1
|
Mills SJ, Rossi AM, Konieczny V, Bakowski D, Taylor CW, Potter BVL. d- chiro-Inositol Ribophostin: A Highly Potent Agonist of d- myo-Inositol 1,4,5-Trisphosphate Receptors: Synthesis and Biological Activities. J Med Chem 2020; 63:3238-3251. [PMID: 32052631 PMCID: PMC7104261 DOI: 10.1021/acs.jmedchem.9b01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Analogues
of the Ca2+-releasing intracellular messenger d-myo-inositol 1,4,5-trisphosphate [1, Ins(1,4,5)P3] are important synthetic targets. Replacement
of the α-glucopyranosyl motif in the natural product mimic adenophostin 2 by d-chiro-inositol in d-chiro-inositol adenophostin 4 increased
the potency. Similar modification of the non-nucleotide Ins(1,4,5)P3 mimic ribophostin 6 may increase the activity. d-chiro-Inositol ribophostin 10 was synthesized by coupling as building blocks suitably protected
ribose 12 with l-(+)-3-O-trifluoromethylsulfonyl-6-O-p-methoxybenzyl-1,2:4,5-di-O-isopropylidene-myo-inositol 11. Separable
diastereoisomeric 3-O-camphanate esters of (±)-6-O-p-methoxy-benzyl-1,2:4,5-di-O-isopropylidene-myo-inositol allowed the preparation
of 11. Selective trans-isopropylidene
deprotection in coupled 13, then monobenzylation gave
separable regioisomers 15 and 16. p-Methoxybenzyl group deprotection of 16, phosphitylation/oxidation,
then deprotection afforded 10, which was a full agonist
in Ca2+-release assays; its potency and binding affinity
for Ins(1,4,5)P3R were similar to those of adenophostin.
Both 4 and 10 elicited a store-operated
Ca2+ current ICRAC in patch-clamped cells, unlike
Ins(1,4,5)P3 consistent with resistance to metabolism. d-chiro-Inositol ribophostin is the most potent
small-molecule Ins(1,4,5)P3 receptor agonist without a
nucleobase yet synthesized.
Collapse
Affiliation(s)
- Stephen J Mills
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ana M Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Vera Konieczny
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Daniel Bakowski
- Centre of Integrative Physiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Barry V L Potter
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
2
|
Katsuta R, Fujikawa S, Yajima A, Nukada T. Stereoselective synthesis of (−)-decarestrictine G. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Benito D, Isabel Matheu M, Morère A, Díaz Y, Castillón S. Designing an effective approach for obtaining methylenecarboxylate analogues of adenophostin A. Preliminary results. Carbohydr Res 2009; 344:2559-67. [DOI: 10.1016/j.carres.2009.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/16/2009] [Accepted: 09/27/2009] [Indexed: 11/29/2022]
|
4
|
|
5
|
Terauchi M, Abe H, Tovey SC, Dedos SG, Taylor CW, Paul M, Trusselle M, Potter BVL, Matsuda A, Shuto S. A Systematic Study of C-Glucoside Trisphosphates as myo-Inositol Trisphosphate Receptor Ligands. Synthesis of β-C-Glucoside Trisphosphates Based on the Conformational Restriction Strategy. J Med Chem 2006; 49:1900-9. [PMID: 16539376 DOI: 10.1021/jm051039n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta-C-glucoside trisphosphates having a C2 side chain (3,7-anhydro-2-deoxy-D-glycero-D-gulo-octitol 1,5,6-trisphosphate, 11) and a C3 side chain (4,8-anhydro-2,3-dideoxy-D-glycero-D-gulo-nonanitol 1,6,7-trisphosphate, 12) were designed as structurally simplified analogues of a potent D-myo-inositol 1,4,5-trisphosphate (IP3) receptor ligand, adenophostin A. Construction of the beta-C-glucosidic structure, which was the key to their synthesis, was achieved by two different methods based on the conformational restriction strategy: (1) radical cyclization with a temporary connecting silicon tether and (2) silane reduction of glyconolactols having an anomeric allyl substituent. Using these methods, the target beta-C-glycoside trisphosphates 11 and 12 were successfully synthesized. A structure-activity relationship was established on a series of C-glucoside trisphosphates, including the previously synthesized related compounds, which were a C-glycosidic analogue 3 of adenophostin A, its uracil congener 5, alpha-C-glucoside trisphosphates 7-9 having a C1, C2, or C3 side chain, and the beta-C-glucoside trisphosphates 10-12 having a C1, C2, or C3 side chain. The O-glycosidic linkage of adenophostin A and its analogues proved to be replaced by the chemically and biologically more stable C-glycosidic linkage. The alpha-C2-glucoside trisphosphate 8 stimulates Ca2+ release with a potency similar to that of IP3 in spite of its simplified structure, indicating a better fit to the receptor than the beta-C-glucoside trisphosphates and also the alpha-congeners having a shorter or longer C1 side chain, which was supported by molecular modeling using the ligand binding domain of the IP3 receptor.
Collapse
Affiliation(s)
- Masaru Terauchi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chrétien F, Roussel F, Hilly M, Mauger J, Chapleur Y. New Sugar‐Based Permeant Analogs of D‐ Myo ‐Inositol 1,4,5‐Trisphosphate Mimicking the Effect of Vasopressin: Synthesis and Biologic Evaluation*. J Carbohydr Chem 2005. [DOI: 10.1081/car-200068070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Terauchi M, Yahiro Y, Abe H, Ichikawa S, Tovey SC, Dedos SG, Taylor CW, Potter BV, Matsuda A, Shuto S. Synthesis of 4,8-anhydro-d-glycero-d-ido-nonanitol 1,6,7-trisphosphate as a novel IP3 receptor ligand using a stereoselective radical cyclization reaction based on a conformational restriction strategy. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Terauchi M, Abe H, Matsuda A, Shuto S. An Efficient Synthesis of β-C-Glycosides Based on the Conformational Restriction Strategy: Lewis Acid Promoted Silane Reduction of the Anomeric Position with Complete Stereoselectivity. Org Lett 2004; 6:3751-4. [PMID: 15469340 DOI: 10.1021/ol048525+] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The reduction of glyconolactols having an anomeric carbon substituent by Et(3)SiH/TMSOTf proceeded with complete stereoselectivity to produce the corresponding beta-C-glycosides when the substrates were conformationally restricted in the (4)C(1)-chair form by a 3,4-O-cyclic diketal or a 4,6-O-benzylidene protecting group. Thus, the efficient construction of beta-C-glycosides was achieved on the basis of the conformation restriction strategy.
Collapse
Affiliation(s)
- Masaru Terauchi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
9
|
Dozol H, Maechling C, Graff R, Matsuda A, Shuto S, Spiess B. Conformational and inframolecular studies of the protonation of adenophostin analogues lacking the adenine moiety. Biochim Biophys Acta Gen Subj 2004; 1671:1-8. [PMID: 15026139 DOI: 10.1016/j.bbagen.2003.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 12/10/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Four adenophostin analogues lacking the adenine moiety were subjected to 31P- and 1H-NMR titrations in order to determine the acid-base behaviour of the individual ionisable groups of the molecules and the complex interplay of intramolecular interactions resulting from the protonation process. For the two trisphosphorylated compounds, the curve pattern of the phosphorus nuclei corresponds to the superimposition of the titration curves of a monophosphorylated polyol and a polyol carrying two vicinal phosphates, suggesting that the two phosphate moieties behave independently. Also, the general shape of 1H-NMR titration curves of the studied compounds is very close to that of adenophostin A, indicating that the adenine moiety does not specifically interact with the phosphorylated sugar moieties. The curves show, however, that both trisphosphorylated compounds adopt slightly different preferential conformations which could contribute to explain the difference in their affinity for Ins(1,4,5)P3 receptor. Their macroscopic as well as the microscopic protonation constants are higher than those of adenophostin A, indicating that the adenine moiety plays a base-weakening effect on the phosphate groups. Further analysis of the microscopic protonation constants confirms that the compound whose conformation is the closest to that of adenophostin A also shows the highest biological activity. The two bisphosphorylated analogues studied behave very similarly, suggesting that the deletion of the hydroxymethyl group on the pentafuranosyl ring only weakly influences the protonation process of the phosphate groups that bear the glucopyranose moiety.
Collapse
Affiliation(s)
- Hélène Dozol
- Laboratoire de Pharmacochimie Moléculaire, UMR 7081 du CNRS, Faculté de Pharmacie, ULP, 74, route du Rhin, B.P. 24, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
10
|
Rosenberg HJ, Riley AM, Laude AJ, Taylor CW, Potter BVL. Synthesis and Ca2+-Mobilizing Activity of Purine-Modified Mimics of Adenophostin A: A Model for the Adenophostin−Ins(1,4,5)P3Receptor Interaction. J Med Chem 2003; 46:4860-71. [PMID: 14584937 DOI: 10.1021/jm030883f] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a series of adenophostin A analogues modified at C-6 and C-2 of adenine is described. The target compounds were synthesized by a convergent route involving a modified Vorbrüggen condensation of either 6-chloropurine or 2,6-dichloropurine with a protected disaccharide, yielding two versatile intermediates capable of undergoing substitution with a range of nucleophiles. The new analogues showed a range of abilities to mobilize Ca(2+) from the intracellular stores of permeabilized hepatocytes and are among the first totally synthetic compounds to approach the activity of adenophostin A. In agreement with the biological results, docking studies of adenophostin A using the recently reported X-ray crystal structure of the type 1 Ins(1,4,5)P(3) receptor binding core suggested that, in likely binding modes of adenophostin A, the area around N(6) may be relatively open, identifying this region of the adenophostin A molecule as a promising target for further elaboration. The docking results also point to specific interactions involving residues within the binding domain of the Ins(1,4,5)P(3) receptor that may be involved in the molecular recognition of the adenophostins.
Collapse
Affiliation(s)
- Heidi J Rosenberg
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|
11
|
Wardrop DJ, Zhang W, Fritz J. Stereospecific entry to [4.5]spiroketal glycosides using alkylidenecarbene C-H insertion. Org Lett 2002; 4:489-92. [PMID: 11843573 DOI: 10.1021/ol016975l] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] A novel method for the stereospecific preparation of [4.5]spiroketal glycosides utilizing the 1,5 C-H bond insertion of alkylidenecarbenes is described. Treatment of 2-oxopropyl beta-pyranosides A with lithium (trimethylsilyl)diazomethane in THF at -78 degrees C afforded 1,6-dioxaspiro[4,5]decenes B in good yield. Submission of the corresponding alpha-glycosides C to the same reagent gave the isomeric insertion products D in moderate to high yield.
Collapse
Affiliation(s)
- Duncan J Wardrop
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA.
| | | | | |
Collapse
|
12
|
Riley AM, Correa V, Mahon MF, Taylor CW, Potter BV. Bicyclic analogues of D-myo-inositol 1,4,5-trisphosphate related to adenophostin A: synthesis and biological activity. J Med Chem 2001; 44:2108-17. [PMID: 11405648 DOI: 10.1021/jm0005499] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high affinity of adenophostin A for 1D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptors may be related to an alteration in the position of its 2'-phosphate group relative to the corresponding 1-phosphate group in Ins(1,4,5)P(3). To investigate this possibility, two bicyclic trisphosphates 9 and 10, designed to explore the effect of relocating the 1-phosphate group of Ins(1,4,5)P(3) using a novel fused-ring system, were synthesized from myo-inositol. Biological evaluation of 9 and 10 at the Ins(1,4,5)P(3) receptors of hepatocytes showed that both were recognized by hepatic Ins(1,4,5)P(3) receptors and both stimulated release of Ca(2+) from intracellular stores, but they had lower affinity than Ins(1,4,5)P(3). This finding may be explained by considering the three-dimensional structures of 9 and 10 in light of recent studies on the conformation of adenophostin A.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/chemistry
- Adenosine/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channel Agonists/chemistry
- Calcium Channel Agonists/pharmacology
- Chromatography, Thin Layer
- Crystallography, X-Ray
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- In Vitro Techniques
- Indicators and Reagents
- Inositol 1,4,5-Trisphosphate/analogs & derivatives
- Inositol 1,4,5-Trisphosphate/chemical synthesis
- Inositol 1,4,5-Trisphosphate/pharmacology
- Kinetics
- Liver/drug effects
- Liver/metabolism
- Membranes/drug effects
- Membranes/metabolism
- Models, Molecular
- Molecular Conformation
- Rats
- Spectrophotometry, Ultraviolet
- Stereoisomerism
Collapse
Affiliation(s)
- A M Riley
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | | | | | | | |
Collapse
|