1
|
Muñoz-Marín MDC, López-Lozano A, Moreno-Cabezuelo JÁ, Díez J, García-Fernández JM. Mixotrophy in cyanobacteria. Curr Opin Microbiol 2024; 78:102432. [PMID: 38325247 DOI: 10.1016/j.mib.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Cyanobacteria evolved the oxygenic photosynthesis to generate organic matter from CO2 and sunlight, and they were responsible for the production of oxygen in the Earth's atmosphere. This made them a model for photosynthetic organisms, since they are easier to study than higher plants. Early studies suggested that only a minority among cyanobacteria might assimilate organic compounds, being considered mostly autotrophic for decades. However, compelling evidence from marine and freshwater cyanobacteria, including toxic strains, in the laboratory and in the field, has been obtained in the last decades: by using physiological and omics approaches, mixotrophy has been found to be a more widespread feature than initially believed. Furthermore, dominant clades of marine cyanobacteria can take up organic compounds, and mixotrophy is critical for their survival in deep waters with very low light. Hence, mixotrophy seems to be an essential trait in the metabolism of most cyanobacteria, which can be exploited for biotechnological purposes.
Collapse
Affiliation(s)
- María Del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - José Ángel Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain.
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Universitario ceiA3, Universidad de Córdoba, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
2
|
Rasul F, You D, Jiang Y, Liu X, Daroch M. Thermophilic cyanobacteria-exciting, yet challenging biotechnological chassis. Appl Microbiol Biotechnol 2024; 108:270. [PMID: 38512481 PMCID: PMC10957709 DOI: 10.1007/s00253-024-13082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Thermophilic cyanobacteria are prokaryotic photoautotrophic microorganisms capable of growth between 45 and 73 °C. They are typically found in hot springs where they serve as essential primary producers. Several key features make these robust photosynthetic microbes biotechnologically relevant. These are highly stable proteins and their complexes, the ability to actively transport and concentrate inorganic carbon and other nutrients, to serve as gene donors, microbial cell factories, and sources of bioactive metabolites. A thorough investigation of the recent progress in thermophilic cyanobacteria reveals a significant increase in the number of newly isolated and delineated organisms and wide application of thermophilic light-harvesting components in biohybrid devices. Yet despite these achievements, there are still deficiencies at the high-end of the biotechnological learning curve, notably in genetic engineering and gene editing. Thermostable proteins could be more widely employed, and an extensive pool of newly available genetic data could be better utilised. In this manuscript, we attempt to showcase the most important recent advances in thermophilic cyanobacterial biotechnology and provide an overview of the future direction of the field and challenges that need to be overcome before thermophilic cyanobacterial biotechnology can bridge the gap with highly advanced biotechnology of their mesophilic counterparts. KEY POINTS: • Increased interest in all aspects of thermophilic cyanobacteria in recent years • Light harvesting components remain the most biotechnologically relevant • Lack of reliable molecular biology tools hinders further development of the chassis.
Collapse
Affiliation(s)
- Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dawei You
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiangjian Liu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Stebegg R, Schmetterer G, Rompel A. Heterotrophy among Cyanobacteria. ACS OMEGA 2023; 8:33098-33114. [PMID: 37744813 PMCID: PMC10515406 DOI: 10.1021/acsomega.3c02205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/10/2023] [Indexed: 09/26/2023]
Abstract
Cyanobacteria have been studied in recent decades to investigate the principle mechanisms of plant-type oxygenic photosynthesis, as they are the inventors of this process, and their cultivation and research is much easier compared to land plants. Nevertheless, many cyanobacterial strains possess the capacity for at least some forms of heterotrophic growth. This review demonstrates that cyanobacteria are much more than simple photoautotrophs, and their flexibility toward different environmental conditions has been underestimated in the past. It summarizes the strains capable of heterotrophy known by date structured by their phylogeny and lists the possible substrates for heterotrophy for each of them in a table in the Supporting Information. The conditions are discussed in detail that cause heterotrophic growth for each strain in order to allow for reproduction of the results. The review explains the importance of this knowledge for the use of new methods of cyanobacterial cultivation, which may be advantageous under certain conditions. It seeks to stimulate other researchers to identify new strains capable of heterotrophy that have not been known so far.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| |
Collapse
|
4
|
In vitro activity of reconstituted rubisco enzyme from Gloeobacter violaceus. J Biosci 2021. [DOI: 10.1007/s12038-021-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Liang Y, Tang J, Luo Y, Kaczmarek MB, Li X, Daroch M. Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO 2 utilisation. BIORESOURCE TECHNOLOGY 2019; 278:255-265. [PMID: 30708328 DOI: 10.1016/j.biortech.2019.01.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Thermophilic unicellular cyanobacterium Thermosynechococcus elongatus PKUAC-SCTE542, has been developed as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. The strain exhibits its highest growth rate around 55 °C, can withstand up to 15% CO2, and up to 0.5 M concentration of sodium bicarbonate. The strain is also capable of resisting a 200 ppm concentration of NO and SO2 in simulated flue gasses, and these compounds have a positive effect on its growth. Whole genome sequencing of the strain revealed the presence of numerous forms of active transport of nutrients and additional chaperones acting as the predominant mechanism of strain adaptation to high temperatures. Based on the sequenced genome, two neutral gene insertion sites have been identified and engineered using modular vectors. Site-specific knock-ins and knock-outs have been performed using the spectinomycin resistance gene and proved functional, enabling future application of the strain to produce biofuels and biochemicals from waste CO2.
Collapse
Affiliation(s)
- Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jie Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China; Shenzhen Aone Medical Laboratory Co Ltd, Shenzhen 518107, China
| | - Yifan Luo
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Michal B Kaczmarek
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
6
|
Stebegg R, Schmetterer G, Rompel A. Transport of organic substances through the cytoplasmic membrane of cyanobacteria. PHYTOCHEMISTRY 2019; 157:206-218. [PMID: 30447471 DOI: 10.1016/j.phytochem.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are mainly known to incorporate inorganic molecules like carbon dioxide and ammonia from the environment into organic material within the cell. Nevertheless cyanobacteria do import and export organic substances through the cytoplasmic membrane and these processes are essential for all cyanobacteria. In addition understanding the mechanisms of transport of organic molecules through the cytoplasmic membrane might become very important. Genetically modified strains of cyanobacteria could serve as producers and exporters of commercially important substances. In this review we attempt to present all data of transport of organic molecules through the cytoplasmic membrane of cyanobacteria that are currently available with the transported molecules ordered according to their chemical classes.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| |
Collapse
|