1
|
Serrano MP, Subramanian S, von Bilderling C, Rafti M, Vollmer F. "Grafting-To" Covalent Binding of Plasmonic Nanoparticles onto Silica WGM Microresonators: Mechanically Robust Single-Molecule Sensors and Determination of Activation Energies from Single-Particle Events. SENSORS (BASEL, SWITZERLAND) 2023; 23:3455. [PMID: 37050513 PMCID: PMC10098601 DOI: 10.3390/s23073455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
We hereby present a novel "grafting-to"-like approach for the covalent attachment of plasmonic nanoparticles (PNPs) onto whispering gallery mode (WGM) silica microresonators. Mechanically stable optoplasmonic microresonators were employed for sensing single-particle and single-molecule interactions in real time, allowing for the differentiation between binding and non-binding events. An approximated value of the activation energy for the silanization reaction occurring during the "grafting-to" approach was obtained using the Arrhenius equation; the results agree with available values from both bulk experiments and ab initio calculations. The "grafting-to" method combined with the functionalization of the plasmonic nanoparticle with appropriate receptors, such as single-stranded DNA, provides a robust platform for probing specific single-molecule interactions under biologically relevant conditions.
Collapse
Affiliation(s)
- Mariana P. Serrano
- INIFTA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| | - Sivaraman Subramanian
- Living Systems Institute, Department of Physics & Astronomy, University of Exeter, Exeter EX4 4QD, UK
| | - Catalina von Bilderling
- INIFTA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| | - Matías Rafti
- INIFTA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| | - Frank Vollmer
- Living Systems Institute, Department of Physics & Astronomy, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
2
|
Regenauer NI, Wadepohl H, Roşca D. Terminal N 2 Dissociation in [(PNN)Fe(N 2 )] 2 (μ-N 2 ) Leads to Local Spin-State Changes and Augmented Bridging N 2 Activation. Chemistry 2022; 28:e202202172. [PMID: 35916757 PMCID: PMC9804668 DOI: 10.1002/chem.202202172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 01/09/2023]
Abstract
Nitrogen fixation at iron centres is a fundamental catalytic step for N2 utilisation, relevant to biological (nitrogenase) and industrial (Haber-Bosch) processes. This step is coupled with important electronic structure changes which are currently poorly understood. We show here for the first time that terminal dinitrogen dissociation from iron complexes that coordinate N2 in a terminal and bridging fashion leaves the Fe-N2 -Fe unit intact but significantly enhances the degree of N2 activation (Δν≈180 cm-1 , Raman spectroscopy) through charge redistribution. The transformation proceeds with local spin state change at the iron centre (S= 1 / 2 ${{ 1/2 }}$ →S=3 /2 ). Further dissociation of the bridging N2 can be induced under thermolytic conditions, triggering a disproportionation reaction, from which the tetrahedral (PNN)2 Fe could be isolated. This work shows that dinitrogen activation can be induced in the absence of external chemical stimuli such as reducing agents or Lewis acids.
Collapse
Affiliation(s)
- Nicolas I. Regenauer
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 276Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 276Germany
| | - Dragoş‐Adrian Roşca
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 276Germany
| |
Collapse
|
3
|
Cordes Née Kupper C, Klawitter I, Rüter I, Dechert S, Demeshko S, Ye S, Meyer F. Organometallic μ-Nitridodiiron Complexes in Oxidation States Ranging from (III/III) to (IV/IV). Inorg Chem 2022; 61:7153-7164. [PMID: 35475617 DOI: 10.1021/acs.inorgchem.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron complexes with nitrido ligands are of interest as molecular analogues of key intermediates during N2-to-NH3 conversion in industrial or enzymatic processes. Dinuclear iron complexes with a bridging nitrido unit are mostly known in relatively high oxidation states (III/IV or IV/IV), originating from the decomposition of azidoiron precursors via high-valent Fe≡N intermediates. The use of a tetra-NHC macrocyclic scaffold ligand (NHC = N-heterocyclic carbene) has now allowed for the isolation of a series of organometallic μ-nitridodiiron complexes ranging from the mid-valent FeIII-N-FeIII (1) via mixed-valent FeIII-N-FeIV (type 4) to the high-valent FeIV-N-FeIV (type 5) species that are interconverted at moderate potentials, accompanied by axial ligand binding at the FeIV sites. Magnetic measurements and electron paramagnetic resonance spectroscopy showed the homovalent complexes to be diamagnetic and the mixed-valent system to feature an S = 1/2 ground state due to very strong antiferromagnetic coupling. The bonding in the Fe-N-Fe moiety has been further probed by crystallographic structure determination, 57Fe Mössbauer and UV-vis spectroscopies, as well as density functional theory computations, which revealed high covalency and nearly identical Fe-N distances across this redox series. The latter has been rationalized in terms of the nonbonding nature of the combination of Fe dz2 atomic orbitals from which electrons are successively removed upon oxidation, and these redox processes are best described as being metal-centered. The tetra-NHC-ligated μ-nitridodiiron series complements a set of related complexes with single-atom μ-oxido and μ-phosphido bridges, but the Fe-N-Fe core exhibits a comparatively high stability over several oxidation states. This promises interesting applications in view of the manifold catalytic uses of μ-nitridodiiron complexes based on macrocyclic N-donor porphinato(2-) or phthalocyaninato(2-) ligands.
Collapse
Affiliation(s)
- Claudia Cordes Née Kupper
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Iris Klawitter
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Isabelle Rüter
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Stüker T, Xia X, Beckers H, Riedel S. High-Spin Iron(VI), Low-Spin Ruthenium(VI), and Magnetically Bistable Osmium(VI) in Molecular Group 8 Nitrido Trifluorides NMF 3. Chemistry 2021; 27:11693-11700. [PMID: 34043842 PMCID: PMC8457171 DOI: 10.1002/chem.202101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Pseudo‐tetrahedral nitrido trifluorides N≡MF3 (M=Fe, Ru, Os) and square pyramidal nitrido tetrafluorides N≡MF4 (M=Ru, Os) were formed by free‐metal‐atom reactions with NF3 and subsequently isolated in solid neon at 5 K. Their IR spectra were recorded and analyzed aided by quantum‐chemical calculations. For a d2 electron configuration of the N≡MF3 compounds in C3v symmetry, Hund's rule predict a high‐spin 3A2 ground state with two parallel spin electrons and two degenerate metal d(δ)‐orbitals. The corresponding high‐spin 3A2 ground state was, however, only found for N≡FeF3, the first experimentally verified neutral nitrido FeVI species. The valence‐isoelectronic N≡RuF3 and N≡OsF3 adopt different angular distorted singlet structures. For N≡RuF3, the triplet 3A2 state is only 5 kJ mol−1 higher in energy than the singlet 1A′ ground state, and the magnetically bistable molecular N≡OsF3 with two distorted near degenerate 1A′ and 3A“ electronic states were experimentally detected at 5 K in solid neon.
Collapse
Affiliation(s)
- Tony Stüker
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Xiya Xia
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Helmut Beckers
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
5
|
Liu H, Han W, Huo C, Cen Y. Development and application of wüstite-based ammonia synthesis catalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Lien J, Su M, Guo T. Identification of Individual Reaction Steps in Complex Radical Reactions Involving Gold Nanoparticles. Chemphyschem 2018; 19:3328-3333. [PMID: 30488554 DOI: 10.1002/cphc.201800780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Indexed: 11/09/2022]
Abstract
A triple-jump model is invoked to help identify individual reaction steps in complex chemical reactions involving radical reactants in the presence of gold nanoparticles. The model consists of three sequential reaction phases: production of radicals, stabilization of radicals, and conversion from radical intermediates to final products. Isolated reaction phases were studied with electron paramagnetic resonance spectroscopy. As examples of the model, we investigated the spin trapping reaction with BMPO and the hydroxylation of 3-CCA, and the results supported the model. For X-ray irradiation of gold nanoparticle aqueous solutions, hydroxyl radicals were found to be scavenged by nanoparticles in the first phase. The stabilization phase was largely unaffected by gold nanoparticles, whereas conversion of radical intermediates was catalyzed. Such a step-wise model is thus proven useful for determining the exact catalytic step in the presence of nanoparticle catalysts in complex reactions such as DNA strand breaks, polymerization and hydroxylation that are important to many fields including X-ray nanochemistry.
Collapse
Affiliation(s)
- Jennifer Lien
- University of California, Davis, Department of Chemistry, One Shields Ave, Davis, California, 95616, United States
| | - Mengqi Su
- University of California, Davis, Department of Chemistry, One Shields Ave, Davis, California, 95616, United States
| | - Ting Guo
- University of California, Davis, Department of Chemistry, One Shields Ave, Davis, California, 95616, United States
| |
Collapse
|
7
|
Liu H, Han W. Wüstite-based catalyst for ammonia synthesis: Structure, property and performance. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.04.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Torres-Alacan J, Vöhringer P. Photolysis of a High-Spin Azidoiron(III) Complex Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy. Chemistry 2017; 23:6746-6751. [DOI: 10.1002/chem.201700960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Joel Torres-Alacan
- Institut für Physikalische und Theoretische Chemie; Rheinische Friedrich-Wilhelms-Universität; Wegelerstraße 12 53117 Bonn Germany
| | - Peter Vöhringer
- Institut für Physikalische und Theoretische Chemie; Rheinische Friedrich-Wilhelms-Universität; Wegelerstraße 12 53117 Bonn Germany
| |
Collapse
|
9
|
Tanabe Y, Nishibayashi Y. Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Transition Metal-Dinitrogen Complexes. CHEM REC 2016; 16:1549-77. [DOI: 10.1002/tcr.201600025] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Yoshiaki Tanabe
- Department of Systems Innovation, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
10
|
Baeza A, Guillena G, Ramón DJ. Magnetite and Metal-Impregnated Magnetite Catalysts in Organic Synthesis: A Very Old Concept with New Promising Perspectives. ChemCatChem 2015. [DOI: 10.1002/cctc.201500854] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alejandro Baeza
- Departamento Química Orgánica and Instituto de Síntesis Orgánica; Universidad de Alicante; Apdo. 99 03080 Alicante Spain
| | - Gabriela Guillena
- Departamento Química Orgánica and Instituto de Síntesis Orgánica; Universidad de Alicante; Apdo. 99 03080 Alicante Spain
| | - Diego J. Ramón
- Departamento Química Orgánica and Instituto de Síntesis Orgánica; Universidad de Alicante; Apdo. 99 03080 Alicante Spain
| |
Collapse
|
11
|
O'Malley PD, Datta R, Vilekar SA. Ockham's razor for paring microkinetic mechanisms: Electrical analogy vs. Campbell's degree of rate control. AIChE J 2015. [DOI: 10.1002/aic.14956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Patrick D. O'Malley
- Dept.of Chemical Engineering; Fuel Cell Center, Worcester Polytechnic Inst.; Worcester MA 01609
| | - Ravindra Datta
- Dept.of Chemical Engineering; Fuel Cell Center, Worcester Polytechnic Inst.; Worcester MA 01609
| | | |
Collapse
|
12
|
Abstract
Abstract
Catalysis, as a key and enabling technology, plays an increasingly important role in fields ranging from energy, environment and agriculture to health care. Rational design and synthesis of highly efficient catalysts has become the ultimate goal of catalysis research. Thanks to the rapid development of nanoscience and nanotechnology, and in particular a theoretical understanding of the tuning of electronic structure in nanoscale systems, this element of design is becoming possible via precise control of nanoparticles’ composition, morphology, structure and electronic states. At the same time, it is important to develop tools for in situ characterization of nanocatalysts under realistic reaction conditions, and for monitoring the dynamics of catalysis with high spatial, temporal and energy resolution. In this review, we discuss confinement effects in nanocatalysis, a concept that our group has put forward and developed over several years. Taking the confined catalytic systems of carbon nanotubes, metal-confined nano-oxides and 2D layered nanocatalysts as examples, we summarize and analyze the fundamental concepts, the research methods and some of the key scientific issues involved in nanocatalysis. Moreover, we present a perspective on the challenges and opportunities in future research on nanocatalysis from the aspects of: (1) controlled synthesis of nanocatalysts and rational design of catalytically active centers; (2) in situ characterization of nanocatalysts and dynamics of catalytic processes; (3) computational chemistry with a complexity approximating that of experiments; and (4) scale-up and commercialization of nanocatalysts.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
Krahe O, Bill E, Neese F. Decay of Iron(V) Nitride Complexes By a NN Bond-Coupling Reaction in Solution: A Combined Spectroscopic and Theoretical Analysis. Angew Chem Int Ed Engl 2014; 53:8727-31. [DOI: 10.1002/anie.201403402] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 11/11/2022]
|
14
|
Krahe O, Bill E, Neese F. Abbau von Nitridoeisen(V)-Komplexen durch N-N-Kupplung in Lösung: spektroskopische und theoretische Analyse. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Semproni SP, Chirik PJ. Synthesis of a Base-Free Hafnium Nitride from N2 Cleavage: A Versatile Platform for Dinitrogen Functionalization. J Am Chem Soc 2013; 135:11373-83. [DOI: 10.1021/ja405477m] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Scott P. Semproni
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544,
United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544,
United States
| |
Collapse
|
16
|
Krahe O, Neese F, Engeser M. Iron Azides with Cyclam-Derived Ligands: Are They Precursors for High-Valent Iron Nitrides in the Gas Phase? Chempluschem 2013; 78:1053-1057. [DOI: 10.1002/cplu.201300182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Indexed: 11/07/2022]
|
17
|
Schaetz A, Zeltner M, Stark WJ. Carbon Modifications and Surfaces for Catalytic Organic Transformations. ACS Catal 2012. [DOI: 10.1021/cs300014k] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alexander Schaetz
- Institute for Chemical and Bioengineering, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093
Zürich, Switzerland
| | - Martin Zeltner
- Institute for Chemical and Bioengineering, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093
Zürich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093
Zürich, Switzerland
| |
Collapse
|
18
|
Wang L, Xin Q, Zhao Y, Zhang G, Dong J, Gong W, Guo H. In Situ FT-IR Studies on Catalytic Nature of Iron Nitride: Identification of the N Active Site. ChemCatChem 2012. [DOI: 10.1002/cctc.201100311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Huang S, Hara K, Fukuoka A. Intrinsic Catalytic Role of Mesoporous Silica in Preferential Oxidation of Carbon Monoxide in Excess Hydrogen. Chemistry 2012; 18:4738-47. [DOI: 10.1002/chem.201102256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/27/2011] [Indexed: 11/07/2022]
|
20
|
Smith JM, Subedi D. The structure and reactivity of iron nitride complexes. Dalton Trans 2012; 41:1423-9. [DOI: 10.1039/c1dt11674f] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Zhou K, Li Y. Nanokristalle mit wohldefinierten Kristallflächen für die Katalyse. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102619] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed Engl 2011; 51:602-13. [PMID: 22134985 DOI: 10.1002/anie.201102619] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/11/2011] [Indexed: 11/11/2022]
Abstract
Using bottom-up chemistry techniques, the composition, size, and shape in particular can now be controlled uniformly for each and every nanocrystal (NC). Research into shape-controlled NCs have shown that the catalytic properties of a material are sensitive not only to the size but also to the shape of the NCs as a consequence of well-defined facets. These findings are of great importance for modern heterogeneous catalysis research. First, a rational synthesis of catalysts might be achieved, since desired activity and selectivity would be acquired by simply tuning the shape, that is, the exposed crystal facets, of a NC catalyst. Second, shape-controlled NCs are relatively simple systems, in contrast to traditional complex solids, suggesting that they may serve as novel model catalysts to bridge the gap between model surfaces and real catalysts.
Collapse
Affiliation(s)
- Kebin Zhou
- College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | |
Collapse
|
23
|
Lewerenz H, Skorupska K, Muñoz A, Stempel T, Nüsse N, Lublow M, Vo-Dinh T, Kulesza P. Micro- and nanotopographies for photoelectrochemical energy conversion. II: Photoelectrocatalysis – Classical and advanced systems. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Zhang W, Tang Y, Lei M, Morokuma K, Musaev DG. Ditantalum Dinitrogen Complex: Reaction of H2 Molecule with “End-on-Bridged” [TaIV]2(μ-η1:η1-N2) and Bis(μ-nitrido) [TaV]2(μ-N)2 Complexes. Inorg Chem 2011; 50:9481-90. [DOI: 10.1021/ic201159z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wenchao Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yanhui Tang
- School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P.R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Jaenicke L. Fe(V)-Nitrid als NH3-Generator. CHEM UNSERER ZEIT 2011. [DOI: 10.1002/ciuz.201190058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Scepaniak JJ, Vogel CS, Khusniyarov MM, Heinemann FW, Meyer K, Smith JM. Synthesis, Structure, and Reactivity of an Iron(V) Nitride. Science 2011; 331:1049-52. [PMID: 21350172 DOI: 10.1126/science.1198315] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jeremiah J. Scepaniak
- Department of Chemistry and Biochemistry, MSC 3C, New Mexico State University, Las Cruces, NM 88003, USA
| | - Carola S. Vogel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Marat M. Khusniyarov
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Jeremy M. Smith
- Department of Chemistry and Biochemistry, MSC 3C, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
27
|
|
28
|
Kuznetsov AE, Musaev DG. Does the MgO(100)-support facilitate the reaction of nitrogen and hydrogen molecules catalyzed by Zr2Pd2 clusters? A computational study. Inorg Chem 2010; 49:2557-67. [PMID: 20128599 DOI: 10.1021/ic902531p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of the "naked" and MgO(100) supported Zr(2)Pd(2) cluster with nitrogen and four hydrogen molecules were studied at the density functional level using the periodic slab approach (VASP). It was shown that adsorption of the Zr(2)Pd(2) cluster on the MgO(100) surface does not change its gas-phase geometry and electronic structure significantly. In spite of this the N(2) coordination to the MgO(100)-supported Zr(2)Pd(2) cluster, I/MgO, is found to be almost 30 kcal/mol less favorable than for the "naked" one. The addition of the first H(2) molecule to the resulting II/MgO, that is, II/MgO + H(2) --> IV/MgO reaction, proceeds with a relatively small, 9.0 kcal/mol, barrier and is exothermic by 8.3 kcal/mol. The same reaction for the "naked" Zr(2)Pd(2) cluster requires a slightly larger barrier (10.1 kcal/mol) and is highly exothermic (by 23.3 kcal/mol). The interaction of the H(2) molecule with the intermediate IV/MgO (i.e., the second H(2) molecule addition to II/MgO) requires larger energy barrier, 23.3 kcal/mol vs 8.8 kcal/mol for the "naked" cluster, and is exothermic by 20.5 kcal/mol (vs 18.2 kcal/mol reported for the "naked" Zr(2)Pd(2) cluster). The addition of the H(2) molecule to VI/MgO and VI (i.e., the third H(2) molecule addition to II/MgO and II, respectively) requires similar barriers, 12.0 versus 16.8 kcal/mol, respectively, but is highly exothermic for the supported cluster compared to the "naked" one, 13.6 versus 0.1 kcal/mol. The addition of the fourth H(2) molecule occurs with almost twice larger barrier for the "naked" cluster compared to the adsorbed species, 30.7 versus 15.9 kcal/mol. Furthermore, this reaction step is endothermic (by 11.4 kcal/mol) for the gas-phase cluster but exothermic by 7.8 kcal/mol for the adsorbed cluster. Dissociation of the formed hydrazine molecule from the on-surface complex X/MgO and the "naked" complex X requires 19.1 and 26.3 kcal/mol, respectively. Thus, the Zr(2)Pd(2) adsorption on the MgO(100) surface facilitates its reaction with N(2) and four H(2) molecules, as well as formation of hydrazine from the hydrogen and nitrogen molecules. The reported differences in the reactivity of the "naked" and MgO adsorbed Zr(2)Pd(2) clusters were explained by analyzing the nature of the H(2) addition steps in these systems.
Collapse
Affiliation(s)
- Aleksey E Kuznetsov
- Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
29
|
Fryzuk MD. Side-on end-on bound dinitrogen: an activated bonding mode that facilitates functionalizing molecular nitrogen. Acc Chem Res 2009; 42:127-33. [PMID: 18803409 DOI: 10.1021/ar800061g] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular nitrogen is the source of all of the nitrogen necessary to sustain life on this planet. How it is incorporated into the biosphere is complicated by its intrinsic inertness. For example, biological nitrogen fixation takes N(2) and converts it into ammonia using various nitrogenase enzymes, whereas industrial nitrogen fixation converts N(2) and H(2) to NH(3) using heterogeneous iron or ruthenium surfaces. In both cases, the processes are energy-intensive. Is it possible to discover a homogeneous catalyst that can convert molecular nitrogen into higher-value organonitrogen compounds using a less energy-intensive pathway? If this could be achieved, it would be considered a major breakthrough in this area. In contrast to carbon monoxide, which is reactive and an important feedstock in many homogeneous catalytic reactions, the isoelectronic but inert N(2) molecule is a very poor ligand and not a common industrial feedstock, except for the above-mentioned industrial production of NH(3). Because N(2) is readily available from the atmosphere and because nitrogen is an essential element for the biosphere, attempts to discover new processes involving this simple small molecule have occupied chemists for over a century. Since the first discovery of a dinitrogen complex in 1965, inorganic chemists have been key players in this area and have contributed much fundamental knowledge on structures, binding modes, and reactivity patterns. For the most part, the synthesis of dinitrogen complexes relies on the use of reducing agents to generate an electron-rich intermediate that can interact with this rather inert molecule. In this Account, a facile reaction of dinitrogen with a ditantalum tetrahydride species to generate the unusual side-on end-on bound N(2) moiety is described. This particular process is one of a growing number of new, milder ways to generate dinitrogen complexes. Furthermore, the resulting dinitrogen complex undergoes a number of reactions that expand the known patterns of reactivity for coordinated N(2). This Account reviews the reactions of ([NPN]Ta)(2)(mu-H)(2)(mu-eta(1):eta(2)-N(2)), 2 (where NPN = PhP(CH(2)SiMe(2)NPh)(2)), with a variety of simple hydride reagents, E-H (where E-H = R(2)BH, R(2)AlH, RSiH(3), and Cp(2)ZrCl(H)), each of which results in the cleavage of the N-N bond to form various functionalized imide and nitride moieties. This work is described in the context of a possible catalytic cycle that in principle could generate higher-value nitrogen-containing materials and regenerate the starting ditantalum tetrahydride. How this fails for each particular reagent is discussed and evaluated.
Collapse
Affiliation(s)
- Michael D. Fryzuk
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
30
|
Affiliation(s)
- Paul J Chirik
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Hanna TE, Keresztes I, Lobkovsky E, Chirik PJ. Diazene dehydrogenation follows H2 addition to coordinated dinitrogen in an ansa-zirconocene complex. Inorg Chem 2007; 46:1675-83. [PMID: 17266302 DOI: 10.1021/ic0620539] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An activated side-on-bound ansa-zirconocene dinitrogen complex, [Me2Si(eta5-C5Me4)(eta5-C5H3-3-tBu)Zr]2(mu2,eta2,eta2-N2), has been prepared by sodium amalgam reduction of the corresponding dichloride precursor under an atmosphere of N2. Both solution spectroscopic and X-ray diffraction data establish diastereoselective formation of the syn homochiral dizirconium dimer. Addition of 1 atm of H2 resulted in rapid hydrogenation of the N2 ligand to yield one diastereomer of the hydrido zirconocene diazenido complex. Kinetic measurements have yielded the barrier for H2 addition and in combination with isotopic labeling studies are consistent with a 1,2-addition pathway. In the absence of H2, the hydrido zirconocene diazenido product undergoes swift diazene dehydrogenation to yield an unusual hydrido zirconocene dinitrogen complex. The N=N bond length of 1.253(5) A determined by X-ray crystallography indicates that the side-on-bound N2 ligand is best described as a two-electron reduced [N2]2- fragment. Comparing the barrier for deuterium exchange with [Me2Si(eta5-C5Me4)(eta5-C5H3-3-tBu)ZrH]2(mu2,eta2,eta2-N2H2) to diazene dehydrogenation is consistent with rapid 1,2-elimination of dihydrogen followed by rate-determining hydride migration to the zirconium. This mechanistic proposal is also corroborated by H2 inhibition and the observation of a normal, primary kinetic isotope effect for dehydrogenation.
Collapse
Affiliation(s)
- Tamara E Hanna
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
32
|
|
33
|
Mehn MP, Peters JC. Mid- to high-valent imido and nitrido complexes of iron. J Inorg Biochem 2006; 100:634-43. [PMID: 16529818 DOI: 10.1016/j.jinorgbio.2006.01.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 10/24/2022]
Abstract
This short review summarizes recent advances in the synthesis and reactivity of iron imides and nitrides. Both monometallic and multimetallic assemblies featuring these moieties are discussed. Recent synthetic approaches have led to the availability of new mid- to high-valent iron imides and nitrides, allowing us to begin assembling models to describe the factors influencing their relative stabilities and reactivity patterns.
Collapse
Affiliation(s)
- Mark P Mehn
- Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, CA 91125, USA
| | | |
Collapse
|
34
|
Brown SD, Mehn MP, Peters JC. Heterolytic H2 activation mediated by low-coordinate L3Fe-(mu-N)-FeL3 complexes to generate Fe(mu-NH)(mu-H)Fe species. J Am Chem Soc 2005; 127:13146-7. [PMID: 16173733 DOI: 10.1021/ja0544509] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diiron mu-nitride complexes, {L3FeII(mu-N)FeIIL3}- and L3FeIII(mu-N)FeIIL3, heterolytically activate hydrogen (1 atm) at ambient temperature in solution (L3 = [PhB(CH2PPh2)3]-). These transformations lead to structurally unique {L3FeII(mu-NH)(mu-H)FeIIL3}- and L3FeIII(mu-NH)(mu-H)FeIIL3 products. X-ray data establish a marked reduction in the Fe-Fe distance upon H2 uptake, and spectroscopic data establish both FeIIFeII species to be diamagnetic, whereas the FeIIIFeII species, L3FeIII(mu-N)FeIIL3 and L3FeIII(mu-NH)(mu-H)FeIIL3, populate doublet ground states with thermally accessible higher spin states.
Collapse
Affiliation(s)
- Steven D Brown
- Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
35
|
Bernskoetter WH, Lobkovsky E, Chirik PJ. Kinetics and Mechanism of N2 Hydrogenation in Bis(cyclopentadienyl) Zirconium Complexes and Dinitrogen Functionalization by 1,2-Addition of a Saturated C−H Bond. J Am Chem Soc 2005; 127:14051-61. [PMID: 16201827 DOI: 10.1021/ja0538841] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rates of hydrogenation of the N2 ligand in the side-on bound dinitrogen compounds, [(eta(5)-C5Me4H)2Zr]2(mu2,eta(2),eta(2)-N2) and [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford the corresponding hydrido zirconocene diazenido complexes have been measured by electronic spectroscopy. Determination of the rate law for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) establishes an overall second-order reaction, first order with respect to each reagent. These data, in combination with a normal, primary kinetic isotope effect of 2.2(1) for H2 versus D2 addition, establish the first H2 addition as the rate-determining step in N2 hydrogenation. Kinetic isotope effects of similar direction and magnitude have also been measured for hydrogenation (deuteration) of the two other zirconocene dinitrogen complexes. Measuring the rate constants for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) over a 40 degrees C temperature range provided activation parameters of deltaH(double dagger) = 8.4(8) kcal/mol and deltaS(double dagger) = -33(4) eu. The entropy of activation is consistent with an ordered four-centered transition structure, where H2 undergoes formal 1,2-addition to a zirconium-nitrogen bond with considerable multiple bond character. Support for this hypothesis stems from the observation of N2 functionalization by C-H activation of a cyclopentadienyl methyl substituent in the mixed ring dinitrogen complexes, [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford cyclometalated zirconocene diazenido derivatives.
Collapse
Affiliation(s)
- Wesley H Bernskoetter
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Dmitry Yu. Murzin
- Laboratory of Industrial Chemistry, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500 Turku/Åbo, Finland
| |
Collapse
|
37
|
Brown SD, Peters JC. Ground-State Singlet L3Fe-(μ-N)-FeL3 and L3Fe(NR) Complexes Featuring Pseudotetrahedral Fe(II) Centers. J Am Chem Soc 2005; 127:1913-23. [PMID: 15701026 DOI: 10.1021/ja0453073] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudotetrahedral iron(II) coordination complexes that contain bridged nitride and terminal imide linkages, and exhibit singlet ground-state electronic configurations, are described. Sodium amalgam reduction of the ferromagnetically coupled dimer, {[PhBP(3)]Fe(mu-1,3-N(3))}(2) (2) ([PhBP(3)] = [PhB(CH(2)PPh(2))(3)](-)), yields the diamagnetic bridging nitride species [{[PhBP(3)]Fe}(2)(mu-N)][Na(THF)(5)] (3). The Fe-N-Fe linkage featured in the anion of 3 exhibits an unusually bent angle of approximately 135 degrees , and the short Fe-N bond distances (Fe-N(av) approximately equal to 1.70 A) suggest substantial Fe-N multiple bond character. The diamagnetic imide complex {[PhBP(3)]Fe(II)(triple bond)N(1-Ad)}{(n)()Bu(4)N} (4) has been prepared by sodium amalgam reduction of its low-spin iron(III) precursor, [PhBP(3)]Fe(III)(triple bond)N(1-Ad) (5). Complexes 4 and 5 have been structurally characterized, and their respective electronic structures are discussed in the context of a supporting DFT calculation. Diamagnetic 4 provides a bona fide example of a pseudotetrahedral iron(II) center in a low-spin ground-state configuration. Comparative optical data strongly suggest that dinuclear 3 is best described as containing two high-spin iron(II) centers that are strongly antiferromagnetically coupled to give rise to a singlet ground-state at room temperature.
Collapse
Affiliation(s)
- Steven D Brown
- Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
38
|
Abstract
Bulk gold is chemically inert and is generally regarded as a poor catalyst. However, when gold is in very small particles with diameters below 10 nm and is deposited on metal oxides or activated carbon, it becomes surprisingly active, especially at low temperatures, for many reactions such as CO oxidation and propylene epoxidation. The catalytic performance of Au is defined by three major factors: contact structure, support selection, and particle size. The role of the perimeter interfaces of Au particles as the sites for reactions is discussed as well as the change in chemical reactivity of Au clusters composed of fewer than 300 atoms.
Collapse
Affiliation(s)
- Masatake Haruta
- Research Institute for Green Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan.
| |
Collapse
|
39
|
Lipshutz BH, Tasler S, Chrisman W, Spliethoff B, Tesche B. On the nature of the 'heterogeneous' catalyst: nickel-on-charcoal. J Org Chem 2003; 68:1177-89. [PMID: 12585854 DOI: 10.1021/jo020296m] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Results from aromatic aminations and Kumada couplings, together with spectroscopic analyses (TEM, EDX, ICP-AES, React-IR), reveal that catalysis using nickel-on-charcoal (Ni/C) is most likely of a homogeneous rather than heterogeneous nature. In the course of a reaction with Ni/C, nickel bleed from the support was calculated to be as high as 78%. However, the existence of an equilibrium for this homogeneous species between nickel located inside vs outside the pore system of charcoal strongly favors the former, thus leaving only traces of metal detectable in solution. This accounts for virtually complete recovery of nickel on the charcoal following filtration of a reaction mixture and allows for recycling of the catalyst. TEM and EDX data were used to explain different reactivity profiles of Ni/C, which depended upon the method of reduction used to convert Ni(II)/C to Ni(0) as well as the level of nickel loading on the support.
Collapse
Affiliation(s)
- Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.
Collapse
Affiliation(s)
- J M Thomas
- Davy Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London W1S 4BS, United Kingdom.
| | | |
Collapse
|