1
|
Harwood LA, Xiong Z, Christensen KE, Wang R, Wong LL, Robertson J. Selective P450 BM3 Hydroxylation of Cyclobutylamine and Bicyclo[1.1.1]pentylamine Derivatives: Underpinning Synthetic Chemistry for Drug Discovery. J Am Chem Soc 2023; 145:27767-27773. [PMID: 38051939 PMCID: PMC10740007 DOI: 10.1021/jacs.3c10542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Achieving single-step syntheses of a set of related compounds divergently and selectively from a common starting material affords substantial efficiency gains when compared with preparing those same compounds by multiple individual syntheses. In order for this approach to be realized, complementary reagent systems must be available; here, a panel of engineered P450BM3 enzymes is shown to fulfill this remit in the selective C-H hydroxylation of cyclobutylamine derivatives at chemically unactivated sites. The oxidations can proceed with high regioselectivity and stereoselectivity, producing valuable bifunctional intermediates for synthesis and applications in fragment-based drug discovery. The process also applies to bicyclo[1.1.1]pentyl (BCP) amine derivatives to achieve the first direct enantioselective functionalization of the bridging methylenes and open a short and efficient route to chiral BCP bioisosteres for medicinal chemistry. The combination of substrate, enzyme, and reaction engineering provides a powerful general platform for small-molecule elaboration and diversification.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ziyue Xiong
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Kirsten E. Christensen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ruiyao Wang
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou Industrial
Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Luet L. Wong
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Jeremy Robertson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
2
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
3
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
4
|
Xu J, Wang C, Cong Z. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis. Chemistry 2019; 25:6853-6863. [PMID: 30698852 DOI: 10.1002/chem.201806383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Cytochrome P450 enzymes (P450s) catalyze the monooxygenation of various organic substrates. These enzymes are fascinating and promising biocatalysts for synthetic applications. Despite the impressive abilities of P450s in the oxidation of C-H bonds, their practical applications are restricted by intrinsic drawbacks, such as poor stability, low turnover rates, the need for expensive cofactors (e.g., NAD(P)H), and the narrow scope of useful non-native substrates. These issues may be overcome through the general strategy of protein engineering, which focuses on the improvement of the catalysts themselves. Alternatively, several emerging strategies have been developed that regulate the P450 catalytic process from the viewpoint of the substrate. These strategies include substrate engineering, decoy molecule, and dual-functional small-molecule co-catalysis. Substrate engineering focuses on improving the substrate acceptance and reaction selectivity by means of an anchoring group. The latter two strategies utilize co-substrate-like small molecules that either are proposed to reform the active site, thereby switching the substrate specificity, or directly participate in the catalytic process, thereby creating new catalytic peroxygenation capabilities towards non-native substrates. For at least 10 years, these approaches have played unique roles in solving the problems highlighted above, either alone or in conjunction with protein engineering. Herein, we review three strategies for substrate regulation in the P450-catalyzed oxidation of non-native substrates. Furthermore, we address remaining challenges and potential solutions associated with these approaches.
Collapse
Affiliation(s)
- Jiakun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Chunlan Wang
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of, Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| |
Collapse
|
5
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
6
|
Vickers C, Backfisch G, Oellien F, Piel I, Lange UEW. Enzymatic Late‐Stage Oxidation of Lead Compounds with Solubilizing Biomimetic Docking/Protecting groups. Chemistry 2018; 24:17936-17947. [DOI: 10.1002/chem.201802331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Clare Vickers
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Gisela Backfisch
- Development Sciences, DMPK and Bioanalytical ResearchAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Frank Oellien
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Isabel Piel
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| | - Udo E. W. Lange
- Neuroscience Discovery, Medicinal ChemistryAbbVie (Deutschland) GmbH & Co. KG Knollstrasse D-67061 Ludwigshafen Germany
| |
Collapse
|
7
|
Megyesi R, Forró E, Fülöp F. Substrate engineering: Effects of different N-protecting groups in the CAL-B-catalysed asymmetric O-acylation of 1-hydroxymethyl-tetrahydro-β-carbolines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Hartog AF, Wever R. Substrate Engineering and its Synthetic Utility in the Sulfation of Primary Aliphatic Alcohol Groups by a Bacterial Arylsulfotransferase. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Use of chemical auxiliaries to control p450 enzymes for predictable oxidations at unactivated C-h bonds of substrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:209-28. [PMID: 26002737 DOI: 10.1007/978-3-319-16009-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.
Collapse
|
10
|
Polic V, Auclair K. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis. Bioorg Med Chem 2014; 22:5547-54. [PMID: 25035263 PMCID: PMC5177023 DOI: 10.1016/j.bmc.2014.06.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 01/25/2023]
Abstract
P450 enzymes (P450s) are well known for their ability to oxidize unactivated CH bonds with high regio- and stereoselectivity. Hence, there is emerging interest in exploiting P450s as potential biocatalysts. Although bacterial P450s typically show higher activity than their mammalian counterparts, they tend to be more substrate selective. Most drug-metabolizing P450s on the other hand, display remarkable substrate promiscuity, yet product prediction remains challenging. Protein engineering is one established strategy to overcome these issues. A less explored, yet promising alternative involves substrate engineering. This review discusses the use of small molecules for controlling the substrate specificity and product selectivity of P450s. The focus is on two approaches, one taking advantage of non-covalent decoy molecules, and the other involving covalent substrate modifications.
Collapse
Affiliation(s)
- Vanja Polic
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
11
|
Engineering and application of P450 monooxygenases in pharmaceutical and metabolite synthesis. Curr Opin Chem Biol 2013; 17:271-5. [DOI: 10.1016/j.cbpa.2013.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
|
12
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
13
|
Larsen AT, May EM, Auclair K. Predictable Stereoselective and Chemoselective Hydroxylations and Epoxidations with P450 3A4. J Am Chem Soc 2011; 133:7853-8. [PMID: 21528858 DOI: 10.1021/ja200551y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron T. Larsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Erin M. May
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| |
Collapse
|
14
|
Khersonsky O, Malitsky S, Rogachev I, Tawfik DS. Role of Chemistry versus Substrate Binding in Recruiting Promiscuous Enzyme Functions. Biochemistry 2011; 50:2683-90. [DOI: 10.1021/bi101763c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga Khersonsky
- Department of Biological Chemistry and ‡Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Biological Chemistry and ‡Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilana Rogachev
- Department of Biological Chemistry and ‡Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S. Tawfik
- Department of Biological Chemistry and ‡Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Zhang W, Tang WL, Wang Z, Li Z. Regio- and Stereoselective Biohydroxylations with a Recombinant Escherichia coli Expressing P450pyr Monooxygenase of Sphingomonas Sp. HXN-200. Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Zhao SM, Wang MX. Synthesis of Optically Active β - Alkyl - α - methylene - δ - butyro -lactones from Enantioselective Biotransformation of Nitriles, an Unusual Inversion of Enantioselectivity†. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20020201124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Chen Y, Tang W, Mou J, Li Z. High-Throughput Method for Determining the Enantioselectivity of Enzyme-Catalyzed Hydroxylations Based on Mass Spectrometry. Angew Chem Int Ed Engl 2010; 49:5278-83. [DOI: 10.1002/anie.201001772] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Chen Y, Tang W, Mou J, Li Z. High-Throughput Method for Determining the Enantioselectivity of Enzyme-Catalyzed Hydroxylations Based on Mass Spectrometry. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001772] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Selective oxidation of carbolide C-H bonds by an engineered macrolide P450 mono-oxygenase. Proc Natl Acad Sci U S A 2009; 106:18463-8. [PMID: 19833867 DOI: 10.1073/pnas.0907203106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regio- and stereoselective oxidation of an unactivated C-H bond remains a central challenge in organic chemistry. Considerable effort has been devoted to identifying transition metal complexes, biological catalysts, or simplified mimics, but limited success has been achieved. Cytochrome P450 mono-oxygenases are involved in diverse types of regio- and stereoselective oxidations, and represent a promising biocatalyst to address this challenge. The application of this class of enzymes is particularly significant if their substrate spectra can be broadened, selectivity controlled, and reactions catalyzed in the absence of expensive heterologous redox partners. In this study, we engineered a macrolide biosynthetic P450 mono-oxygenase PikC (PikC(D50N)-RhFRED) with remarkable substrate flexibility, significantly increased activity compared to wild-type enzyme, and self-sufficiency. By harnessing its unique desosamine-anchoring functionality via a heretofore under-explored "substrate engineering" strategy, we demonstrated the ability of PikC to hydroxylate a series of carbocyclic rings linked to the desosamine glycoside via an acetal linkage (referred to as "carbolides") in a regioselective manner. Complementary analysis of a number of high-resolution enzyme-substrate cocrystal structures provided significant insights into the function of the aminosugar-derived anchoring group for control of reaction site selectivity. Moreover, unexpected biological activity of a select number of these carbolide systems revealed their potential as a previously unrecorded class of antibiotics.
Collapse
|
20
|
Avi M, Wiedner R, Griengl H, Schwab H. Improvement of a Stereoselective Biocatalytic Synthesis by Substrate and Enzyme Engineering: 2-Hydroxy-(4′-oxocyclohexyl)acetonitrile as the Model. Chemistry 2008; 14:11415-22. [DOI: 10.1002/chem.200800609] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Ma DY, Wang DX, Pan J, Huang ZT, Wang MX. Nitrile Biotransformations for the Synthesis of Highly Enantioenriched β-Hydroxy and β-Amino Acid and Amide Derivatives: A General and Simple but Powerful and Efficient Benzyl Protection Strategy To Increase Enantioselectivity of the Amidase. J Org Chem 2008; 73:4087-91. [DOI: 10.1021/jo800074k] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Da-You Ma
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Pan
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - Zhi-Tang Huang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - Mei-Xiang Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
22
|
Höhne M, Robins K, Bornscheuer U. A Protection Strategy Substantially Enhances Rate and Enantioselectivity in ω-Transaminase-Catalyzed Kinetic Resolutions. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200800030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Fechter MH, Gruber K, Avi M, Skranc W, Schuster C, Pöchlauer P, Klepp KO, Griengl H. Stereoselective Biocatalytic Synthesis of (S)-2-Hydroxy-2-Methylbutyric Acid via Substrate Engineering by Using “Thio-Disguised” Precursors and Oxynitrilase Catalysis. Chemistry 2007; 13:3369-76. [PMID: 17226866 DOI: 10.1002/chem.200601114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
3-Tetrahydrothiophenone (4) and 4-phenylthiobutan-2-one (7) were used as masked 2-butanone equivalents to give the corresponding cyanohydrins 5 (79 % yield, 91 % ee) and 8 (95 % yield, 96 % ee) in an enzymatic cyanohydrin reaction applying the hydroxynitrile lyase (HNL) from Hevea brasiliensis. After hydrolysis and desulphurisation the desired intermediate (S)-2-hydroxy-2-methylbutyric acid (10) was obtained with 99 % ee. Interestingly, when applying (R)-selective HNL from Prunus amygdalus again the (S)-cyanohydrin 5 was formed (62 % ee). The absolute configuration of 5 was verified by crystal structure determination of the corresponding hydrolysis derived carboxylate. The fact that both enzymes yield the same enantiomer was analysed and interpreted by molecular modelling calculations.
Collapse
Affiliation(s)
- Martin H Fechter
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gao M, Wang DX, Zheng QY, Wang MX. An Unusual β-Vinyl Effect Leading to High Efficiency and Enantioselectivity of the Amidase, Nitrile Biotransformations for the Preparation of Enantiopure 3-Arylpent-4-enoic Acids and Amides and Their Applications in Synthesis. J Org Chem 2006; 71:9532-5. [PMID: 17137391 DOI: 10.1021/jo061664f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotransformations of 3-arylpent-4-enenitriles catalyzed by Rhodococcus erythropolis AJ270, a nitrile hydratase/amidase-containing microbial whole-cell catalyst were studied, and an unusual beta-vinyl effect of the substrate on the biocatalytic efficiency and enantioselectivity of the amidase was observed. While 3-arylpent-4-enenitriles and 3-phenylpentanenitrile were efficiently hydrated by the action of the less R-enantioselective nitrile hydratase, the amidase showed greater activity and higher enantioselectivity against 3-arylpent-4-enoic acid amides than 3-arylpentanoic acid amides. Under very mild conditions, nitrile biotransformations provided an efficient synthesis of highly enantiopure (R)-3-arylpent-4-enoic acids and (S)-3-arylpent-4-enoic acid amides, and their applications were demonstrated by the synthesis of chiral gamma-amino acid, 2-pyrrolidinone, and 2-azepinone derivatives.
Collapse
Affiliation(s)
- Ming Gao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
25
|
Ma DY, Zheng QY, Wang DX, Wang MX. Dramatic Enhancement of Enantioselectivity of Biotransformations of β-Hydroxy Nitriles Using a Simple O-Benzyl Protection/Docking Group. Org Lett 2006; 8:3231-4. [PMID: 16836373 DOI: 10.1021/ol0610688] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[Structure: see text] Catalyzed by the Rhodococcus erythropolis AJ270 whole cell catalyst, the O-benzylated beta-hydroxy alkanenitriles underwent remarkably high enantioselective biotransformations, whereas the biotransformations of free beta-hydroxy alkanenitriles gave very low enantioselectivity. The easy manipulations of O-protection and O-deprotection, excellent chemical and enantiomeric yields of biotransformations, along with the scalability render this enzymatic transformation attractive and practical for the synthesis of highly enantiopure beta-hydroxy alkanoic acids and their amide derivatives.
Collapse
Affiliation(s)
- Da-You Ma
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
26
|
Münzer DF, Griengl H, Moumtzi A, Saf R, Terzani T, de Raadt A. Chiral Auxiliaries as Docking/Protecting Groups in Biohydroxylation:(S)-Specific Hydroxylation of Enantiopuretert-Butyl-Substituted Spirooxazolidines Derived From Cyclopentanone. European J Org Chem 2005. [DOI: 10.1002/ejoc.200400636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Savile CK, Magloire VP, Kazlauskas RJ. Subtilisin-Catalyzed Resolution of N-Acyl Arylsulfinamides. J Am Chem Soc 2005; 127:2104-13. [PMID: 15713087 DOI: 10.1021/ja045397b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first biocatalytic route to sulfinamides (R-S(O)-NH2), whose sulfur stereocenter makes them important chiral auxiliaries for the asymmetric synthesis of amines. Subtilisin E did not catalyze hydrolysis of N-acetyl or N-butanoyl arylsulfinamides, but did catalyze a highly enantioselective (E > 150 favoring the (R)-enantiomer) hydrolysis of N-chloroacetyl and N-dihydrocinnamoyl arylsulfinamides. Gram-scale resolutions using subtilisin E overexpressed in Bacillus subtilis yielded, after recrystallization, three synthetically useful auxiliaries: (R)-p-toluenesulfinamide (42% yield, 95% ee), (R)-p-chlorobenzenesulfinamide (30% yield, 97% ee), and (R)-2,4,6-trimethylbenzenesulfinamide (30% yield, 99% ee). Molecular modeling suggests that the N-chloroacetyl and N-dihydrocinnamoyl groups mimic a phenylalanine moiety and thus bind the sulfinamide to the active site. Molecular modeling further suggests that enantioselectivity stems from a favorable hydrophobic interaction between the aryl group of the fast-reacting (R)-arylsulfinamide and the S1' leaving group pocket in subtilisin E.
Collapse
Affiliation(s)
- Christopher K Savile
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 2K6, Canada
| | | | | |
Collapse
|
28
|
Münzer DF, Meinhold P, Peters MW, Feichtenhofer S, Griengl H, Arnold FH, Glieder A, de Raadt A. Stereoselective hydroxylation of an achiral cyclopentanecarboxylic acid derivative using engineered P450s BM-3. Chem Commun (Camb) 2005:2597-9. [PMID: 15900339 DOI: 10.1039/b501527h] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substrate engineered, achiral carboxylic acid derivative was biohydroxylated with various mutants of cytochrome P450 BM-3 to give two out of the four possible diastereoisomers in high de and ee. The BM-3 mutants exhibit up to 9200 total turnovers for hydroxylation of the engineered substrate, which without the protecting group is not transformed by this enzyme.
Collapse
Affiliation(s)
- Dieter F Münzer
- Institut für Organische Chemie der Technischen Universität Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chang D, Heringa MF, Witholt B, Li Z. Enantioselective trans dihydroxylation of nonactivated C-C double bonds of aliphatic heterocycles with Sphingomonas sp. HXN-200. J Org Chem 2004; 68:8599-606. [PMID: 14575492 DOI: 10.1021/jo034628e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial strain Sphingomonas sp. HXN-200 was used to catalyze the trans dihydroxylation ofN-substituted 1,2,5,6-tetrahydropyridines 1 and 3-pyrrolines 4 giving the corresponding 3,4-dihydroxypiperidines 3 and 3,4-dihydroxypyrrolidines 6, respectively, with high enantioselectivity and high activity. The trans dihydroxylation was sequentially catalyzed by a monooxygenase and an epoxide hydrolase in the strain with epoxide as intermediate. While both epoxidation and hydrolysis steps contributed to the overall enantioselectivity in trans dihydroxylation of 1, the enantioselectivity in trans dihydroxylation of the symmetric substrate 4 was generated only in the hydrolysis of meso-epoxide 5. The absolute configuration for the bioproducts (+)-3 and (+)-6 was established as (3R,4R) by chemical correlations. Preparative trans dihydroxylation of 1a and 4b with frozen/thawed cells of Sphingomonas sp. HXN-200 afforded the corresponding (+)-(3R,4R)-3,4-dihydroxypiperidine 3a and (+)-(3R,4R)-3,4-dihydroxy pyrrolidine 6b in 96% ee both and in 60% and 80% yield, respectively. These results represent first examples of enantioselective trans dihydroxylation with nonterpene substrates and with bacterial catalyst, thus significantly extending this methodology in practical synthesis of valuable and useful trans diols. Enantioselective hydrolysis of racemic epoxide 2a with Sphingomonas sp. HXN-200 gave 34% of (-)-2a in >99% ee, which is a versatile chiral building block. Further hydrolysis of (-)-2a with the same strain afforded (-)-(3S,4S)-3a in 96% ee and 92% yield. Thus, both enantiomers of 3a can be prepared by biotransformation with Sphingomonas sp. HXN-200.
Collapse
Affiliation(s)
- Dongliang Chang
- Institute of Biotechnology, ETH-Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
30
|
Abstract
In the biohydroxylation of nonactivated carbon atoms, substrate engineering has been found to be a very useful and simple means to influence substrate acceptance and the regioselectivity and stereoselectivity of this transformation. Recently, this methodology has been applied to the hydroxylation of a large number of compounds including cycloalkane carboxylic acids, ketones, amines, amides and alcohols.
Collapse
Affiliation(s)
- Anna de Raadt
- Institute of Organic Chemistry, Technical University Graz, Stremayrgasse 16, A-8010, Graz, Austria
| | | |
Collapse
|
31
|
Chang D, Feiten HJ, Witholt B, Li Z. Regio- and stereoselective hydroxylation of N-substituted piperidin-2-ones with Sphingomonas sp. HXN-200. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0957-4166(02)00534-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Haufe G, Wölker D, Fröhlich R. Selectivity of biohydroxylation with Beauveria bassiana of trans-2-fluorocycloalkyl N-phenylcarbamates. J Org Chem 2002; 67:3022-8. [PMID: 11975562 DOI: 10.1021/jo016332j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biohydroxylation with Beauveria bassiana of racemates and the pure enantiomers of trans-2-fluorocyclohexyl- 3 and trans-2-fluorocycloheptyl N-phenylcarbamates 6 were investigated and compared with results found for the corresponding nonfluorinated parent compounds. In all cases, mixtures of diastereomeric products hydroxylated in the 4-position were isolated, besides products of p-hydroxylation of the aromatic ring and succeeding compounds derived from these primary reaction products. The regioselectivity of hydroxylation by this fungus is not changed by a single fluorine substituent attached closely to the electron-rich anchoring group in the trans-2-position. There is a different influence on the diastereoselectivity of hydroxylation depending on the absolute configuration of the fluorinated substrates. While the transformation of the (S,S)-2-fluorocycloalkyl N-phenylcarbamates is not diastereoselective giving almost 1:1 mixtures of cis- and trans-4-hydroxyl compounds, the corresponding reactions of the (R,R)-isomers led preferentially to the products trans-hydroxylated in the 4-position. The transformation of the racemic fluorinated six-membered N-phenylcarbamate 3 led to products having a very small enantiomeric excess. The fluorine substituent slightly increased the enantioselectivity of transformation of the racemic seven-membered substrate 6 compared to the C(s)()-symmetric nonfluorinated carbamate. Thus, the fluorine substituent in the trans-2-position in these examples did not change the regioselectivity but rather influenced the stereochemistry of biotransformation, depending on the absolute configuration of the substrate and ring size.
Collapse
Affiliation(s)
- Günter Haufe
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, D-48149 Münster, Germany.
| | | | | |
Collapse
|
33
|
Li Z, van Beilen JB, Duetz WA, Schmid A, de Raadt A, Griengl H, Witholt B. Oxidative biotransformations using oxygenases. Curr Opin Chem Biol 2002; 6:136-44. [PMID: 12038996 DOI: 10.1016/s1367-5931(02)00296-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Considerable progress has been made in manipulating oxidative biotransformations using oxygenases. Substrate acceptance, catalytic activity, regioselectivity and stereoselectivity have been improved significantly by substrate engineering, enzyme engineering or biocatalyst screening. Preparative biotransformations have been carried out to synthesize useful pharmaceutical intermediates or chiral synthons on the gram to several-hundred-gram scale, by use of whole cells of wild type or recombinant strains. The synthetic application of oxygenases in vitro has been shown to be possible by enzymatic or electrochemical regeneration of NADH or NADPH.
Collapse
Affiliation(s)
- Zhi Li
- Institute of Biotechnology, ETH Zurich, Hoenggerberg, CH-8093, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Chiral auxiliaries as docking/protecting groups: biohydroxylation of selected ketones with Beauveria bassiana ATCC 7159. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(01)00803-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|