1
|
Luo Q, Zhou J, Tang W, Jiang P, Wan X, Ahmed W, Mohsin A, Zhuang Y, Guo M. Investigation and development of transient production process for porcine circovirus Type-2 (PCV2) capsid protein in HEK293F cells. Protein Expr Purif 2023; 208-209:106293. [PMID: 37137401 DOI: 10.1016/j.pep.2023.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
Porcine circovirus type-2 capsid protein contains a major immunodominant epitope used as a subunit vaccine. Transient expression in mammalian cells is an efficient process for producing recombinant proteins. However, there is still a lack of research on the efficient production of virus capsid proteins in mammalian cells. Here we present a comprehensive study to investigate and optimize the production process of a model "difficult-to-express" virus capsid protein, PCV2 capsid protein in HEK293F transient expression system. The study evaluated the transient expression of PCV2 capsid protein in the mammalian cell line HEK293F and investigated the subcellular distribution by confocal microscopy. In addition, the RNA sequencing (RNA-seq) was used to detect the differential expression of genes after cells transfected with pEGFP-N1-Capsid or empty vectors. The analysis revealed that the PCV2 capsid gene affected a panel of differential genes of HEK293F cells involved in protein folding, stress response, and translation process, such as SHP90β, GRP78, HSP47, and eIF4A. An integrated strategy of protein engineering combined with VPA addition was applied to promote the expression of PCV2 capsid protein in HEK293F. Moreover, this study significantly increased the production of the engineered PCV2 capsid protein in HEK293F cells, reaching a yield of 8.7 mg/L. Conclusively, this study may provide deep insight for other "difficult-to-express" virus capsid proteins in the mammalian cell system.
Collapse
Affiliation(s)
- Qingping Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Junqi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Weihua Tang
- Morimatsu Life Science, No. 29, Jinwen Road, Zhuqiao Airport Industrial Park, Shanghai, China
| | - Pei Jiang
- Morimatsu Life Science, No. 29, Jinwen Road, Zhuqiao Airport Industrial Park, Shanghai, China
| | - Xun Wan
- Morimatsu Life Science, No. 29, Jinwen Road, Zhuqiao Airport Industrial Park, Shanghai, China
| | - Waqas Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China.
| |
Collapse
|
2
|
Impact of SARS-CoV-2 RBD Mutations on the Production of a Recombinant RBD Fusion Protein in Mammalian Cells. Biomolecules 2022; 12:biom12091170. [PMID: 36139010 PMCID: PMC9496381 DOI: 10.3390/biom12091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 receptor-binding domain (RBD) is a major target for the development of diagnostics, vaccines and therapeutics directed against COVID-19. Important efforts have been dedicated to the rapid and efficient production of recombinant RBD proteins for clinical and diagnostic applications. One of the main challenges is the ongoing emergence of SARS-CoV-2 variants that carry mutations within the RBD, resulting in the constant need to design and optimise the production of new recombinant protein variants. We describe here the impact of naturally occurring RBD mutations on the secretion of a recombinant Fc-tagged RBD protein expressed in HEK 293 cells. We show that mutation E484K of the B.1.351 variant interferes with the proper disulphide bond formation and folding of the recombinant protein, resulting in its retention into the endoplasmic reticulum (ER) and reduced protein secretion. Accumulation of the recombinant B.1.351 RBD-Fc fusion protein in the ER correlated with the upregulation of endogenous ER chaperones, suggestive of the unfolded protein response (UPR). Overexpression of the chaperone and protein disulphide isomerase PDIA2 further impaired protein secretion by altering disulphide bond formation and increasing ER retention. This work contributes to a better understanding of the challenges faced in producing mutant RBD proteins and can assist in the design of optimisation protocols.
Collapse
|
3
|
Torres M, Hussain H, Dickson AJ. The secretory pathway - the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins. Crit Rev Biotechnol 2022; 43:628-645. [PMID: 35465810 DOI: 10.1080/07388551.2022.2047004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cell factories (in particular the CHO cell system) have been crucial in the rise of biopharmaceuticals. Mammalian cells have compartmentalized organelles where intricate networks of proteins manufacture highly sophisticated biopharmaceuticals in a specialized production pipeline - the secretory pathway. In the bioproduction context, the secretory pathway functioning is key for the effectiveness of cell factories to manufacture these life-changing medicines. This review describes the molecular components and events involved in the secretory pathway, and provides a comprehensive summary of the intracellular steps limiting the production of therapeutic proteins as well as the achievements in engineering CHO cell secretory machinery. We also consider antibody-producing plasma cells (so called "professional" secretory cells) to explore the mechanisms underpinning their unique secretory function/features. Such understandings offer the potential to further enhancement of the current CHO cell production platforms for manufacturing next generation of biopharmaceuticals.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Hirra Hussain
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:25-34. [PMID: 34895638 DOI: 10.1016/j.ddtec.2021.02.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Recombinant proteins used in biomedical research, diagnostics and different therapies are mostly produced in Chinese hamster ovary cells in the pharmaceutical industry. These biotherapeutics, monoclonal antibodies in particular, have shown remarkable market growth in the past few decades. The increasing demand for high amounts of biologics requires continuous optimization and improvement of production technologies. Research aims at discovering better means and methods for reaching higher volumetric capacity, while maintaining stable product quality. An increasing number of complex novel protein therapeutics, such as viral antigens, vaccines, bi- and tri-specific monoclonal antibodies, are currently entering industrial production pipelines. These biomolecules are, in many cases, difficult to express and require tailored product-specific solutions to improve their transient or stable production. All these requirements boost the development of more efficient expression optimization systems and high-throughput screening platforms to facilitate the design of product-specific cell line engineering and production strategies. In this minireview, we provide an overview on recent advances in CHO cell line development, targeted genome manipulation techniques, selection systems and screening methods currently used in recombinant protein production.
Collapse
Affiliation(s)
- Borbála Tihanyi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
5
|
Hussain H, Patel T, Ozanne AMS, Vito D, Ellis M, Hinchliffe M, Humphreys DP, Stephens PE, Sweeney B, White J, Dickson AJ, Smales CM. A comparative analysis of recombinant Fab and full-length antibody production in Chinese hamster ovary cells. Biotechnol Bioeng 2021; 118:4815-4828. [PMID: 34585737 DOI: 10.1002/bit.27944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 01/05/2023]
Abstract
Monoclonal antibodies are the leading class of biopharmaceuticals in terms of numbers approved for therapeutic purposes. Antigen-binding fragments (Fab) are also used as biotherapeutics and used widely in research applications. The dominant expression systems for full-length antibodies are mammalian cell-based, whereas for Fab molecules the preference has been an expression in bacterial systems. However, advances in CHO and downstream technologies make mammalian systems an equally viable option for small- and large-scale Fab production. Using a panel of full-length IgG antibodies and their corresponding Fab pair with different antigen specificities, we investigated the impact of the IgG and Fab molecule format on production from Chinese hamster ovary (CHO) cells and assessed the cellular capability to process and produce these formats. The full-length antibody format resulted in the recovery of fewer mini-pools posttransfection when compared to the corresponding Fab fragment format that could be interpreted as indicative of a greater overall burden on cells. Antibody-producing cell pools that did recover were subsequently able to achieve higher volumetric protein yields (mg/L) and specific productivity than the corresponding Fab pools. Importantly, when the actual molecules produced per cell of a given format was considered (as opposed to mass), CHO cells produced a greater number of Fab molecules per cell than obtained with the corresponding IgG, suggesting that cells were more efficient at making the smaller Fab molecule. Analysis of cell pools showed that gene copy number was not correlated to the subsequent protein production. The amount of mRNA correlated with secreted Fab production but not IgG, whereby posttranscriptional processes act to limit antibody production. In summary, we provide the first comparative description of how full-length IgG and Fab antibody formats impact on the outcomes of a cell line construction process and identify potential limitations in their production that could be targeted for engineering increases in the efficiency in the manufacture of these recombinant antibody formats.
Collapse
Affiliation(s)
- Hirra Hussain
- Faculty of Science and Engineering, Department of Chemical Engineering and Analytical Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.,CPI, Central Park, Darlington, UK
| | - Tulshi Patel
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,Horizon Discovery Biosciences Limited, Cambridge, UK
| | - Angelica M S Ozanne
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK
| | - Davide Vito
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,Mestag Therapeutics Limited, Cambridge, UK
| | - Mark Ellis
- Protein Sciences, UCB Pharma, Berkshire, UK
| | | | | | | | - Bernie Sweeney
- Protein Sciences, UCB Pharma, Berkshire, UK.,Lonza Biologics, Berkshire, UK
| | | | - Alan J Dickson
- Faculty of Science and Engineering, Department of Chemical Engineering and Analytical Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Christopher M Smales
- Division of Natural Sciences, Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK.,National Institute for Bioprocessing Research and Training, Co Dublin, Ireland
| |
Collapse
|
6
|
Mazurenko S. Predicting protein stability and solubility changes upon mutations: data perspective. ChemCatChem 2020. [DOI: 10.1002/cctc.202000933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stanislav Mazurenko
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of Science Masaryk University Zerotinovo nam. 617/9 601 77 Brno Czech Republic
| |
Collapse
|
7
|
A platform for context-specific genetic engineering of recombinant protein production by CHO cells. J Biotechnol 2020; 312:11-22. [DOI: 10.1016/j.jbiotec.2020.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
|
8
|
Carballo-Amador MA, McKenzie EA, Dickson AJ, Warwicker J. Surface patches on recombinant erythropoietin predict protein solubility: engineering proteins to minimise aggregation. BMC Biotechnol 2019; 19:26. [PMID: 31072369 PMCID: PMC6507049 DOI: 10.1186/s12896-019-0520-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein solubility characteristics are important determinants of success for recombinant proteins in relation to expression, purification, storage and administration. Escherichia coli offers a cost-efficient expression system. An important limitation, whether for biophysical studies or industrial-scale production, is the formation of insoluble protein aggregates in the cytoplasm. Several strategies have been implemented to improve soluble expression, ranging from modification of culture conditions to inclusion of solubility-enhancing tags. RESULTS Surface patch analysis has been applied to predict amino acid changes that can alter the solubility of expressed recombinant human erythropoietin (rHuEPO) in E. coli, a factor that has importance for both yield and subsequent downstream processing of recombinant proteins. A set of rHuEPO proteins (rHuEPO E13K, F48D, R150D, and F48D/R150D) was designed (from the framework of wild-type protein, rHuEPO WT, via amino acid mutations) that varied in terms of positively-charged patches. A variant predicted to promote aggregation (rHuEPO E13K) decreased solubility significantly compared to rHuEPO WT. In contrast, variants predicted to diminish aggregation (rHuEPO F48D, R150D, and F48D/R150D) increased solubility up to 60% in relation to rHuEPO WT. CONCLUSIONS These findings are discussed in the wider context of biophysical calculations applied to the family of EPO orthologues, yielding a diverse range of calculated values. It is suggested that combining such calculations with naturally-occurring sequence variation, and 3D model generation, could lead to a valuable tool for protein solubility design.
Collapse
Affiliation(s)
- M. Alejandro Carballo-Amador
- Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana–Ensenada, Pedregal Playitas, 22860 Ensenada, Baja California Mexico
| | - Edward A. McKenzie
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Alan J. Dickson
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Jim Warwicker
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| |
Collapse
|