1
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
2
|
Millrine D, Peter JJ, Kulathu Y. A guide to UFMylation, an emerging posttranslational modification. FEBS J 2023; 290:5040-5056. [PMID: 36680403 PMCID: PMC10952357 DOI: 10.1111/febs.16730] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Ubiquitin Fold Modifier-1 (UFM1) is a ubiquitin-like modifier (UBL) that is posttranslationally attached to lysine residues on substrates via a dedicated system of enzymes conserved in most eukaryotes. Despite the structural similarity between UFM1 and ubiquitin, the UFMylation machinery employs unique mechanisms that ensure fidelity. While physiological triggers and consequences of UFMylation are not entirely clear, its biological importance is epitomized by mutations in the UFMylation pathway in human pathophysiology including musculoskeletal and neurodevelopmental diseases. Some of these diseases can be explained by the increased endoplasmic reticulum (ER) stress and disrupted translational homeostasis observed upon loss of UFMylation. The roles of UFM1 in these processes likely stem from its function at the ER where ribosomes are UFMylated in response to translational stalling. In addition, UFMylation has been implicated in other cellular processes including DNA damage response and telomere maintenance. Hence, the study of UFM1 pathway mechanics and its biological function will reveal insights into fundamental cell biology and is likely to afford new therapeutic opportunities for the benefit of human health. To this end, we herein provide a comprehensive guide to the current state of knowledge of UFM1 biogenesis, conjugation, and function with an emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Joshua J. Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
3
|
Millrine D, Cummings T, Matthews SP, Peter JJ, Magnussen HM, Lange SM, Macartney T, Lamoliatte F, Knebel A, Kulathu Y. Human UFSP1 is an active protease that regulates UFM1 maturation and UFMylation. Cell Rep 2022; 40:111168. [PMID: 35926457 PMCID: PMC9638016 DOI: 10.1016/j.celrep.2022.111168] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
An essential first step in the post-translational modification of proteins with UFM1, UFMylation, is the proteolytic cleavage of pro-UFM1 to expose a C-terminal glycine. Of the two UFM1-specific proteases (UFSPs) identified in humans, only UFSP2 is reported to be active, since the annotated sequence of UFSP1 lacks critical catalytic residues. Nonetheless, efficient UFM1 maturation occurs in cells lacking UFSP2, suggesting the presence of another active protease. We herein identify UFSP1 translated from a non-canonical start site to be this protease. Cells lacking both UFSPs show complete loss of UFMylation resulting from an absence of mature UFM1. While UFSP2, but not UFSP1, removes UFM1 from the ribosomal subunit RPL26, UFSP1 acts earlier in the pathway to mature UFM1 and cleave a potential autoinhibitory modification on UFC1, thereby controlling activation of UFMylation. In summary, our studies reveal important distinctions in substrate specificity and localization-dependent functions for the two proteases in regulating UFMylation.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Thomas Cummings
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen P Matthews
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joshua J Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Helge M Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sven M Lange
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Thomas Macartney
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Frederic Lamoliatte
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Axel Knebel
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
4
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
5
|
Witting KF, van der Heden van Noort GJ, Kofoed C, Talavera Ormeño C, el Atmioui D, Mulder MPC, Ovaa H. Generation of the UFM1 Toolkit for Profiling UFM1-Specific Proteases and Ligases. Angew Chem Int Ed Engl 2018; 57:14164-14168. [PMID: 30188611 PMCID: PMC6220884 DOI: 10.1002/anie.201809232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a reversible post-translational modifier that is covalently attached to target proteins through an enzymatic cascade and removed by designated proteases. Abnormalities in this process, referred to as Ufmylation, have been associated with a variety of human diseases. Given this, the UFM1-specific enzymes represent potential therapeutic targets; however, understanding of their biological function has been hampered by the lack of chemical tools for activity profiling. To address this unmet need, a diversifiable platform for UFM1 activity-based probes (ABPs) utilizing a native chemical ligation (NCL) strategy was developed, enabling the generation of a variety of tools to profile both UFM1 conjugating and deconjugating enzymes. The use of the probes is demonstrated in vitro and in vivo for monitoring UFM1 enzyme reactivity, opening new research avenues.
Collapse
Affiliation(s)
- Katharina F. Witting
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Gerbrand J. van der Heden van Noort
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Christian Kofoed
- Department of ChemistryCenter for Evolutionary Chemical BiologyUniversity of CopenhagenUniversitetsparken 52100CopenhagenDenmark
| | - Cami Talavera Ormeño
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Dris el Atmioui
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| |
Collapse
|
6
|
Witting KF, van der Heden van Noort GJ, Kofoed C, Talavera Ormeño C, el Atmioui D, Mulder MPC, Ovaa H. Generation of the UFM1 Toolkit for Profiling UFM1-Specific Proteases and Ligases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katharina F. Witting
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Gerbrand J. van der Heden van Noort
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Christian Kofoed
- Department of Chemistry; Center for Evolutionary Chemical Biology; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Cami Talavera Ormeño
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Dris el Atmioui
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Monique P. C. Mulder
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| |
Collapse
|