1
|
Wang R, Sun Y, Li C, Xue Y, Ba X. Targeting the DNA Damage Response for Cancer Therapy. Int J Mol Sci 2023; 24:15907. [PMID: 37958890 PMCID: PMC10648182 DOI: 10.3390/ijms242115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Over the course of long-term evolution, cells have developed intricate defense mechanisms in response to DNA damage; these mechanisms play a pivotal role in maintaining genomic stability. Defects in the DNA damage response pathways can give rise to various diseases, including cancer. The DNA damage response (DDR) system is instrumental in safeguarding genomic stability. The accumulation of DNA damage and the weakening of DDR function both promote the initiation and progression of tumors. Simultaneously, they offer opportunities and targets for cancer therapeutics. This article primarily elucidates the DNA damage repair pathways and the progress made in targeting key proteins within these pathways for cancer treatment. Among them, poly (ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DDR, and inhibitors targeting PARP1 have garnered extensive attention in anticancer research. By delving into the realms of DNA damage and repair, we aspire to explore more precise and effective strategies for cancer therapy and to seek novel avenues for intervention.
Collapse
Affiliation(s)
- Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (Y.S.)
| | - Yating Sun
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (Y.S.)
| | - Chunshuang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| | - Yaoyao Xue
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| |
Collapse
|
2
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
3
|
Jang SW, Kim JM. Mutation of aspartic acid 199 in USP1 disrupts its deubiquitinating activity and impairs DNA repair. FEBS Lett 2021; 595:1997-2006. [PMID: 34128540 DOI: 10.1002/1873-3468.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/06/2022]
Abstract
The deubiquitinating enzyme USP1 contains highly conserved motifs forming its catalytic center. Recently, the COSMIC mutation database identified a mutation in USP1 at Asp-199 in endometrial cancer. Here, we investigated the role of Asp-199 for USP1 function. The mutation of aspartic acid to alanine (D199A) resulted in failure of USP1 to undergo autocleavage and form a complex with ubiquitin, indicating D199A Usp1 is catalytically inactive. The D199A mutation did not affect the interaction with Uaf1. Moreover, D199A Usp1 had defects in deubiquitination of FANCD2 and PCNA and displayed reduced FANCD2 foci formation and DNA repair efficiency. Furthermore, mutation of Asp-199 to glutamic acid resulted in phenotypes similar to the D199A mutation. Collectively, our findings demonstrate the importance of Asp-199 for USP1 activity and suggest the implications of USP1 downregulation in cancer.
Collapse
Affiliation(s)
- Seok Won Jang
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, Korea
| | - Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, Korea
| |
Collapse
|
4
|
Fang CB, Wu HT, Zhang ML, Liu J, Zhang GJ. Fanconi Anemia Pathway: Mechanisms of Breast Cancer Predisposition Development and Potential Therapeutic Targets. Front Cell Dev Biol 2020; 8:160. [PMID: 32300589 PMCID: PMC7142266 DOI: 10.3389/fcell.2020.00160] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
The maintenance of genomic stability is crucial for species survival, and its failure is closely associated with tumorigenesis. The Fanconi anemia (FA) pathway, involving 22 identified genes, plays a central role in repairing DNA interstrand cross-links. Importantly, a germline defect in any of these genes can cause Fanconi's anemia, a heterogeneous genetic disorder, characterized by congenital growth abnormalities, bone marrow failure, and predisposition to cancer. On the other hand, the breast cancer susceptibility genes, BRCA1 and BRCA2, also known as FANCS and FANCD1, respectively, are involved in the FA pathway; hence, researchers have studied the association between the FA pathway and cancer predisposition. Here, we mainly focused on and systematically reviewed the clinical and mechanistic implications of the predisposition of individuals with abnormalities in the FA pathway to cancer, especially breast cancer.
Collapse
Affiliation(s)
- Can-Bin Fang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Man-Li Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- Department of Physiology, Shantou University Medical College, Shantou, China
- *Correspondence: Jing Liu,
| | - Guo-Jun Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiang’an, China
- Guo-Jun Zhang, ;
| |
Collapse
|
5
|
Role of deubiquitinases in DNA damage response. DNA Repair (Amst) 2019; 76:89-98. [PMID: 30831436 DOI: 10.1016/j.dnarep.2019.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
DNA damage response (DDR) serves as an integrated cellular network to detect cellular stress and react by activating pathways responsible for halting cell cycle progression, stimulating DNA damage repair, and initiating apoptosis. Efficient DDR protects cells from genomic instability while defective DDR can allow DNA lesions to go unrepaired, causing permanent mutations that will affect future generations of cells and possibly cause disease conditions such as cancer. Therefore, DDR mechanisms must be tightly regulated in order to ensure organismal health and viability. One major way of DDR regulation is ubiquitination, which has been long known to control DDR protein localization, activity, and stability. The reversal of this process, deubiquitination, has more recently come to the forefront of DDR research as an important new angle in ubiquitin-mediated regulation of DDR. As such, deubiquitinases have emerged as key factors in DDR. Importantly, deubiquitinases are attractive small-molecule drug targets due to their well-defined catalytic residues that provide a promising avenue for developing new cancer therapeutics. This review focuses on the emerging roles of deubiquitinases in various DNA repair pathways.
Collapse
|
6
|
Zheng H, Wang M, Zhao C, Wu S, Yu P, Lü Y, Wang T, Ai Y. Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex. PLoS One 2017; 12:e0186535. [PMID: 29091922 PMCID: PMC5665528 DOI: 10.1371/journal.pone.0186535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/03/2017] [Indexed: 12/02/2022] Open
Abstract
Deubiquitinases (DUBs) are essential regulators of intracellular processes involving ubiquitin (Ub) modification. The human DUB ubiquitin-specific protease 1 (hUSP1) interacts with human USP-associated factor 1 (hUAF1), and helps to regulate processes such as DNA damage repair. Previously, we identified a chicken USP1 homologue (chUSP1) during an investigation into the properties of Marek's disease virus (MDV). However, chUSP1's deubiquitination activity, interaction with chUAF1, and substrate specificity remained unknown. In the present study, we expressed and purified both chUAF1 and chUSP1 with or without putative catalytic core mutations using the Bac-to-Bac system, before investigating their deubiquitination activity and kinetics using various substrates. chUSP1 was shown to interact with chUAF1 both in cellular assays in which the two proteins were co-expressed, and in in vitro assays using purified proteins. Heterodimerization with chUAF1 increased the deubiquitination activity of chUSP1 up to 54-fold compared with chUSP1 alone. The chUSP1 mutants C91S, H603A, and D758A reduced the deubiquitination activity of the chUSP1/chUAF1 complex by 10-, 7-, and 33-fold, respectively, while the C91A and H594A chUSP1 mutants eliminated deubiquitination activity of the chUSP1/chUAF1 complex completely. This suggests that C91 and H594, but not D758, are essential for chUSP1 deubiquitination activity, and that a nucleophilic group at position 91 is needed for the deubiquitination reaction. The chUSP1/chUAF1 complex was found to have distinct substrate preferences; efficient hydrolysis of Ub dimers with K11-, K48-, and K63-linkages was seen, with weaker hydrolysis observed with K6-, K27-, and K33-linkages and no hydrolysis seen with a K29-linkage. Furthermore, other Ub-like substrates were disfavored by the complex. No activity was seen with SUMO1-GST, SUMO2- and SUMO3-dimers, ISG15-Rho, FAT10-Rho, or Ufm1-Rho, and only weak activity was observed with NEDD8-Rho. Overall, the data presented here characterize the activity and substrate preferences of chUSP1, and thus may facilitate future studies on its in vivo role.
Collapse
Affiliation(s)
- Hainan Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Mengyun Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Chengcheng Zhao
- Institute of Translational Medicine, Jilin University, Changchun, China
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peifeng Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Yan Lü
- College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
- * E-mail: (YXA); (TDW)
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun, China
- * E-mail: (YXA); (TDW)
| |
Collapse
|
7
|
Dwane L, Gallagher WM, Ní Chonghaile T, O'Connor DP. The Emerging Role of Non-traditional Ubiquitination in Oncogenic Pathways. J Biol Chem 2017; 292:3543-3551. [PMID: 28154183 DOI: 10.1074/jbc.r116.755694] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The addition of ubiquitin to a target protein has long been implicated in the process of degradation and is the primary mediator of protein turnover in the cell. Recently, however, many non-proteolytic functions of ubiquitination have emerged as key regulators of cellular homeostasis. In this review, we will describe the various non-traditional functions of ubiquitination, with particular focus on how they can be used as signaling entities in cancer formation and progression. Elaboration of this topic can lead to a better understanding of oncogenic mechanisms, as well as the discovery of novel druggable proteins within the ubiquitin pathway.
Collapse
Affiliation(s)
- Lisa Dwane
- From Molecular and Cellular Therapeutics and
| | - William M Gallagher
- the Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Tríona Ní Chonghaile
- the Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland and
| | | |
Collapse
|
8
|
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, Wan Y. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci 2016; 6:62. [PMID: 28031783 PMCID: PMC5168870 DOI: 10.1186/s13578-016-0127-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
The addition of mono-ubiquitin or poly-ubiquitin chain to signaling proteins in response to DNA damage signal is thought to be a critical event that facilitates the recognition of DNA damage lesion site, the activation of checkpoint function, termination and checkpoint response and the recruitment of DNA repair proteins. Despite the ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in orchestrating DNA damage response as well as DNA repair processes. Deregulated ubiquitination and deubiquitination could lead to genome instability that in turn causes tumorigenesis. Recent TCGA study has further revealed the connection between mutations in alteration of DUBs and various types of tumors. In addition, emerging drug design based on DUBs provides a new avenue for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and specificity of DUBs, and highlight the recent discoveries of DUBs in the modulation of ubiquitin-mediated DNA damage response and DNA damage repair. We will furthermore discuss the DUBs involved in the tumorigenesis as well as interception of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Haojing Zou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Jin Tao
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
9
|
Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016; 7:133. [PMID: 27516771 PMCID: PMC4963401 DOI: 10.3389/fgene.2016.00133] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Collapse
Affiliation(s)
- Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| |
Collapse
|