1
|
Bonney A, Malouf R, Marchal C, Manners D, Fong KM, Marshall HM, Irving LB, Manser R. Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality. Cochrane Database Syst Rev 2022; 8:CD013829. [PMID: 35921047 PMCID: PMC9347663 DOI: 10.1002/14651858.cd013829.pub2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related death in the world, however lung cancer screening has not been implemented in most countries at a population level. A previous Cochrane Review found limited evidence for the effectiveness of lung cancer screening with chest radiography (CXR) or sputum cytology in reducing lung cancer-related mortality, however there has been increasing evidence supporting screening with low-dose computed tomography (LDCT). OBJECTIVES: To determine whether screening for lung cancer using LDCT of the chest reduces lung cancer-related mortality and to evaluate the possible harms of LDCT screening. SEARCH METHODS We performed the search in collaboration with the Information Specialist of the Cochrane Lung Cancer Group and included the Cochrane Lung Cancer Group Trial Register, Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library, current issue), MEDLINE (accessed via PubMed) and Embase in our search. We also searched the clinical trial registries to identify unpublished and ongoing trials. We did not impose any restriction on language of publication. The search was performed up to 31 July 2021. SELECTION CRITERIA: Randomised controlled trials (RCTs) of lung cancer screening using LDCT and reporting mortality or harm outcomes. DATA COLLECTION AND ANALYSIS: Two review authors were involved in independently assessing trials for eligibility, extraction of trial data and characteristics, and assessing risk of bias of the included trials using the Cochrane RoB 1 tool. We assessed the certainty of evidence using GRADE. Primary outcomes were lung cancer-related mortality and harms of screening. We performed a meta-analysis, where appropriate, for all outcomes using a random-effects model. We only included trials in the analysis of mortality outcomes if they had at least 5 years of follow-up. We reported risk ratios (RRs) and hazard ratios (HRs), with 95% confidence intervals (CIs) and used the I2 statistic to investigate heterogeneity. MAIN RESULTS: We included 11 trials in this review with a total of 94,445 participants. Trials were conducted in Europe and the USA in people aged 40 years or older, with most trials having an entry requirement of ≥ 20 pack-year smoking history (e.g. 1 pack of cigarettes/day for 20 years or 2 packs/day for 10 years etc.). One trial included male participants only. Eight trials were phase three RCTs, with two feasibility RCTs and one pilot RCT. Seven of the included trials had no screening as a comparison, and four trials had CXR screening as a comparator. Screening frequency included annual, biennial and incrementing intervals. The duration of screening ranged from 1 year to 10 years. Mortality follow-up was from 5 years to approximately 12 years. None of the included trials were at low risk of bias across all domains. The certainty of evidence was moderate to low across different outcomes, as assessed by GRADE. In the meta-analysis of trials assessing lung cancer-related mortality, we included eight trials (91,122 participants), and there was a reduction in mortality of 21% with LDCT screening compared to control groups of no screening or CXR screening (RR 0.79, 95% CI 0.72 to 0.87; 8 trials, 91,122 participants; moderate-certainty evidence). There were probably no differences in subgroups for analyses by control type, sex, geographical region, and nodule management algorithm. Females appeared to have a larger lung cancer-related mortality benefit compared to males with LDCT screening. There was also a reduction in all-cause mortality (including lung cancer-related) of 5% (RR 0.95, 95% CI 0.91 to 0.99; 8 trials, 91,107 participants; moderate-certainty evidence). Invasive tests occurred more frequently in the LDCT group (RR 2.60, 95% CI 2.41 to 2.80; 3 trials, 60,003 participants; moderate-certainty evidence). However, analysis of 60-day postoperative mortality was not significant between groups (RR 0.68, 95% CI 0.24 to 1.94; 2 trials, 409 participants; moderate-certainty evidence). False-positive results and recall rates were higher with LDCT screening compared to screening with CXR, however there was low-certainty evidence in the meta-analyses due to heterogeneity and risk of bias concerns. Estimated overdiagnosis with LDCT screening was 18%, however the 95% CI was 0 to 36% (risk difference (RD) 0.18, 95% CI -0.00 to 0.36; 5 trials, 28,656 participants; low-certainty evidence). Four trials compared different aspects of health-related quality of life (HRQoL) using various measures. Anxiety was pooled from three trials, with participants in LDCT screening reporting lower anxiety scores than in the control group (standardised mean difference (SMD) -0.43, 95% CI -0.59 to -0.27; 3 trials, 8153 participants; low-certainty evidence). There were insufficient data to comment on the impact of LDCT screening on smoking behaviour. AUTHORS' CONCLUSIONS: The current evidence supports a reduction in lung cancer-related mortality with the use of LDCT for lung cancer screening in high-risk populations (those over the age of 40 with a significant smoking exposure). However, there are limited data on harms and further trials are required to determine participant selection and optimal frequency and duration of screening, with potential for significant overdiagnosis of lung cancer. Trials are ongoing for lung cancer screening in non-smokers.
Collapse
Affiliation(s)
- Asha Bonney
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Reem Malouf
- National Perinatal Epidemiology Unit (NPEU), University of Oxford, Oxford, UK
| | | | - David Manners
- Respiratory Medicine, Midland St John of God Public and Private Hospital, Midland, Australia
| | - Kwun M Fong
- Thoracic Medicine Program, The Prince Charles Hospital, Brisbane, Australia
- UQ Thoracic Research Centre, School of Medicine, The University of Queensland, Brisbane, Australia
| | - Henry M Marshall
- School of Medicine, The University of Queensland, Brisbane, Australia
| | - Louis B Irving
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Renée Manser
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Australia
- Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
2
|
Silva M, Picozzi G, Sverzellati N, Anglesio S, Bartolucci M, Cavigli E, Deliperi A, Falchini M, Falaschi F, Ghio D, Gollini P, Larici AR, Marchianò AV, Palmucci S, Preda L, Romei C, Tessa C, Rampinelli C, Mascalchi M. Low-dose CT for lung cancer screening: position paper from the Italian college of thoracic radiology. LA RADIOLOGIA MEDICA 2022; 127:543-559. [PMID: 35306638 PMCID: PMC8934407 DOI: 10.1007/s11547-022-01471-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Smoking is the main risk factor for lung cancer (LC), which is the leading cause of cancer-related death worldwide. Independent randomized controlled trials, governmental and inter-governmental task forces, and meta-analyses established that LC screening (LCS) with chest low dose computed tomography (LDCT) decreases the mortality of LC in smokers and former smokers, compared to no-screening, especially in women. Accordingly, several Italian initiatives are offering LCS by LDCT and smoking cessation to about 10,000 high-risk subjects, supported by Private or Public Health Institutions, envisaging a possible population-based screening program. Because LDCT is the backbone of LCS, Italian radiologists with LCS expertise are presenting this position paper that encompasses recommendations for LDCT scan protocol and its reading. Moreover, fundamentals for classification of lung nodules and other findings at LDCT test are detailed along with international guidelines, from the European Society of Thoracic Imaging, the British Thoracic Society, and the American College of Radiology, for their reporting and management in LCS. The Italian College of Thoracic Radiologists produced this document to provide the basics for radiologists who plan to set up or to be involved in LCS, thus fostering homogenous evidence-based approach to the LDCT test over the Italian territory and warrant comparison and analyses throughout National and International practices.
Collapse
Affiliation(s)
- Mario Silva
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy.
- Unit of "Scienze Radiologiche", University Hospital of Parma, Pad. Barbieri, Via Gramsci 14, 43126, Parma, Italy.
| | - Giulia Picozzi
- Istituto Di Studio Prevenzione E Rete Oncologica, Firenze, Italy
| | - Nicola Sverzellati
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy
- Unit of "Scienze Radiologiche", University Hospital of Parma, Pad. Barbieri, Via Gramsci 14, 43126, Parma, Italy
| | | | | | | | | | | | | | - Domenico Ghio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Anna Rita Larici
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore Di Roma, Roma, Italy
| | - Alfonso V Marchianò
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, MI, Italy
| | - Stefano Palmucci
- UOC Radiologia 1, Dipartimento Scienze Mediche Chirurgiche E Tecnologie Avanzate "GF Ingrassia", Università Di Catania, AOU Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Lorenzo Preda
- IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
- Dipartimento Di Scienze Clinico-Chirurgiche, Diagnostiche E Pediatriche, Università Degli Studi Di Pavia, Pavia, Italy
| | | | - Carlo Tessa
- Radiologia Apuane E Lunigiana, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | | | - Mario Mascalchi
- Istituto Di Studio Prevenzione E Rete Oncologica, Firenze, Italy
- Università Di Firenze, Firenze, Italy
| |
Collapse
|