisition of tissue samples, data processing and interpretation, and high throughput adaptions must be considered. Intraoperative SRH can easily be integrated into the workflow of neurosurgical tumor resection. Considering few process optimizations that can be implemented rapidly, high-quality images can be obtained near real time. Hence, we propose SRH as a complementary tool for the diagnosis of tumor entity, analysis of tumor infiltration zones, online quality and safety control and as a research tool in the neurosurgical OR.
Collapse
Affiliation(s)
- Nicolas Neidert
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vlad Sacalean
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
| | - Amir El Rahal
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - David Steybe
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Freiburg, Germany.,Medical Faculty, Freiburg University, Freiburg, Germany
| | - Andreas Vlachos
- Medical Faculty, Freiburg University, Freiburg, Germany.,Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Peter Christoph Reinacher
- Medical Faculty, Freiburg University, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Volker Arnd Coenen
- Medical Faculty, Freiburg University, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany.,Hahn-Schickard Institute for Microanalysis Systems, Ulm, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany.,Medical Faculty, Freiburg University, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Medical Faculty, Freiburg University, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Medical Faculty, Freiburg University, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany. .,Medical Faculty, Freiburg University, Freiburg, Germany.
| |
Collapse
|
20
|
Straehle J, Erny D, Neidert N, Heiland DH, El Rahal A, Sacalean V, Steybe D, Schmelzeisen R, Vlachos A, Mizaikoff B, Reinacher PC, Coenen VA, Prinz M, Beck J, Schnell O. Neuropathological interpretation of stimulated Raman histology images of brain and spine tumors: part B. Neurosurg Rev 2021; 45:1721-1729. [PMID: 34890000 PMCID: PMC8976804 DOI: 10.1007/s10143-021-01711-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
Intraoperative histopathological examinations are routinely performed to provide neurosurgeons with information about the entity of tumor tissue. Here, we quantified the neuropathological interpretability of stimulated Raman histology (SRH) acquired using a Raman laser imaging system in a routine clinical setting without any specialized training or prior experience. Stimulated Raman scattering microscopy was performed on 117 samples of pathological tissue from 73 cases of brain and spine tumor surgeries. A board-certified neuropathologist — novice in the interpretation of SRH — assessed image quality by scoring subjective tumor infiltration and stated a diagnosis based on the SRH images. The diagnostic accuracy was determined by comparison to frozen hematoxylin–eosin (H&E)-stained sections and the ground truth defined as the definitive neuropathological diagnosis. The overall SRH imaging quality was rated high with the detection of tumor cells classified as inconclusive in only 4.2% of all images. The accuracy of neuropathological diagnosis based on SRH images was 87.7% and was non-inferior to the current standard of fast frozen H&E-stained sections (87.3 vs. 88.9%, p = 0.783). We found a substantial diagnostic correlation between SRH-based neuropathological diagnosis and H&E-stained frozen sections (κ = 0.8). The interpretability of intraoperative SRH imaging was demonstrated to be equivalent to the current standard method of H&E-stained frozen sections. Further research using this label-free innovative alternative vs. conventional staining is required to determine to which extent SRH-based intraoperative decision-making can be streamlined in order to facilitate the advancement of surgical neurooncology.
Collapse
Affiliation(s)
- Jakob Straehle
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicolas Neidert
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany
| | - Amir El Rahal
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vlad Sacalean
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
| | - David Steybe
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Rainer Schmelzeisen
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany.,Hahn-Schickard Institute for Microanalysis Systems, Ulm, Germany
| | - Peter Christoph Reinacher
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Volker Arnd Coenen
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany. .,Medical Faculty of Freiburg University, Freiburg, Germany.
| |
Collapse
|
21
|
Kim KH, Yoo J, Kim N, Moon JH, Byun HK, Kang SG, Chang JH, Yoon HI, Suh CO. Efficacy of Whole-Ventricular Radiotherapy in Patients Undergoing Maximal Tumor Resection for Glioblastomas Involving the Ventricle. Front Oncol 2021; 11:736482. [PMID: 34621677 PMCID: PMC8490925 DOI: 10.3389/fonc.2021.736482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Patients with glioblastoma (GBM) involving the ventricles are at high risk of ventricle opening during surgery and potential ventricular tumor spread. We evaluated the effectiveness of whole-ventricular radiotherapy (WVRT) in reducing intraventricular seeding in patients with GBM and identified patients who could benefit from this approach. Methods and Materials We retrospectively reviewed the data of 382 patients with GBM who underwent surgical resection and temozolomide-based chemoradiotherapy. Propensity score matching was performed to compensate for imbalances in characteristics between patients who did [WVRT (+); n=59] and did not [WVRT (–); n=323] receive WVRT. Local, outfield, intraventricular, and leptomeningeal failure rates were compared. Results All patients in the WVRT (+) group had tumor ventricular involvement and ventricle opening during surgery. In the matched cohort, the WVRT (+) group exhibited a significantly lower 2-year intraventricular failure rate than the WVRT (–) group (2.1% vs. 11.8%; P=0.045), with no difference in other outcomes. Recursive partitioning analysis stratified the patients in the WVRT (–) group at higher intraventricular failure risk (2-year survival, 14.2%) due to tumor ventricular involvement, MGMT unmethylation, and ventricle opening. WVRT reduced the intraventricular failure rate only in high-risk patients (0% vs. 14.2%; P=0.054) or those with MGMT-unmethylated GBM in the matched cohort (0% vs. 17.3%; P=0.036). Conclusions WVRT reduced the intraventricular failure rate in patients with tumor ventricular involvement and ventricle opening during surgery. The MGMT-methylation status may further stratify patients who could benefit from WVRT. Further prospective evaluation of WVRT in GBM is warranted.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihwan Yoo
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| |
Collapse
|
22
|
Šteňo A, Buvala J, Babková V, Kiss A, Toma D, Lysak A. Current Limitations of Intraoperative Ultrasound in Brain Tumor Surgery. Front Oncol 2021; 11:659048. [PMID: 33828994 PMCID: PMC8019922 DOI: 10.3389/fonc.2021.659048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
While benefits of intraoperative ultrasound (IOUS) have been frequently described, data on IOUS limitations are relatively sparse. Suboptimal ultrasound imaging of some pathologies, various types of ultrasound artifacts, challenging patient positioning during some IOUS-guided surgeries, and absence of an optimal IOUS probe depicting the entire sellar region during transsphenoidal pituitary surgery are some of the most important pitfalls. This review aims to summarize prominent limitations of current IOUS systems, and to present possibilities to reduce them by using ultrasound technology suitable for a specific procedure and by proper scanning techniques. In addition, future trends of IOUS imaging optimization are described in this article.
Collapse
Affiliation(s)
- Andrej Šteňo
- Department of Neurosurgery, Comenius University, Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia
| | - Ján Buvala
- Department of Neurosurgery, Comenius University, Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia
| | - Veronika Babková
- Department of Neurosurgery, Comenius University, Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia
| | - Adrián Kiss
- Department of Neurosurgery, Comenius University, Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia
| | - David Toma
- Department of Neurosurgery, Comenius University, Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia
| | - Alexander Lysak
- Department of Neurosurgery, Comenius University, Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia
| |
Collapse
|
23
|
Fountain DM, Bryant A, Barone DG, Waqar M, Hart MG, Bulbeck H, Kernohan A, Watts C, Jenkinson MD. Intraoperative imaging technology to maximise extent of resection for glioma: a network meta-analysis. Cochrane Database Syst Rev 2021; 1:CD013630. [PMID: 33428222 PMCID: PMC8094975 DOI: 10.1002/14651858.cd013630.pub2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple studies have identified the prognostic relevance of extent of resection in the management of glioma. Different intraoperative technologies have emerged in recent years with unknown comparative efficacy in optimising extent of resection. One previous Cochrane Review provided low- to very low-certainty evidence in single trial analyses and synthesis of results was not possible. The role of intraoperative technology in maximising extent of resection remains uncertain. Due to the multiple complementary technologies available, this research question is amenable to a network meta-analysis methodological approach. OBJECTIVES To establish the comparative effectiveness and risk profile of specific intraoperative imaging technologies using a network meta-analysis and to identify cost analyses and economic evaluations as part of a brief economic commentary. SEARCH METHODS We searched CENTRAL (2020, Issue 5), MEDLINE via Ovid to May week 2 2020, and Embase via Ovid to 2020 week 20. We performed backward searching of all identified studies. We handsearched two journals, Neuro-oncology and the Journal of Neuro-oncology from 1990 to 2019 including all conference abstracts. Finally, we contacted recognised experts in neuro-oncology to identify any additional eligible studies and acquire information on ongoing randomised controlled trials (RCTs). SELECTION CRITERIA RCTs evaluating people of all ages with presumed new or recurrent glial tumours (of any location or histology) from clinical examination and imaging (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Additional imaging modalities (e.g. positron emission tomography, magnetic resonance spectroscopy) were not mandatory. Interventions included fluorescence-guided surgery, intraoperative ultrasound, neuronavigation (with or without additional image processing, e.g. tractography), and intraoperative MRI. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the search results for relevance, undertook critical appraisal according to known guidelines, and extracted data using a prespecified pro forma. MAIN RESULTS We identified four RCTs, using different intraoperative imaging technologies: intraoperative magnetic resonance imaging (iMRI) (2 trials, with 58 and 14 participants); fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) (1 trial, 322 participants); and neuronavigation (1 trial, 45 participants). We identified one ongoing trial assessing iMRI with a planned sample size of 304 participants for which results are expected to be published around winter 2020. We identified no published trials for intraoperative ultrasound. Network meta-analyses or traditional meta-analyses were not appropriate due to absence of homogeneous trials across imaging technologies. Of the included trials, there was notable heterogeneity in tumour location and imaging technologies utilised in control arms. There were significant concerns regarding risk of bias in all the included studies. One trial of iMRI found increased extent of resection (risk ratio (RR) for incomplete resection was 0.13, 95% confidence interval (CI) 0.02 to 0.96; 49 participants; very low-certainty evidence) and one trial of 5-ALA (RR for incomplete resection was 0.55, 95% CI 0.42 to 0.71; 270 participants; low-certainty evidence). The other trial assessing iMRI was stopped early after an unplanned interim analysis including 14 participants; therefore, the trial provided very low-quality evidence. The trial of neuronavigation provided insufficient data to evaluate the effects on extent of resection. Reporting of adverse events was incomplete and suggestive of significant reporting bias (very low-certainty evidence). Overall, the proportion of reported events was low in most trials and, therefore, issues with power to detect differences in outcomes that may or may not have been present. Survival outcomes were not adequately reported, although one trial reported no evidence of improvement in overall survival with 5-ALA (hazard ratio (HR) 0.82, 95% CI 0.62 to 1.07; 270 participants; low-certainty evidence). Data for quality of life were only available for one study and there was significant attrition bias (very low-certainty evidence). AUTHORS' CONCLUSIONS Intraoperative imaging technologies, specifically 5-ALA and iMRI, may be of benefit in maximising extent of resection in participants with high-grade glioma. However, this is based on low- to very low-certainty evidence. Therefore, the short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. Network and traditional meta-analyses were not possible due to the identified high risk of bias, heterogeneity, and small trials included in this review. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, one non-systematic review of economic studies suggested that, compared with standard surgery, use of image-guided surgery has an uncertain effect on costs and that 5-ALA was more costly. Further research, including completion of ongoing trials of ultrasound-guided surgery, is needed.
Collapse
Affiliation(s)
- Daniel M Fountain
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Andrew Bryant
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Damiano Giuseppe Barone
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mueez Waqar
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Michael G Hart
- Academic Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, Cambridge, UK
| | | | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Watts
- Chair Birmingham Brain Cancer Program, University of Birmingham, Edgbaston, UK
| | - Michael D Jenkinson
- Department of Neurosurgery & Institute of Systems Molecular and Integrative Biology, The Walton Centre & University of Liverpool, Liverpool, UK
| |
Collapse
|