1
|
Namba N, Ohgita T, Tamagaki-Asahina H, Nishitsuji K, Shimanouchi T, Sato T, Saito H. Amyloidogenic 60-71 deletion/ValThr insertion mutation of apolipoprotein A-I generates a new aggregation-prone segment that promotes nucleation through entropic effects. Sci Rep 2023; 13:18514. [PMID: 37898709 PMCID: PMC10613298 DOI: 10.1038/s41598-023-45803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
The N-terminal fragment of apolipoprotein A-I (apoA-I), comprising residues 1-83, contains three segments prone to aggregation: residues 14-22, 53-58, and 67-72. We previously demonstrated that residues 14-22 are critical in apoA-I fibril formation while residues 53-58 entropically drove the nucleation process. Here, we investigated the impact of amyloidogenic mutations (Δ60-71/VT, Δ70-72, and F71Y) located around residues 67-72 on fibril formation by the apoA-I 1-83 fragment. Thioflavin T fluorescence assay demonstrated that the Δ60-71/VT mutation significantly enhances both nucleation and fibril elongation rates, whereas the Δ70-72 and F71Y mutations had minimal effects. Circular dichroism measurements and microscopic observations revealed that all variant fragments formed straight fibrils, transitioning from random coils to β-sheet structures. Kinetic analysis demonstrated that primary nucleation is the dominant step in fibril formation, with fibril elongation reaching saturation at high protein concentrations. Thermodynamically, both nucleation and fibril elongation were enthalpically and entropically unfavorable in all apoA-I 1-83 variants, in which the entropic barrier of nucleation was almost eliminated for the Δ60-71/VT variant. Taken together, our results suggest the presence of new aggregation-prone segment in the Δ60-71/VT variant that promotes nucleation through entropic effects.
Collapse
Affiliation(s)
- Norihiro Namba
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Takashi Ohgita
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroko Tamagaki-Asahina
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takeshi Sato
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
2
|
Koss KM, Sereda TJ, Kumirov VK, Wertheim JA. A class of peptides designed to replicate and enhance the Receptor for Hyaluronic Acid Mediated Motility binding domain. Acta Biomater 2023:S1742-7061(23)00251-9. [PMID: 37178990 DOI: 10.1016/j.actbio.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The extra-cellular matrix (ECM) is a complex and rich microenvironment that is exposed and over-expressed across several injury or disease pathologies. Biomaterial therapeutics are often enriched with peptide binders to target the ECM with greater specificity. Hyaluronic acid (HA) is a major component of the ECM, yet to date, few HA adherent peptides have been discovered. A class of HA binding peptides was designed using B(X7)B hyaluronic acid binding domains inspired from the helical face of the Receptor for Hyaluronic Acid Mediated Motility (RHAMM). These peptides were bioengineered using a custom alpha helical net method, allowing for the enrichment of multiple B(X7)B domains and the optimisation of contiguous and non-contiguous domain orientations. Unexpectedly, the molecules also exhibited the behaviour of nanofiber forming self-assembling peptides and were investigated for this characteristic. Ten 23-27 amino acid residue peptides were assessed. Simple molecular modelling was used to depict helical secondary structures. Binding assays were performed with varying concentrations (1-10 mg/mL) and extra-cellular matrices (HA, collagens I-IV, elastin, and Geltrex). Concentration mediated secondary structures were assessed using circular dichroism (CD), and higher order nanostructures were visualized using transmission electron microscopy (TEM). All peptides formed the initial apparent 310/alpha-helices, yet peptides 17x-3, 4, BHP3 and BHP4 were HA specific and potent (i.e., a significant effect) binders at increasing concentrations. These peptides shifted from apparent 310/alpha-helical structures at low concentration to beta-sheets at increasing concentration and also formed nanofibers which are noted as self-assembling structures. Several of the HA binding peptides outperformed our positive control (mPEP35) at 3-4 times higher concentrations, and were enhanced by self-assembly as each of these groups had observable nanofibers. STATEMENT OF SIGNIFICANCE: Specific biomolecules or peptides have played a crucial role in developing materials or systems to deliver key drugs and therapeutics to a broad spectrum of diseases and disorders. In these diseased tissues, cells build protein/sugar networks, which are uniquely exposed and great targets to deliver drugs to. Hyaluronic acid (HA) is involved in every stage of injury and is abundant in cancer. To date, only two HA specific peptides have been discovered. In our work, we have designed a way to model and trace binding regions as they appear on the face of a helical peptide. Using this method we have created a family of peptides enriched with HA binding domains that stick with 3-4 higher affinity than those previously discovered.
Collapse
Affiliation(s)
- Kyle M Koss
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
| | | | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Jason A Wertheim
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
| |
Collapse
|
3
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
4
|
Nishitsuji K, Uchimura K. Contribution of Sulfated Glycosaminoglycans to the Pathology of Amyloidosis. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2105.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille
| |
Collapse
|
5
|
Nishitsuji K, Uchimura K. Contribution of Sulfated Glycosaminoglycans to the Pathology of Amyloidosis. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2105.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille
| |
Collapse
|
6
|
Ohgita T, Furutani Y, Nakano M, Hattori M, Suzuki A, Nakagawa M, Naniwa S, Morita I, Oyama H, Nishitsuji K, Kobayashi N, Saito H. Novel conformation‐selective monoclonal antibodies against apoA‐I amyloid fibrils. FEBS J 2021. [DOI: 10.1111/febs.15487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Takashi Ohgita
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Yuki Furutani
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miyu Nakano
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Megumi Hattori
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Sera Naniwa
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | | | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| |
Collapse
|
7
|
Townsend DJ, Middleton DA, Ashton L. Raman Spectroscopy with 2D Perturbation Correlation Moving Windows for the Characterization of Heparin-Amyloid Interactions. Anal Chem 2020; 92:13822-13828. [PMID: 32935978 DOI: 10.1021/acs.analchem.0c02390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been shown extensively that glycosaminoglycan (GAG)-protein interactions can induce, accelerate, and impede the clearance of amyloid fibrils associated with systemic and localized amyloidosis. Obtaining molecular details of these interactions is fundamental to our understanding of amyloid disease. Consequently, there is a need for analytical approaches that can identify protein conformational transitions and simultaneously characterize heparin interactions. By combining Raman spectroscopy with two-dimensional (2D) perturbation correlation moving window (2DPCMW) analysis, we have successfully identified changes in protein secondary structure during pH- and heparin-induced fibril formation of apolipoprotein A-I (apoA-I) associated with atherosclerosis. Furthermore, from the 2DPCMW, we have identified peak shifts and intensity variations in Raman peaks arising from different heparan sulfate moieties, indicating that protein-heparin interactions vary at different heparin concentrations. Raman spectroscopy thus reveals new mechanistic insights into the role of GAGs during amyloid fibril formation.
Collapse
Affiliation(s)
- David J Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Lorna Ashton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
8
|
Townsend DJ, Mala B, Hughes E, Hussain R, Siligardi G, Fullwood NJ, Middleton DA. Circular Dichroism Spectroscopy Identifies the β-Adrenoceptor Agonist Salbutamol As a Direct Inhibitor of Tau Filament Formation in Vitro. ACS Chem Neurosci 2020; 11:2104-2116. [PMID: 32520518 DOI: 10.1021/acschemneuro.0c00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Potential drug treatments for Alzheimer's disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilization and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 screened compounds. Subsequently, we tested chemically similar phenolamine drugs from the β-adrenergic receptor agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence, and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 h; however, it has little effect on the structural transition of tau into β-sheet structures over 24 h. Salbutamol also reduces the yield and rate of filament formation and additionally inhibits tau's structural change into β-sheet-rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood-brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for the in vivo evaluation of pre-existing β-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition.
Collapse
Affiliation(s)
- David J Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Barbora Mala
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rohanah Hussain
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Giuliano Siligardi
- Diamond House, Harwell Science & Innovation Campus, Diamond Light Source Ltd., Didcot OX11 ODE, United Kingdom
| | - Nigel J. Fullwood
- Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - David A. Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
9
|
Gaddi GM, Gisonno RA, Rosú SA, Curto LM, Prieto ED, Schinella GR, Finarelli GS, Cortez MF, Bauzá L, Elías EE, Ramella NA, Tricerri MA. Structural analysis of a natural apolipoprotein A-I variant (L60R) associated with amyloidosis. Arch Biochem Biophys 2020; 685:108347. [DOI: 10.1016/j.abb.2020.108347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/11/2023]
|
10
|
Herrera LC, Shastri VP. Silencing of GFP expression in human mesenchymal stem cells using quaternary polyplexes of siRNA-PEI with glycosaminoglycans and albumin. Acta Biomater 2019; 99:397-411. [PMID: 31541736 DOI: 10.1016/j.actbio.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022]
Abstract
In recent years evidence has been mounting for a role for mesenchymal stem cells (MSCs) in immunomodulation, anti-inflammatory processes, and paracrine signaling via secreted extracellular vesicles. In order to exploit these biological functions, systems to efficiently deliver genetic material into MSCs would therefore be highly desirable. In this study, efficient silencing of GFP expression by combining high N/P ratio siRNA and branched PEI (bPEI) polyplexes (siRNA-bPEI) polyplexes with glycosaminoglycans (GAGs), namely hyaluronic acid (HA), chondroitin sulfate (CS) and heparin sulfate (HS), and human serum albumin (HSA) is reported. These quaternary systems were characterized using surface charge, size and morphology and applied to MSCs, which represent a challenge due to their typically low transfection efficiency. The quaternary polyplexes promoted efficient charge shielding and release of siRNA in the cytoplasm with reduced toxicity. A high silencing efficiency of >90% (i.e., less than 10% remaining GFP expression) was achieved with noticeably reduced cellular toxicity, especially with siRNA-bPEI polyplexes modified with HA and HA + HSA. In general addition of GAGs led to more compact polyplexes. Endocytosis studies point to improved endosomal escape at high N/P ratios as a reason for high transfection efficiency and a role for hyaluronic acid in the uptake mechanism likely via CD44 interactions. Co-localization studies showed the polyplexes are stable in the cytosol over time, which correlates with a proper disassembly and subsequent silencing of GFP. Furthermore, GAG containing polyplexes were frequently co-localized with the nucleus. These findings in sum suggest that PEI/HSA/GAG based quaternary polyplexes are promising as transfection agents for MSCs. STATEMENT OF SIGNIFICANCE: Since mesenchymal stem cells (MSCs) are recruited to the site of tissue repair and play a role in immunomodulation, anti-inflammatory processes, and paracrine signaling, they present an excellent target for genetic engineering. However, delivery of genetic material into MSCs is challenging. In this study, >97% silencing of constitutive green fluorescent protein expression in human MSCs (hMSCs) using high N/P ratio polyplexes of branched-PEI-siRNA incorporating glycosaminoglycan as a charge neutralizer and human serum albumin as co-complexing agent is demonstrated. In addition to possessing good cytocompatibility and excellent cytosolic stability; polyplexes incorporating GAGs also showed altered endocytic uptake, with incorporation of hyaluronic acid promoting caveolae-mediated entry. Our system highlights the importance of physiologically derived macromolecules in delivery of genetic material into hMSCs.
Collapse
Affiliation(s)
- Laura C Herrera
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
11
|
Mizuguchi C, Nakagawa M, Namba N, Sakai M, Kurimitsu N, Suzuki A, Fujita K, Horiuchi S, Baba T, Ohgita T, Nishitsuji K, Saito H. Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. J Biol Chem 2019; 294:13515-13524. [PMID: 31341020 DOI: 10.1074/jbc.ra119.008000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/20/2019] [Indexed: 01/26/2023] Open
Abstract
The N-terminal (1-83) fragment of the major constituent of plasma high-density lipoprotein, apolipoprotein A-I (apoA-I), strongly tends to form amyloid fibrils, leading to systemic amyloidosis. Here, using a series of deletion variants, we examined the roles of two major amyloidogenic segments (residues 14-22 and 50-58) in the aggregation and fibril formation of an amyloidogenic G26R variant of the apoA-I 1-83 fragment (apoA-I 1-83/G26R). Thioflavin T fluorescence assays and atomic force microscopy revealed that elimination of residues 14-22 completely inhibits fibril formation of apoA-I 1-83/G26R, whereas Δ32-40 and Δ50-58 variants formed fibrils with markedly reduced nucleation and fibril growth rates. CD measurements revealed structural transitions from random coil to β-sheet structures in all deletion variants except for the Δ14-22 variant, indicating that residues 14-22 are critical for the β-transition and fibril formation. Thermodynamic analysis of the kinetics of fibril formation by apoA-I 1-83/G26R indicated that both nucleation and fibril growth are enthalpically unfavorable, whereas entropically, nucleation is favorable, but fibril growth is unfavorable. Interestingly, the nucleation of the Δ50-58 variant was entropically unfavorable, indicating that residues 50-58 entropically promote the nucleation step in fibril formation of apoA-I 1-83/G26R. Moreover, a residue-level structural investigation of apoA-I 1-83/G26R fibrils with site-specific pyrene labeling indicated that the two amyloidogenic segments are in close proximity to form an amyloid core structure, whereas the N- and C-terminal tail regions are excluded from the amyloid core. These results provide critical insights into the aggregation mechanism and fibril structure of the amyloidogenic N-terminal fragment of apoA-I.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Norihiro Namba
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Misae Sakai
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sayaka Horiuchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
12
|
Kameyama H, Uchimura K, Yamashita T, Kuwabara K, Mizuguchi M, Hung SC, Okuhira K, Masuda T, Kosugi T, Ohgita T, Saito H, Ando Y, Nishitsuji K. The Accumulation of Heparan Sulfate S-Domains in Kidney Transthyretin Deposits Accelerates Fibril Formation and Promotes Cytotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:308-319. [PMID: 30414409 DOI: 10.1016/j.ajpath.2018.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/27/2022]
Abstract
The highly sulfated domains of heparan sulfate (HS), alias HS S-domains, are made up of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)] and are selectively remodeled by extracellular endoglucosamine 6-sulfatases (Sulfs). Although HS S-domains are critical for signal transduction of several growth factors, their roles in amyloidoses are not yet fully understood. Herein, we found HS S-domains in the kidney of a patient with transthyretin amyloidosis. In in vitro assays with cells stably expressing human Sulfs, heparin, a structural analog of HS S-domains, promoted aggregation of transthyretin in an HS S-domain-dependent manner. Interactions of cells with transthyretin fibrils and cytotoxicity of these fibrils also depended on HS S-domains at the cell surface. Furthermore, glypican-5, encoded by the susceptibility gene for nephrotic syndrome GPC5, was found to be accumulated in the transthyretin amyloidosis kidney. Our study, thus, provides a novel insight into the pathologic roles of HS S-domains in amyloidoses, and we propose that enzymatic remodeling of HS chains by Sulfs may offer an effective approach to inhibiting formation and cytotoxicity of amyloid fibrils.
Collapse
Affiliation(s)
- Hirokazu Kameyama
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille 1, Villeneuve d'Ascq, France
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kaori Kuwabara
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | | | | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Masuda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan; Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
13
|
Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Sci Rep 2018; 8:5497. [PMID: 29615818 PMCID: PMC5882889 DOI: 10.1038/s41598-018-23920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 01/31/2023] Open
Abstract
Here, we examined the effects of phosphatidylserine (PS) and cholesterol on the fibril-forming properties of the N-terminal 1‒83 fragment of an amyloidogenic G26R variant of apoA-I bound to small unilamellar vesicles. A thioflavin T fluorescence assay together with microscopic observations showed that PS significantly retards the nucleation step in fibril formation by apoA-I 1‒83/G26R, whereas cholesterol slightly enhances fibril formation. Circular dichroism analyses demonstrated that PS facilitates a structural transition from random coil to α-helix in apoA-I 1‒83/G26R with great stabilization of the α-helical structure upon lipid binding. Isothermal titration calorimetry measurements revealed that PS induces a marked increase in capacity for binding of apoA-I 1‒83/G26R to the membrane surface, perhaps due to electrostatic interactions of positively charged amino acids in apoA-I with PS. Such effects of PS to enhance lipid interactions and inhibit fibril formation of apoA-I were also observed for the amyloidogenic region-containing apoA-I 8‒33/G26R peptide. Fluorescence measurements using environment-sensitive probes indicated that PS induces a more solvent-exposed, membrane-bound conformation in the amyloidogenic region of apoA-I without affecting membrane fluidity. Since cell membranes have highly heterogeneous lipid compositions, our findings may provide a molecular basis for the preferential deposition of apoA-I amyloid fibrils in tissues and organs.
Collapse
|
14
|
Kimura H, Mikawa S, Mizuguchi C, Horie Y, Morita I, Oyama H, Ohgita T, Nishitsuji K, Takeuchi A, Lund-Katz S, Akaji K, Kobayashi N, Saito H. Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Sci Rep 2017; 7:2988. [PMID: 28592796 PMCID: PMC5462821 DOI: 10.1038/s41598-017-03208-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1–43 or 44–65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44–65 restored the immunoreactivity of mAbs whose epitope being within residues 44–65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Shiho Mikawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yuki Horie
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Sissel Lund-Katz
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104-4318, USA
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|