1
|
Chea C, Miyauchi M, Inubushi T, Okamoto K, Haing S, Takata T. Molecular Mechanisms of Inhibitory Effects of Bovine Lactoferrin on Invasion of Oral Squamous Cell Carcinoma. Pharmaceutics 2023; 15:pharmaceutics15020562. [PMID: 36839884 PMCID: PMC9958951 DOI: 10.3390/pharmaceutics15020562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Lactoferrin (LF), an iron-binding glycoprotein, has been reported to have anticancer properties. However, the molecular mechanisms behind its anticancer effects on oral squamous cell carcinoma (OSCC) have not yet been elucidated. Therefore, we aimed to clarify the effects of LF on invasion of OSCC, and its underlying molecular mechanism. OSCC cell lines, HSC2 and HOC313, were treated with bovine LF (bLF). The effects of bLF on cell invasion were examined by a chamber migration assay, wound healing assay, and Boyden chamber method with a basement-membrane-analogue. Expression levels of MMP-1, MMP-3, and AP-1 were examined using RT-PCR, qRT-PCR, and western blotting. Roles of LRP1, a receptor of bLF, on cell invasion were analyzed using siLRP1 knockdown cells. Furthermore, to clarify the importance of LRP1 in invasion, the effects of bLF on tPA-induced invasion of OSCC cells were examined. The invasion assays showed that bLF suppressed invasion of the OSCC cells. Moreover, bLF down-regulated AP-1, and resulted in reductions of MMP-1 and MMP-3. With SiLRP1 knockdown, OSCC cells failed to induce their invasion, and bLF was not able to exert its effects on invasion. Furthermore, bLF remarkably inhibited tPA-induced cell invasion. These findings suggest the importance of LRP1 in bLF-suppressed invasion of OSCC cells via the reduction of AP-1 and MMP production.
Collapse
Affiliation(s)
- Chanbora Chea
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: (C.C.); (T.T.); Tel.: +81-82-257-5632 (C.C. & T.T.)
| | - Mutsumi Miyauchi
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita 565-0871, Japan
| | - Kana Okamoto
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Sivmeng Haing
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takashi Takata
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Shunan University, 843-4-2 Gakuenndai Syunan, Yamaguchi 745-8566, Japan
- Correspondence: (C.C.); (T.T.); Tel.: +81-82-257-5632 (C.C. & T.T.)
| |
Collapse
|
2
|
Li B, Zhang B, Liu X, Zheng Y, Han K, Liu H, Wu C, Li J, Fan S, Peng W, Zhang F, Liu X. The effect of lactoferrin in aging: role and potential. Food Funct 2021; 13:501-513. [PMID: 34928288 DOI: 10.1039/d1fo02750f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.
Collapse
Affiliation(s)
- Bing Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Bo Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xudong Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Yidan Zheng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Kuntong Han
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Henan Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Shuhua Fan
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Weifeng Peng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Fuli Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| |
Collapse
|
3
|
Inubushi T, Kosai A, Yanagisawa S, Chanbora C, Miyauchi M, Yamasaki S, Sugiyama E, Ishikado A, Makino T, Takata T. Bovine lactoferrin enhances osteogenesis through Smad2/3 and p38 MAPK activation. J Oral Biosci 2020; 62:147-154. [DOI: 10.1016/j.job.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
|
4
|
Wang C, Wang Q, Li R, Qin J, Song L, Zhang Q, Liu M, Chen J, Wang C. LTF, PRTN3, and MNDA in Synovial Fluid as Promising Biomarkers for Periprosthetic Joint Infection: Identification by Quadrupole Orbital-Trap Mass Spectrometry. J Bone Joint Surg Am 2019; 101:2226-2234. [PMID: 31644522 DOI: 10.2106/jbjs.18.01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Diagnosing periprosthetic joint infection (PJI) requires various laboratory and clinical criteria. The purpose of this study was to explore novel biomarkers that could rapidly diagnose PJI with high accuracy. METHODS In this retrospective study of prospectively collected samples, 50 synovial fluid aspirates, 20 from the hip and 30 from the knee, were collected before surgery; 25 of the patients were diagnosed as having aseptic loosening (non-PJI) and 25, as having PJI according to the Musculoskeletal Infection Society criteria. A quadrupole orbital-trap mass spectrometry (MS) instrument was used to compare expression of proteins in patients with and without PJI. Proteins that were most efficacious for diagnosis of PJI were then determined using prediction analysis of microarray software and a random forest model. The most promising proteins were selected, and altered expression of these selected proteins was verified by ELISA (enzyme-linked immunosorbent assay) in an extended sample cohort. RESULTS A total of 256 proteins were significantly upregulated (≥3.0-fold) and 14 proteins were downregulated in synovial fluid of patients with PJI compared with patients without PJI. The 3 most promising proteins were lactoferrin (LTF), polymorphonuclear leukocyte serine protease 3 (PRTN3), and myeloid nuclear differentiation antigen (MNDA). When MS was used for diagnosis of PJI, the area under the curve was 0.9888 for LTF, 0.9488 for PRTN3, and 0.9632 for MNDA. ELISA results verified that LTF, MNDA, and PRTN3 were sensitive, while LTF and MNDA were specific, for diagnosis of PJI. CONCLUSIONS This proteomic study identified a previously noted protein and 2 novel candidate proteins as promising synovial fluid biomarkers for PJI diagnosis, and they should be further validated in future clinical trials. LEVEL OF EVIDENCE Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Chi Wang
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Qi Wang
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Rui Li
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Lei Song
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Qian Zhang
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center), Beijing Proteome Research Center, Beijing, People's Republic of China
| | - Jiying Chen
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Chengbin Wang
- Departments of Clinical Laboratory Medicine (Chi Wang, Q.W., Q.Z., and Chengbin Wang) and Orthopedics (Q.W., R.L., and J.C.), People's Liberation Army General Hospital, Beijing, People's Republic of China
| |
Collapse
|
5
|
Looking for a partner: ceruloplasmin in protein-protein interactions. Biometals 2019; 32:195-210. [PMID: 30895493 DOI: 10.1007/s10534-019-00189-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
Ceruloplasmin (CP) is a mammalian blood plasma ferroxidase. More than 95% of the copper found in plasma is carried by this protein, which is a member of the multicopper oxidase family. Proteins from this group are able to oxidize substrates through the transfer of four electrons to oxygen. The essential role of CP in iron metabolism in humans is particularly evident in the case of loss-of-function mutations in the CP gene resulting in a neurodegenerative syndrome known as aceruloplasminaemia. However, the functions of CP are not limited to the oxidation of ferrous iron to ferric iron, which allows loading of the ferric iron into transferrin and prevents the deleterious reactions of Fenton chemistry. In recent years, a number of novel CP functions have been reported, and many of these functions depend on the ability of CP to form stable complexes with a number of proteins.
Collapse
|
6
|
Chea C, Haing S, Miyauchi M, Shrestha M, Imanaka H, Takata T. Molecular mechanisms underlying the inhibitory effects of bovine lactoferrin on osteosarcoma. Biochem Biophys Res Commun 2018; 508:946-952. [PMID: 30545626 DOI: 10.1016/j.bbrc.2018.11.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 01/16/2023]
Abstract
Osteosarcoma (OS) is one the most common primary malignancies of the bone in children and young adults with high metastasis. The use of non-toxic naturally derived compounds is one of present strategies in OS therapy to reduce secondary effects and chemo-resistance. Lactoferrin (LF), a transferrin protein derived from milk, currently appears to be an anticancer agent. However, its suppressive effects on OS have not been fully investigated. Therefore, we aimed to examine the molecular mechanism underlying the inhibitory effects of bovine LF (bLF) on OS. OS cell lines (NOS1, U2OS, MG63, and 143B) and an osteoblastic (ST2) were treated with bLF. Effects of bLF on OS-cell proliferation and migration were examined by proliferation and wound-healing assays. Expression levels of low-density-lipoprotein-receptor-related protein 1 (LRP1) and cytokines including interleukin-1 beta (IL-1β), IL-6, and receptor-activator of nuclear factor kappa-Β ligand (RANKL) were measured using western blotting. Osteoclast formation was examined by co-culture of 143B, ST2, and bone marrow cells. We found that bLF down-regulated IL-1β, IL-6, and RANKL expression and suppressed phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 in 143B cells; bLF also drastically suppressed 143B-activated RANKL production in ST2 cells. This may have contributed to the reduction in the number of differentiated osteoclasts. Taken together, these data reveal that bLF down-regulates NF-κB to attenuate proliferation, migration, and bone resorption in OS and the OS-microenvironment. This study provides new findings and the precise underlying mechanisms of the inhibitory effects of bLF on OS. bLF can be a possible therapeutic agent for OS patients.
Collapse
Affiliation(s)
- Chanbora Chea
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Sivmeng Haing
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Oral Pathobiology, Faculty of Odonto-Stomatology, University of Health Sciences, 73 Preah Monivong Blvd, Phnom Penh, 12201, Cambodia
| | - Mutsumi Miyauchi
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Madhu Shrestha
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | | | - Takashi Takata
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
7
|
Bovine lactoferrin reverses programming of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition in oral squamous cell carcinoma. Biochem Biophys Res Commun 2018; 507:142-147. [PMID: 30415774 DOI: 10.1016/j.bbrc.2018.10.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a biological process of invasion and metastasis in cancers, including in oral squamous cell carcinoma (OSCC). However, an effective anticancer drug that directly targets EMT has not yet been discovered. Therefore, we aimed to investigate the repressive effects of bovine lactoferrin (bLF) on EMT to achieve mesenchymal-to-epithelial transition (MET) in OSCC. OSCC cell lines, HOC313 (EMT-induced) and SCCVII (without EMT induction), were treated with bLF. The effects of bLF on EMT in OSCC were identified histologically by haematoxylin and eosin staining and observed morphologically and immunohistochemically using an anti-E-cadherin antibody. Expression levels of E-cadherin and vimentin were investigated using RT-PCR and western blotting. Immuno-expression of E-cadherin was examined in vivo in tumour tissues of C3H/HeN mice, transplanted with SCCVII cells, with or without bLF administration. We found that bLF changed the spindle-like mesenchymal cells to cuboidal-like epithelial cells and enhanced the affinity of membrane-bound E-cadherin in HOC313 cells. The transformation of EMT-MET in HOC313 cells was confirmed by the upregulation of E-cadherin and suppression of vimentin. Moreover, bLF suppressed TWIST expression through downregulation of ERK1/2 phosphorylation. Additionally, the inhibition tumour cell infiltration and increase in E-cadherin expression were observed in xenografts of the mice orally administered with bLF. Thus, based on the results from in vitro and in vivo studies, we concluded that bLF caused the restoration of epithelial properties through MET. Importantly, this finding is novel and is the first report indicating that bLF inhibited EMT and induced MET in OSCC, suggesting that bLF may provide a novel therapeutic strategy in OSCC.
Collapse
|
8
|
Molecular mechanism of inhibitory effects of bovine lactoferrin on the growth of oral squamous cell carcinoma. PLoS One 2018; 13:e0191683. [PMID: 29381751 PMCID: PMC5790278 DOI: 10.1371/journal.pone.0191683] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Lactoferrin (LF), a member of the transferrin family, recently has been demonstrated to have anticancer effects on various cancers including oral squamous cell carcinoma (OSCC). However, little is known about the underlying mechanisms of its effects on OSCC. Therefore, we aimed to investigate the mechanism of the suppressive effects of bovine LF (bLF) on the growth of OSCC cells. Methods In the current study, HSC2, HSC3, HSC4 and normal human oral keratinocytes (RT7) cell lines were tested with bLF 1, 10, and 100 μg/ml. The effects and detail mechanisms of bLF on proliferation and apoptosis of cells were investigated using flow cytometry and western blotting. Results We found that bLF (1, 10, and 100 μg/ml) induced activation of p53, a tumor suppressor gene, is associated with the induction of cell cycle arrest in G1/S phase and apoptosis in OSCC. Moreover, bLF downregulated the phosphorylation of Akt and activated suppressor of cytokine signaling 3 (SOCS3), thereby attenuating multiple signaling pathways including mTOR/S6K and JAK/STAT3. Interestingly, we revealed that bLF exerted its effect selectively against HSC3 but not on RT7 via different effects on the phosphorylation status of NF-κB and Akt. Conclusion This is the first report showing that bLF selectively suppresses proliferation through mTOR/S6K and JAK/STAT3 pathways and induction of apoptosis in OSCC. This study provides important new findings, which might be useful in the prevention and treatment of OSCC.
Collapse
|
9
|
Significant antibacterial activity and synergistic effects of camel lactoferrin with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Res Microbiol 2016; 167:480-91. [DOI: 10.1016/j.resmic.2016.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022]
|
10
|
Rasheed N, Alghasham A, Rasheed Z. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes. Pharmacognosy Res 2016; 8:135-41. [PMID: 27034605 PMCID: PMC4780140 DOI: 10.4103/0974-8490.175612] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes. Lactoferrin inhibits IL-1β-induced NF-κB activation. Lactoferrin inhibits production of cartilage degrading PGE2 via inhibition of COX-2 expression.
Abbreviations Used: OA: Osteoarthritis IL-1β: Interleukin-1 beta NF-κB: Nuclear factor-kappa B COX-2: cyclooxygenase-2 PGE2: prostaglandin E2
Collapse
Affiliation(s)
- Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah Alghasham
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, KSA
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
11
|
A Novel Murine Anti-Lactoferrin Monoclonal Antibody Activates Human Polymorphonuclear Leukocytes through Membrane-Bound Lactoferrin and TLR4. BIOMED RESEARCH INTERNATIONAL 2015; 2015:285237. [PMID: 26649297 PMCID: PMC4662965 DOI: 10.1155/2015/285237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Soluble lactoferrin (LTF) is a versatile molecule that not only regulates the iron homeostasis, but also harbors direct microbicidal and immunomodulating abilities in mammalian body fluids. In contrast, little is known about the function of membrane-bound LTF (mbLTF), although its expression on human polymorphonuclear leukocytes (huPMNs) has been reported for decades. Given that LTF/anti-LTF antibodies represent a potential diagnostic/prognostic biomarker and a therapeutic target in patients with immune disorders, we wished, in the present study, to generate a novel human LTF- (huLTF-) specific mAb suitable for detailed analyses on the expression and function of mbLTF as well as for deciphering the underlying mechanisms. By using the traditional hybridoma cell fusion technology, we obtained a murine IgG1 (kappa) mAb, M-860, against huLTF. M-860 recognizes a conformational epitope of huLTF as it binds to natural, but not denatured, huLTF in ELISA. Moreover, M-860 detects mbLTF by FACS and captures endogenous huLTF in total cell lysates of huPMNs. Functionally, M-860 induces the activation of huPMNs partially through TLR4 but independently of phagocytosis. M-860 is thus a powerful tool to analyze the expression and function of human mbLTF, which will further our understanding of the roles of LTF in health and disease.
Collapse
|
12
|
Kostevich VA, Sokolov AV, Grudinina NA, Zakharova ET, Samygina VR, Vasilyev VB. Interaction of macrophage migration inhibitory factor with ceruloplasmin: role of labile copper ions. Biometals 2015; 28:817-26. [DOI: 10.1007/s10534-015-9868-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
|
13
|
Abstract
Lactoferrin is one of a number of multifunctional proteins that are present in or on all mucosal surfaces throughout the body. Levels of lactoferrin are consistently elevated in inflammatory diseases such as arthritis, inflammatory bowel diseases, corneal disease, and periodontitis. Single-nucleotide polymorphisms (SNPs) in lactoferrin have been shown to be present in individuals susceptible to Escherichia coli-induced travelers' diarrhea and in tear fluid derived from virally associated corneal disease. Here, we review data showing a lactoferrin SNP in amino acid position 29 in the antimicrobial region of lactoferrin that acts against caries associated bacteria. This SNP was initially discovered in African American subjects with localized aggressive periodontitis (LAP) who had proximal bone loss but minimal proximal caries. Results were confirmed in a genetic association study of children from Brazil with this same SNP who showed a reduced level of caries. In vitro data indicate that lactoferrin from whole saliva derived from subjects with this SNP, recombinant human lactoferrin containing this SNP, or an 11-mer peptide designed for this SNP kills mutans streptococci associated with caries by >1 log. In contrast, the SNP has minimal effect on Gram-negative species associated with periodontitis. Moreover, periodontally healthy subjects homozygous for this lysine (K) SNP have lactoferrin in their saliva that kills mutans streptococci and have reduced proximal decay. The review summarizes data supporting the ecologic plaque hypothesis and suggests that a genetic variant in lactoferrin with K in position 29 when found in saliva and crevice fluid can influence community biofilm composition. We propose that, for caries, this SNP is ethnicity independent and protective by directly killing caries-provoking bacteria (reducing proximal decay). However, the clinical effect of this SNP in LAP is ethnicity dependent, destructive (increases LAP incidence), and complex with mechanisms still to be determined.
Collapse
Affiliation(s)
- D H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| |
Collapse
|
14
|
Hajishengallis G, Russell MW. Innate Humoral Defense Factors. Mucosal Immunol 2015. [PMCID: PMC7149745 DOI: 10.1016/b978-0-12-415847-4.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although innate immunity came into the research spotlight in the late 1990s when its instructive role in the adaptive immune response was recognized, innate humoral defense factors have a much older history. The exocrine secretions of the body contain a plethora of distinct soluble factors (lysozyme, lactoferrin, peroxidases, proline-rich proteins, histatins, etc.) that protect the body from mucosal microbial pathogens. More recent studies have established that the humoral arm of innate immunity contains a heterogeneous group of pattern-recognition molecules (e.g., pentraxins, collectins, and ficolins), which perform diverse host-defense functions, such as agglutination and neutralization, opsonization, control of inflammation, and complement activation and regulation. These pattern-recognition molecules, which act as functional predecessors of antibodies (“ante-antibodies”), and the classic soluble innate defense factors form an integrated system with complementary specificity, action, and tissue distribution, and they are the subject of this chapter.
Collapse
|
15
|
Samarasinghe RM, Kanwar RK, Kanwar JR. The effect of oral administration of iron saturated-bovine lactoferrin encapsulated chitosan-nanocarriers on osteoarthritis. Biomaterials 2014; 35:7522-34. [DOI: 10.1016/j.biomaterials.2014.04.109] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/27/2014] [Indexed: 02/09/2023]
|
16
|
Aerosolized bovine lactoferrin reduces lung injury and fibrosis in mice exposed to hyperoxia. Biometals 2014; 27:1057-68. [PMID: 24842100 DOI: 10.1007/s10534-014-9750-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/05/2014] [Indexed: 12/28/2022]
Abstract
This study investigated the ability of aerosolized bovine lactoferrin (bLF) to protect the lungs from injury induced by chronic hyperoxia. Female CD-1 mice were exposed to hyperoxia (FiO2 = 80 %) for 7 days to induce lung injury and fibrosis. The therapeutic effects of bLF, administered via an aerosol delivery system, on the chronic lung injury induced by this period of hyperoxia were measured by bronchoalveolar lavage, lung histology, cell apoptosis, and inflammatory cytokines in the lung tissues. After exposure to hyperoxia for 7 days, the survival of the mice was significantly decreased to 20 %. The protective effects of bLF against hyperoxia were further confirmed by significant reductions in lung edema, total cell numbers in bronchoalveolar lavage fluid, inflammatory cytokines (IL-1β and IL-6), pulmonary fibrosis, and apoptotic DNA fragmentation. The aerosolized bLF protected the mice from oxygen toxicity and increased the survival fraction to 66.7 % in the hyperoxic model. The results support the use of an aerosol therapy with bLF in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure or chronic obstructive pulmonary disease.
Collapse
|
17
|
Lactoferrin inhibits infection-related osteoclastogenesis without interrupting compressive force-related osteoclastogenesis. Arch Oral Biol 2014; 59:226-32. [DOI: 10.1016/j.archoralbio.2013.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/27/2013] [Accepted: 11/03/2013] [Indexed: 01/28/2023]
|
18
|
Ahmadinia K, Yan D, Ellman M, Im HJ. The anti-catabolic role of bovine lactoferricin in cartilage. Biomol Concepts 2013; 4:495-500. [DOI: 10.1515/bmc-2013-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/21/2013] [Indexed: 11/15/2022] Open
Abstract
AbstractBovine lactoferricin (LfcinB) is a multifunctional peptide derived from bovine lactoferrin that demonstrates antibacterial, antifungal, antiviral, antitumor, and immunomodulatory activities. Recently, studies have focused on the anti-catabolic and anti-inflammatory potential of LfcinB. LfcinB is able to modulate the effects cytokines such as IL-1 and fibroblast growth factor 2 as well as promote specific cartilage anabolic factors. These properties are particularly important in maintaining cartilage homeostasis and preventing a catabolic state, which leads to clinical pathology. This review focuses on the recent literature elucidating the role of LfcinB in preventing cartilage degradation.
Collapse
Affiliation(s)
| | - Dongyao Yan
- 1Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison, Chicago, IL, USA
| | - Michael Ellman
- 2Department of Orthopedic Surgery, Rush University Medical Center, 1735 W. Harrison, Chicago, IL, USA
| | | |
Collapse
|
19
|
Kawazoe A, Inubushi T, Miyauchi M, Ishikado A, Tanaka E, Tanne K, Takata T. Orally Administered Liposomal Lactoferrin Inhibits Inflammation-Related Bone Breakdown Without Interrupting Orthodontic Tooth Movement. J Periodontol 2013; 84:1454-62. [DOI: 10.1902/jop.2012.120508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Lee A, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, Im HJ. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 2013; 527:440-7. [PMID: 23830938 PMCID: PMC3745800 DOI: 10.1016/j.gene.2013.05.069] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/27/2013] [Indexed: 01/19/2023]
Abstract
Osteoarthritis afflicts millions of individuals across the world resulting in impaired quality of life and increased health costs. To understand this disease, physicians have been studying risk factors, such as genetic predisposition, aging, obesity, and joint malalignment; however have been unable to conclusively determine the direct etiology. Current treatment options are short-term or ineffective and fail to address pathophysiological and biochemical mechanisms involved with cartilage degeneration and the induction of pain in arthritic joints. OA pain involves a complex integration of sensory, affective, and cognitive processes that integrate a variety of abnormal cellular mechanisms at both peripheral and central (spinal and supraspinal) levels of the nervous system Through studies examined by investigators, the role of growth factors and cytokines has increasingly become more relevant in examining their effects on articular cartilage homeostasis and the development of osteoarthritis and osteoarthritis-associated pain. Catabolic factors involved in both cartilage degradation in vitro and nociceptive stimulation include IL-1, IL-6, TNF-α, PGE2, FGF-2 and PKCδ, and pharmacologic inhibitors to these mediators, as well as compounds such as RSV and LfcinB, may potentially be used as biological treatments in the future. This review explores several biochemical mediators involved in OA and pain, and provides a framework for the understanding of potential biologic therapies in the treatment of degenerative joint disease in the future.
Collapse
Affiliation(s)
- Andrew Lee
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Michael B Ellman
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Dongyao Yan
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Jeffrey S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612
| | - Brian J Cole
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery & Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
- Department of Internal Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612
- Department of Bioengineering, University of Illinois, Chicago, IL 60612
| |
Collapse
|
21
|
Kim JS, Ellman MB, Yan D, An HS, Kc R, Li X, Chen D, Xiao G, Cs-Szabo G, Hoskin DW, Buechter DD, Van Wijnen AJ, Im HJ. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc. J Cell Physiol 2013; 228:1884-96. [PMID: 23460134 DOI: 10.1002/jcp.24350] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/08/2013] [Indexed: 12/11/2022]
Abstract
The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production, and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Section of Rheumatology, Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ellman MB, Kim J, An HS, Chen D, Kc R, Li X, Xiao G, Yan D, Suh J, van Wijnen AJ, Wang JHC, Kim SG, Im HJ. Lactoferricin enhances BMP7-stimulated anabolic pathways in intervertebral disc cells. Gene 2013; 524:282-91. [PMID: 23644135 PMCID: PMC3679319 DOI: 10.1016/j.gene.2013.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 01/07/2023]
Abstract
Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral disc (IVD) matrix and cell homeostasis. Similarly, Lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the gene expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of Noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of Noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration.
Collapse
Affiliation(s)
- Michael B Ellman
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Jaesung Kim
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Howard S An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Ranjan Kc
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Guozhi Xiao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Dongyao Yan
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Joon Suh
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Andre J. van Wijnen
- Center of Regenerative Medicine and Departments of Orthopedic Surgery & Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - James H-C Wang
- MechanoBiology Laboratory, Departments of Orthopedic Surgery and Bioengineering, University of Pittsburgh, PA 15213, USA
| | - Su-Gwan Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, GwangJu City, Republic of Korea, 501-759
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
- Department of Internal Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612
- Department of Bioengineering, University of Illinois at Chicago, IL 60612
| |
Collapse
|
23
|
Healthy Multifunctional Spectra of Milk Glycoproteins and Their Fragments – a Review Article. POL J FOOD NUTR SCI 2012. [DOI: 10.2478/v10222-012-0053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Inubushi T, Kawazoe A, Miyauchi M, Kudo Y, Ao M, Ishikado A, Makino T, Takata T. Molecular mechanisms of the inhibitory effects of bovine lactoferrin on lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem 2012; 287:23527-36. [PMID: 22593578 DOI: 10.1074/jbc.m111.324673] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactoferrin (LF) is an important modulator of the immune response and inflammation. It has also been implicated in the regulation of bone tissue. In our previous study we demonstrated that bovine LF (bLF) reduces LPS-induced bone resorption through a reduction of TNF-α production in vivo. However, it was not known how bLF inhibits LPS-mediated TNF-α and RANKL (receptor activator of nuclear factor κB ligand) production in osteoblasts. In this study we show that bLF impairs LPS-mediated TNF-α and RANKL production. bLF inhibited LPS-mediated osteoclastogenesis via osteoblasts in a co-culture system. Furthermore, bLF pretreatment inhibited LPS-induced NFκB DNA binding activity as well as IκBα and IKKβ (IκB kinase β) phosphorylation. MAP kinase activation was also inhibited by bLF pretreatment. However, bLF pretreatment failed to block the degradation of IRAK1 (interleukin-1 receptor-associated kinase 1), which is an essential event after its activation. Remarkably, we found that bLF pretreatment inhibited LPS-mediated Lys-63-linked polyubiquitination of TNF receptor-associated factor 6 (TRAF6). We also found that bLF is mainly endocytosed through LRP1 (lipoprotein receptor-related protein-1) and intracellular distributed bLF binds to endogenous TRAF6. In addition, bLF inhibited IL-1β- and flagellin-induced TRAF6-dependent activation of the NFκB signaling pathway. Collectively, our findings demonstrate that bLF inhibits NFκB and MAP kinase activation, which play critical roles in chronic inflammatory disease by interfering with the TRAF6 polyubiquitination process. Thus, bLF could be a potent therapeutic agent for inflammatory diseases associated with bone destruction, such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
It is now some 50 years since iron-binding lactoferrin was first isolated and purified, an event that opened the way to subsequent extensive research on lactoferrin structure and function. The initial recognition that lactoferrin closely resembled the plasma iron-transport protein transferrin meant that lactoferrin was first thought to mediate intestinal iron absorption or to act as an antimicrobial agent. It was also suggested that it could mediate the hyposideraemia of inflammation. This paper will assess to what extent early proposals have stood the test of time and also suggest possible mechanisms by which lactoferrin can mediate the large number of potential functions that have subsequently been proposed. It will also review the ability of lactoferrin to resist digestion in the gastrointestinal tract and identify areas for future research.
Collapse
Affiliation(s)
- Jeremy H Brock
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
26
|
Ochoa TJ, Pezo A, Cruz K, Chea-Woo E, Cleary TG. Clinical studies of lactoferrin in children. Biochem Cell Biol 2012; 90:457-67. [PMID: 22380791 DOI: 10.1139/o11-087] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Much has been learned in recent years about the mechanisms by which breastfeeding improves child health and survival. However, there has been little progress in using these insights to improve pediatric care. The aim of this study was to review all clinical studies of lactoferrin (LF) in children in an effort to determine which interventions may improve pediatric care or require further research. We conducted a systematic and critical review of published literature and found 19 clinical studies that have used human or bovine LF for different outcomes: iron metabolisms and anemia (6 studies), fecal flora (5 studies), enteric infections (3 studies), common pediatric illnesses (1 study), immunomodulation (3 studies), and neonatal sepsis (1 study). Although the efficacies have varied in each trial, the main finding of all published studies is the safety of the intervention. Protection against enteric infections and neonatal sepsis are the most likely biologically relevant activities of LF in children. Future studies on neonatal sepsis should answer critically important questions. If the data from these sepsis studies are proven to be correct, it will profoundly affect the treatment of low birth weight neonates and will aid in the reduction of child mortality worldwide.
Collapse
Affiliation(s)
- Theresa J Ochoa
- Department of Pediatrics, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porras, Lima 33, Perú.
| | | | | | | | | |
Collapse
|
27
|
Legrand D. Lactoferrin, a key molecule in immune and inflammatory processes. Biochem Cell Biol 2011; 90:252-68. [PMID: 22136726 DOI: 10.1139/o11-056] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lactoferrin (Lf) belongs to the family of antimicrobial molecules that constitute the principal defense line of nonvertebrate organisms. In human immunity, their roles are considerably extended, and actually exceed mere direct antimicrobial properties. As a result, Lf is involved in both innate and adaptive immunities where its modulating effects not only help the host fight against microbes but also protect the host against harmful effects of inflammation. Such beneficial effects have been noticed in studies using dietary Lf, without the experimenters always explaining the exact modes of action of Lf. Effects on mucosal and systemic immunities are indeed often observed, which make the roles of Lf tricky to decipher. It is now known that the immunomodulatory properties of Lf are due to its ability to interact with numerous cellular and molecular targets. At the cellular level, Lf modulates the migration, maturation, and functions of immune cells. At the molecular level, in addition to iron binding, interactions of Lf with a plethora of compounds, either soluble or cell-surface molecules, account for its modulatory properties. This paper reviews our current understanding of the mechanisms that explain the regulatory properties of Lf in immune and inflammatory processes.
Collapse
Affiliation(s)
- Dominique Legrand
- UMR 8576 CNRS / Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, IFR 147, F-59650 Villeneuve d'Ascq, France.
| |
Collapse
|
28
|
Moutinho CG, Matos CM, Teixeira JA, Balcão VM. Nanocarrier possibilities for functional targeting of bioactive peptides and proteins: state-of-the-art. J Drug Target 2011; 20:114-41. [PMID: 22023555 DOI: 10.3109/1061186x.2011.628397] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review attempts to provide an updated compilation of studies reported in the literature pertaining to production of nanocarriers encasing peptides and/or proteins, in a way that helps the reader direct a bibliographic search and develop an integrated perspective of the subject. Highlights are given to bioactive proteins and peptides, with a special focus on those from dairy sources (including physicochemical characteristics and properties, and biopharmaceutical application possibilities of e.g. lactoferrin and glycomacropeptide), as well as to nanocarrier functional targeting. Features associated with micro- and (multiple) nanoemulsions, micellar systems, liposomes and solid lipid nanoparticles, together with biopharmaceutical considerations, are presented in the text in a systematic fashion.
Collapse
Affiliation(s)
- Carla G Moutinho
- Bioengineering and Biopharmaceutical Chemistry Research Group, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| | | | | | | |
Collapse
|
29
|
Abstract
INTRODUCTION Recently, pharmacotherapy has advanced extensively, but there are still many refractory diseases which cannot be solved fully by existing therapeutic agents. Therefore, alternative medicine and health foods are now attracting much attention, for example, lactoferrin (LF): a multifunctional glycoprotein. As LF is non-toxic and low-cost, its application in healthcare and therapeutics is expected to be widespread. AREAS COVERED In this review, LF's general basic features are described. The interaction of LF with its receptors activates the immune system, including cytokine production and balance. In particular, the immune activation of orally administered LF is considered as a new strategy for the treatment of refractory diseases, such as inflammatory bowel disease, virus infection and tumor metastasis. Also mentioned are the problems associated with the use of LF. As LF is degraded rapidly in the body due to enzymatic hydrolysis, high amounts or frequent dosing is required; an appropriate delivery system may improve these problems and increase its efficiency. EXPERT OPINION Chemical modifications, such as PEGylation, can enhance the stability of LF in the body, resulting in increased efficacy. Also, liposomes and enteric or microparticulate formulations can promote the function of LF in oral administration due to target site delivery and protection of LF from enzymatic hydrolysis. These delivery systems are expected to improve the utility of LF.
Collapse
Affiliation(s)
- Hiraku Onishi
- Hoshi University, Department of Drug Delivery Research, Ebara, Shinagawa-ku, Tokyo, Japan.
| |
Collapse
|
30
|
Bou-Abdallah F, Terpstra TR. The thermodynamic and binding properties of the transferrins as studied by isothermal titration calorimetry. Biochim Biophys Acta Gen Subj 2011; 1820:318-25. [PMID: 21843602 DOI: 10.1016/j.bbagen.2011.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/16/2011] [Accepted: 07/21/2011] [Indexed: 02/01/2023]
Abstract
BACKGROUND In mammals, serum-transferrins transport iron from the neutral environment of the blood to the cytoplasm by receptor-mediated endocytosis. Extensive in-vitro studies have focused on the thermodynamics and kinetics of Fe(3+) binding to a number of transferrins. However, little attention has been given to the thermodynamic characterization of the interaction of transferrin with its receptor. SCOPE OF REVIEW Iron-loaded transferrin (Tf) binds with high affinity to the specific transferrin receptor (TfR) on the cell surface. The Tf-TfR complex is then internalized via receptor mediated endocytosis into an endosome where iron is released. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of various metal ions with transferrin and highlight our current understanding of the thermodynamics of the transferrin-transferrin receptor system at physiological pH. GENERAL SIGNIFICANCE The interaction of the iron-loaded transferrin with the transferrin receptor is a key cellular process that occurs during the normal course of iron metabolism. Understanding the thermodynamics of this interaction is important for iron homeostasis since the physiological requirement of iron must be appropriately maintained to avoid iron-related diseases. MAJOR CONCLUSIONS The thermodynamic data revealed stoichiometric binding of all tested metal ions to transferrin with very high affinities ranging between 10(17) and 10(22)M(-1). Iron-loaded transferrin (monoferric or diferric) is shown to bind avidly (K~10(7)-10(8)M(-1)) to the receptor at neutral pH with a stoichiometry of one Tf molecule per TfR monomer. Significantly, both the N- and the C-lobe contribute to the binding interaction which is shown to be both enthalpically and entropically driven. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA.
| | | |
Collapse
|
31
|
van den Hoven JM, Van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, Storm G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm 2011; 8:1002-15. [PMID: 21634436 DOI: 10.1021/mp2000742] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liposomes have been extensively investigated as drug delivery systems in the treatment of rheumatoid arthritis (RA). Low bioavailability, high clearance rates and limited selectivity of several important drugs used for RA treatment require high and frequent dosing to achieve sufficient therapeutic efficacy. However, high doses also increase the risk for systemic side effects. The use of liposomes as drug carriers may increase the therapeutic index of these antirheumatic drugs. Liposomal physicochemical properties can be changed to optimize penetration through biological barriers and retention at the site of administration, and to prevent premature degradation and toxicity to nontarget tissues. Optimal liposomal properties depend on the administration route: large-sized liposomes show good retention upon local injection, small-sized liposomes are better suited to achieve passive targeting. PEGylation reduces the uptake of the liposomes by liver and spleen, and increases the circulation time, resulting in increased localization at the inflamed site due to the enhanced permeability and retention (EPR) effect. Additionally liposomal surfaces can be modified to achieve selective delivery of the encapsulated drug to specific target cells in RA. This review gives an overview of liposomal drug formulations studied in a preclinical setting as well as in clinical practice. It covers the use of liposomes for existing antirheumatic drugs as well as for new possible treatment strategies for RA. Both local administration of liposomal depot formulations and intravenous administration of passively and actively targeted liposomes are reviewed.
Collapse
|
32
|
Tuccari G, Barresi G. Lactoferrin in human tumours: immunohistochemical investigations during more than 25 years. Biometals 2011; 24:775-84. [PMID: 21472415 DOI: 10.1007/s10534-011-9450-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/28/2011] [Indexed: 01/15/2023]
Abstract
Lactoferrin (LF) is an iron-binding glycoprotein of the transferrin family, today known to have multifunctional physiological activities. In humans, under normal conditions, LF has been found in blood, mucosal secretions, gastrointestinal fluids, urine and mostly in milk and colostrum. The first pioneering immunohistochemical report about LF distribution in human tissues dated in 1978; successively, many studies have been performed to analyze the LF immunohistochemical pattern in different normal and neoplastic tissues. In this review, we present data from literature concerning the evidence of LF in tumors together with those by us obtained during more than 25 years; the immunohistochemical applications to human neoplastic tissues have been done to investigate the LF pathogenetic role as well as its activity in cancer. After a systematic analysis of LF immunoreactivity in different human districts, a possible explanation for its presence and function has been modulated for each site or tissue, according to experimental evidences obtained either by in vivo as well as by in vitro studies.
Collapse
Affiliation(s)
- Giovanni Tuccari
- Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria "Policlinico G.Martino", Via Consolare Valeria, 98125 Messina, Italy.
| | | |
Collapse
|
33
|
Ishikado A, Uesaki S, Suido H, Nomura Y, Sumikawa K, Maeda M, Miyauchi M, Takata T, Makino T. Human trial of liposomal lactoferrin supplementation for periodontal disease. Biol Pharm Bull 2011; 33:1758-62. [PMID: 20930389 DOI: 10.1248/bpb.33.1758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
New approaches to periodontal health have been in strong demand in addition to conventional local plaque control. In this study, liposomal bovine lactoferrin (L-bLF) was orally administered to subjects with periodontal disease to investigate whether it could be a useful treatment. L-bLF composed of soy phosphatidylcholine was given as a supplement for four weeks in tablet form (180 mg bLF/d) to twelve subjects with multiple sites of more than 3 mm probing depth (PD). PD, bleeding on probing (BOP), gingival crevicular fluid (GCF) volume and the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1 (MCP-1) in GCF were evaluated for 51 sites with more than 4 mm PD in five subjects. Blood samples of all subjects were collected 0, 2 and 4 weeks after supplementation. Isolated peripheral blood mononuclear cells (PBMCs) were incubated for 24 h with or without lipopolysaccharide (LPS) (100 ng/ml) from Porphyromonas gingivalis, and TNF-α, IL-1β, IL-6 and MCP-1 in the culture media were measured. Toll-like receptor 2 (TLR2) and TLR4 mRNA expressions of isolated PBMCs were also quantitatively analyzed using real-time reverse transcription-polymerase chain reaction (RT-PCR). The PD was significantly reduced by L-bLF supplementation, but the BOP and GCF volume were not significantly changed. The MCP-1 level in GCF was significantly reduced, while levels of other cytokines were not changed. Four-week L-bLF supplementation also showed significant decreases of LPS-induced cytokine production from PBMCs. Relative gene expressions of TLR2 and TLR4 did not change. These results suggest that L-bLF supplementation can be effective in the treatment of periodontal disease, although prospective controlled large-scale studies are required.
Collapse
|
34
|
Inhibitory effects of orally administrated liposomal bovine lactoferrin on the LPS-induced osteoclastogenesis. J Transl Med 2010; 90:1236-46. [PMID: 20421871 DOI: 10.1038/labinvest.2010.80] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bovine lactoferrin (bLF) modulates the production of proinflammatory cytokines including tumor necrosis factor (TNF)-alpha, and may thus control alveolar bone destruction associated with periodontitis. In this study, the effects of bLF on mRNA expression in lipopolysaccharide (LPS)-stimulated osteoblasts (OBs) and on LPS-induced osteoclastogenesis were examined. The inhibitory effects of oral administration of liposomal-bLF (L-bLF), which improved the robustness of bLF to digestive enzymes, on alveolar bone resorption using LPS-induced periodontitis rat model are also reported. Three groups of 7-week-old male Wistar rats were treated with L-bLF (L-bLF group), bLF (bLF group), or the vehicle (control group) in drinking water (n=6 in each group). On day 7, LPS was topically applied into the gingival sulcus. Number of osteoclasts and immunoexpression of TNF-alpha were analyzed. The bLF inhibited the upregulation of TNF-alpha-mRNA- and upregulation of receptor activator of NF kappaB (RANKL)-mRNA expression and eliminated downregulation of osteoprotegerin (OPG)-mRNA expression in LPS-stimulated OBs and reduced LPS-induced osteoclastogenesis in co-culture with primary OBs and bone marrow cells. In the control group, the number of osteoclasts increased after LPS treatment. The number of osteoclasts that appeared along the alveolar bone margin was significantly reduced (P<0.01) in the L-bLF but not in the bLF group. Furthermore, L-bLF suppressed upregulation of TNF-alpha immunoexpression in periodontal tissue and TNF-alpha and interleukin (IL)-1 beta-mRNA level in gingival tissue. The results of this study indicate that oral administration of L-bLF significantly reduces alveolar bone resorption induced by LPS stimulation through inhibition of TNF-alpha production and modulation of RANKL/OPG balance in OBs. It is suggested that L-bLF could be a potent therapeutic and preventive agent for attenuating alveolar bone destruction in periodontitis patients.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Until relatively recently, the only significant source of lactoferrin in the diet was human lactoferrin, provided in breast milk. Today, however, bovine lactoferrin, isolated by dairy technology, as well as recombinant human lactoferrin are commercially available and can be added to foods and clinical products with perceived benefits to the consumer. In this review, the potential biological functions of dietary lactoferrin are described and critically examined. RECENT FINDINGS Ingested lactoferrin has been suggested to exert antibacterial and antiviral activities in the intestine, in part through a direct effect on pathogens, but possibly also affecting mucosal immune function. The latter function is most likely mediated by lactoferrin being taken up by cells via a unique receptor-mediated pathway and affecting gene transcription. Lactoferrin has also been shown to enhance iron status of infants and pregnant women, possibly also via the receptor-mediated pathway. In addition, lactoferrin can stimulate intestinal cell proliferation and differentiation, causing expansion of tissue mass and absorptive capacity. On the contrary, lactoferrin has been shown to inhibit carcinogenesis. Recent findings also suggest that oral lactoferrin treatment may have an anti-inflammatory effect on pregnant women, reducing pregnancy complications. SUMMARY Lactoferrin treatment may have beneficial preventive and therapeutic effects on infection, inflammation, and cancer as well as enhancing iron status and growth in vulnerable groups.
Collapse
Affiliation(s)
- Bo Lönnerdal
- Department of Nutrition, University of California, Davis, California 95616, USA.
| |
Collapse
|
36
|
Trif M, Roseanu A, Brock JH, Brewer JM. Designing Lipid Nanostructures for Local Delivery of Biologically Active Macromolecules. J Liposome Res 2008; 17:237-48. [DOI: 10.1080/08982100701530027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Wong SH, Francis N, Chahal H, Raza K, Salmon M, Scheel-Toellner D, Lord JM. Lactoferrin is a survival factor for neutrophils in rheumatoid synovial fluid. Rheumatology (Oxford) 2008; 48:39-44. [PMID: 19029133 PMCID: PMC2639483 DOI: 10.1093/rheumatology/ken412] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Lactoferrin is an iron-binding protein that is released from activated neutrophils at sites of inflammation and has anti-microbial as well as anti-inflammatory properties. This study set out to determine whether lactoferrin can delay neutrophil apoptosis and could act as a survival factor for neutrophils in SF. METHODS Human peripheral blood and SF neutrophils were incubated with iron-free lactoferrin and apoptosis determined after 9 h. SF from patients with RA was added to isolated neutrophils, with or without immunodepletion of lactoferrin, and effects on neutrophil apoptosis determined. Levels of lactoferrin in SF were assessed and related to disease duration and markers of disease activity. RESULTS Iron-free lactoferrin significantly delayed apoptosis of peripheral blood neutrophils, in a concentration-dependent manner after 9 h in culture (P < 0.04). Lactoferrin could also delay apoptosis of neutrophils isolated from SF of patients with RA. SF from patients with established RA delayed apoptosis of peripheral blood neutrophils and this effect was significantly reduced by depletion of lactoferrin (P < 0.03). Lactoferrin levels in SF from patients with established RA did not correlate with disease severity, but did correlate with markers of inflammation (CRP) and with the presence of RF. SF from patients with arthritis of <12 weeks duration did not contain significant levels of lactoferrin. CONCLUSION Lactoferrin contributes to extended neutrophil survival in the rheumatoid joint in the established phase of RA but not in very early arthritis.
Collapse
Affiliation(s)
- S H Wong
- Rheumatology Research Group, MRC Centre for Immune Regulation, Institute of Biomedical Research, Birmingham University, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Vanniasinghe AS, Bender V, Manolios N. The potential of liposomal drug delivery for the treatment of inflammatory arthritis. Semin Arthritis Rheum 2008; 39:182-96. [PMID: 18926560 DOI: 10.1016/j.semarthrit.2008.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 07/23/2008] [Accepted: 08/09/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To review the use of liposomes as a delivery agent in inflammatory arthritis. METHODS The literature on liposomes and liposomal drug delivery for the treatment of inflammatory arthritis was reviewed. A PubMed search of articles in the English-language journals from 1965 to 2007 was performed. The index words used were as follows: "rheumatoid arthritis," "liposomes," and "targeted delivery." Papers identified were reviewed, abstracted, and summarized. RESULTS Liposomes have the capacity to be used as delivery and targeting agents for the administration of antirheumatic drugs at lower doses with reduced toxicity. In other areas of medicine, the pace of progress has been rapid. In the case of infectious diseases and cancer, liposomal drug delivery has progressed and developed into commercially viable therapeutic options for the treatment of fungal infections (amphotericin B), or metastatic breast cancer and Kaposi sarcoma (doxorubicin, daunorubicin), respectively. In arthritis, the efficacy of prednisolone-loaded long-circulating liposomes is currently being evaluated in a phase II clinical trial. Liposome's application to arthritis is still in its infancy but appears promising as new patents are filed. With improvements in liposomal formulation and targeted synovial delivery, liposomes offer increased therapeutic activity and improvement in the risk-benefit ratio. CONCLUSION Recent research into synovial targets and improved liposomal formulations continues to improve our capacity to use liposomes for targeted delivery. With time, this approach has the potential to improve drug delivery and reduce systemic complications.
Collapse
Affiliation(s)
- Anne S Vanniasinghe
- University of Sydney, Department of Rheumatology, Westmead Hospital, Westmead, Australia
| | | | | |
Collapse
|
39
|
Krissansen GW. Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr 2008; 26:713S-23S. [PMID: 18187438 DOI: 10.1080/07315724.2007.10719652] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nursery rhyme "Little Miss Muffet sat on a tuffet (small stool) eating her curds and whey. ..." is recognition of the fact that over the centuries "curds and whey", the two major components of cow's milk, have been widely accepted as part of a healthy diet. Milk provides complete nourishment for the neonate for six months from birth, containing factors that help develop various organ systems including the brain, immune system, and the intestine. Importantly it provides immune protection at a time when the neonates own immune system, though fully developed, is albeit immature. Many adult consumers include cow's milk as part of a healthy diet as it provides protein and essential nutrients, vitamins, and minerals, in particular calcium for strong bones. There is a growing appreciation that milk, and in particular whey, contains components that not only provide nutrition, but can also prevent and attenuate disease, or augment conventional therapies, when delivered in amounts that exceed normal dietary intakes. This paper reviews the emerging health properties of whey proteins and their clinical implications.
Collapse
Affiliation(s)
- Geoffrey W Krissansen
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
40
|
‘Iron‐saturated’ lactoferrin is a potent natural adjuvant for augmenting cancer chemotherapy. Immunol Cell Biol 2008; 86:277-88. [DOI: 10.1038/sj.icb.7100163] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Lactoferrin Structure and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 606:163-94. [DOI: 10.1007/978-0-387-74087-4_6] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Hartog A, Leenders I, van der Kraan PM, Garssen J. Anti-inflammatory effects of orally ingested lactoferrin and glycine in different zymosan-induced inflammation models: evidence for synergistic activity. Int Immunopharmacol 2007; 7:1784-92. [PMID: 17996689 DOI: 10.1016/j.intimp.2007.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
There is a growing awareness of the interaction of food constituents with the immune system. The present study aims to evaluate the anti-inflammatory effects of two of these nutritional components (glycine and bovine-lactoferrin (b-LF)) using two different mouse models. In a zymosan-induced ear-skin inflammation model both components decreased the inflammatory response locally (ear swelling and inflammatory cytokine concentration in the ears) and systemically (number of TNF-alpha producing spleen cells). Glycine effects (20, 50 or 100 mg/mouse/day) were concentration dependent. B-LF (0.1 or 1 mg/mouse/day) inhibited the inflammatory response although higher doses (5 and 25 mg/mouse/day) were not effective. A combination of b-LF 0.1 mg/mouse/day and glycine 20 or 50 mg/mouse/day counteracted the zymosan-induced ear swelling synergistically and enhanced the decrease in the number of TNF-alpha producing spleen cells of the individual components. In a zymosan-induced acute arthritis model glycine (50 mg/mouse/day) inhibited joint swelling, inflammatory cell infiltration and cartilage proteoglycan depletion. A b-LF dose of 5 mg/mouse/day reduced the zymosan-induced joint swelling without modulating inflammatory cell infiltration and cartilage proteoglycan depletion. The present study indicates that the anti-inflammatory effects of glycine are independent of the used models. B-LF displays a reversed concentration dependency and the activity is model dependent. A combination of glycine and lactoferrin demonstrated a synergistic anti-inflammatory effect on zymosan-induced skin inflammation and an enhanced decrease in the number of TNF-alpha producing spleen cells compared to the effect of the single components. Therefore, this nutritional concept might be a new option for the treatment of chronic inflammatory diseases.
Collapse
|
43
|
Lacasse P, Lauzon K, Diarra MS, Petitclerc D. Utilization of lactoferrin to fight antibiotic-resistant mammary gland pathogens. J Anim Sci 2007; 86:66-71. [PMID: 17565052 DOI: 10.2527/jas.2007-0216] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The widespread use of antibiotics has lead to the increased presence of pathogens that are less susceptible to their antibacterial effect. Lactoferrin (Lf) is naturally produced by the mammary gland. Lactoferrin is the main whey protein in human milk and is also present in cow's milk but at a much lower concentration than in human milk. This protein appears to have many biological functions, including antibacterial and antiinflammatory activities. The best-known effect of Lf is to bind iron that is essential for bacterial growth. However, the cationic nature of this protein also appears to be important for the antimicrobial activity of this protein. Lactoferrin has a weak antibacterial effect when used alone, but interestingly, Lf appears much more effective when used at low concentration in combination with several antibiotics. The most striking observation is that Lf increases the inhibitory activity of penicillin up to 4-fold in most penicillin-susceptible Staphylococcus aureus strains, whereas this increase was 4- to 16-fold in penicillin-resistant strains. Indeed, Lf reduces beta-lactamase activity in S. aureus strains producing this enzyme. Transcription of beta-lactamase gene is dramatically repressed in the presence of Lf. We evaluated the efficacy of intramammary treatments containing penicillin G or bovine Lf (bLf), or both, to cure chronic mastitis caused by a clinical isolate of S. aureus highly resistant to beta-lactam antibiotics. In a first trial, mastitis was induced in lactating cows by injecting a low dose of S. aureus through the teat canal of all quarters. Bacterial cure rate was null for control quarters, 11.1% for bLf, 9.1% for penicillin, and 45.5% for the combination of bLf and penicillin. A second trial was undertaken to investigate the effect of an extended therapy on chronic mastitis acquired in a previous lactation. Quarters were treated with 100,000 IU of penicillin G with or without 250 mg of bLf for 7 d. Bacterial cure rate was greater for the bLf + penicillin combination (33.3%) compared with penicillin alone (12.5%). In conclusion, bLf added to penicillin is an effective combination for the treatment of stable S. aureus infections resistant to beta-lactam antibiotics.
Collapse
Affiliation(s)
- P Lacasse
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Centre, PO Box 90 STN Lennoxville, Sherbrooke, Quebec, Canada J1M 1Z3.
| | | | | | | |
Collapse
|
44
|
Walker TR, Land ML, Kartashov A, Saslowsky TM, Lyerly DM, Boone JH, Rufo PA. Fecal lactoferrin is a sensitive and specific marker of disease activity in children and young adults with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2007; 44:414-22. [PMID: 17414136 DOI: 10.1097/mpg.0b013e3180308d8e] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Fecal lactoferrin (FLA) is a neutrophil-derived surrogate marker of intestinal inflammation that is elevated in patients with inflammatory bowel disease. However, the correlation between FLA levels and serological markers of disease activity has not been previously reported, to our knowledge. In the present study we evaluated the ability of FLA levels to reflect disease activity in pediatric patients with inflammatory bowel disease. We further assessed the relationship between FLA levels and customary laboratory and clinical measures of inflammation. PATIENTS AND METHODS Fecal specimens were collected from 148 consecutive pediatric patients (79 with Crohn disease, 62 with ulcerative colitis, and 7 with irritable bowel syndrome) and 22 healthy control individuals. Lactoferrin was measured by enzyme-linked immunosorbent assay (IBD-SCAN, TECHLAB, Inc). Disease activity was assessed at the time of sample provision by laboratory measures (including erythrocyte sedimentation rate [ESR] and albumin) and previously validated disease activity indices (Pediatric Crohn Disease Activity Index, Kozarek, Harvey Bradshaw Activity Index). RESULTS Lactoferrin levels were significantly higher in patients with ulcerative colitis (1880 +/- 565 microg/mL) (mean +/- SE) or Crohn disease (1701 +/- 382 microg/mL) than in healthy control individuals under 21 years of age (1.17 +/- 0.47 microg/mL, P < 0.001). Lactoferrin levels correlated significantly with ESR, hematocrit, albumin, and platelet count (P < 0.001). Receiver operating characteristic curve analysis revealed that FLA levels were comparable to ESR in detecting patients with clinically active disease (P < 0.001). Patients who experienced a clinical flare within 2 months of specimen collection displayed higher lactoferrin levels (845 +/- 452 microg/mL) than did those who remained in clinical remission (190 +/- 90 microg/mL, P = 0.003). CONCLUSIONS Data presented here demonstrate that FLA is a sensitive and specific biochemical marker of inflammation for use in the diagnosis and interval assessment of pediatric patients with IBD, and its level correlates well with both clinical disease activity indices and ESR. Elevated levels of FLA may also identify patients at greater risk for the development of subsequent clinical flares.
Collapse
Affiliation(s)
- Thomas R Walker
- Center for Inflammatory Bowel Disease, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Zimecki M, Kocieba M, Chodaczek G, Houszka M, Kruzel ML. Lactoferrin ameliorates symptoms of experimental encephalomyelitis in Lewis rats. J Neuroimmunol 2006; 182:160-6. [PMID: 17113653 DOI: 10.1016/j.jneuroim.2006.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 11/23/2022]
Abstract
Lactoferrin (LF) is a multifunctional protein present in secretory fluids of mammals and circulating neutrophils. Beside anti-inflammatory properties, LF was found to inhibit some autoimmune disorders. In this investigation we studied effects of oral administration of LF on experimental autoimmune encephalomyelitis (EAE) in Lewis rats. LF was given in drinking water as 0.25% solution beginning the day of elicitation of EAE or with a seven-day delay. The effects of LF were evaluated by the following criteria: clinical score, lymph node cell number, serum cytokine levels and histopathological changes. We found that LF treatment led to a significant acceleration of the recovery process, particularly on days 16-18 following elicitation of EAE. The delayed administration of LF was less effective in reducing the score of EAE. In addition, cell number of the inguinal lymph nodes of untreated EAE rats, almost 3 times higher as compared with control, naïve rats, was normalized by LF treatment. Furthermore, LF decreased elevated serum concentrations of tumor necrosis factor alpha and transforming growth factor beta. The histological analysis of the spinal cord revealed reduction in the number and size of inflammatory foci in LF-treated rats. In summary, treatment of EAE Lewis rats with LF reduced the clinical symptoms and accelerated the recovery of animals.
Collapse
Affiliation(s)
- Michał Zimecki
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | | | | | | | | |
Collapse
|
46
|
Fischer R, Debbabi H, Dubarry M, Boyaka P, Tomé D. Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochem Cell Biol 2006; 84:303-11. [PMID: 16936801 DOI: 10.1139/o06-058] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In recent years, Lf has gained increasing interest as a result of its protective effects against a variety of diseases. While iron binding and interactions with mammalian receptors and microbial components are the best described mechanisms of action, recent studies have provided evidence that Lf properties may be related to immunoregulatory effects on Th1/Th2 cell activities. In vitro and in vivo experiments show that Lf is able to stimulate the differentiation of T cells from their immature precursors through the induction of the CD4 antigen. Studies performed under nonpathogenic conditions have shown distinct results with regard to the ability of Lf to support the proliferation and differentiation of Th cells into the Th1 or the Th2 phenotype. In addition, Lf plays different roles in diseases by affecting the Th1/Th2 cytokine balance in a manner dependent on the host's immune status. Thus, Lf could cause a Th1 polarization in diseases in which the ability to control infection or tumor relies on a strong Th1 response. Lf may also reduce the Th1 component to limit excessive inflammatory responses. Finally, Lf may provide protection against Th1- or Th2-induced diseases, such as autoimmune or allergic diseases, through correction of the Th1/Th2 imbalance.
Collapse
Affiliation(s)
- Romy Fischer
- Unité INRA 914 Physiologie de la Nutrition et du Comportement Alimentaire, Institut National Agronomique Paris-Grignon, F75231 Paris CEDEX 05, France.
| | | | | | | | | |
Collapse
|
47
|
Kawabe M, Sasaki M, Hirai S, Ikeda T, Sasaki H, Yoshida M, Amaya H, Aotake T, Uchinami M, Ihaya A, Tanaka K. Whey proteins and peptides: beneficial effects on immune health. ACTA ACUST UNITED AC 2006; 33:69-71. [PMID: 16410700 DOI: 10.2217/14750708.3.1.69] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 65-year-old male with liver metastases after lung cancer resection was treated with five courses of chemotherapy consisting of gemcitabine (GEM) 1,000 mg/m2 (day 1, 8, every 4 weeks) plus carboplatin (CBDCA) AUC 6 (day 1, every 4 weeks). A partial response (PR) was achieved, his symptoms abated and his quality of life(QOL) improved. Although bone marrow suppression was observed as a side effect, it was within the tolerable range and did not interfere with therapy. This approach may be worth considering as a first-line anti-cancer chemotherapy for recurrence lung cancer.
Collapse
Affiliation(s)
- Masakazu Kawabe
- Dept. of Surgery II, University of Fukui Faculty of Medical Sciences
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ishikado A, Imanaka H, Takeuchi T, Harada E, Makino T. Liposomalization of lactoferrin enhanced it's anti-inflammatory effects via oral administration. Biol Pharm Bull 2005; 28:1717-21. [PMID: 16141546 DOI: 10.1248/bpb.28.1717] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that lactoferrin is one of the functional proteins contained in mammalian milk and that it plays an important role in the immune system. In this study, we prepared multi-lamellar liposomal bovine lactoferrin composed of egg yolk phosphatidylcholine and phytosterol for oral delivery, and examined any resulting anti-inflammatory effects. Oral pretreatment of liposomal lactoferrin exhibited more suppressive effects than did non-liposomal lactoferrin on CCl4-induced hepatic injury in rats as well as on lipopolysaccharide-induced TNF-alpha production from mouse peripheral blood mononuclear leukocytes. Further investigation revealed that the liposomalization did not exert influence on the absorbability of lactoferrin to the venous blood or lymph following an intraduodenal administration in rats. Furthermore, there was no significant difference exhibited between the antigenicity of liposomal and non-liposomal lactoferrin, which was measured using the passive cutaneous anaphylaxis reaction following oral sensitization to them in guinea pigs. These results suggest that liposomal lactoferrin might act more effectively than conventional lactoferrin in the intestinal site, which is regarded as an active site of orally administered lactoferrin, although the biological mechanism is not fully understood yet. Consequently we propose that liposomal lactoferrin could be a novel active constituent useful for preventive and therapeutic treatment of inflammatory diseases.
Collapse
|
49
|
Baranzini SE, Bernard CCA, Oksenberg JR. Modular Transcriptional Activity Characterizes the Initiation and Progression of Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2005; 174:7412-22. [PMID: 15905590 DOI: 10.4049/jimmunol.174.11.7412] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine experimental autoimmune encephalomyelitis is a well-established model that recapitulates many clinical and physiopathological aspects of multiple sclerosis (MS). An important conceptual development in the understanding of both experimental autoimmune encephalomyelitis and MS pathogenesis has been the compartmentalization of the mechanistic process into two distinct but overlapping and connected phases, inflammatory and neurodegenerative. However, the dynamics of CNS transcriptional changes that underlie the development and regression of the phenotype are not well understood. Our report presents the first high frequency longitudinal study looking at the earliest transcriptional changes in the CNS of NOD mice immunized with myelin oligodendrocyte glycoprotein 35-55 in CFA. Microarray-based gene expression profiling and histopathological analysis were performed from spinal cord samples obtained at 13 time points around the first clinical symptom (every other day until day 11 and every day onward until day 19 postimmunization). Advanced statistics and data-mining algorithms were used to identify expression signatures that correlated with disease stage and histological profiles. Discrete phases of neuroinflammation were accompanied by distinctive expression signatures, in which altered immune to neural gene expression ratios were observed. By using high frequency gene expression analysis we captured expression profiles that were characteristic of the transition from innate to adaptive immune response in this experimental paradigm between days 11 and 12 postimmunization. Our study demonstrates the utility of large-scale transcriptional studies and advanced data mining to decipher complex biological processes such as those involved in MS and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Sergio E Baranzini
- Department of Neurology, School of Medicine, University of California, San Francisco, 94143, USA.
| | | | | |
Collapse
|
50
|
|