1
|
Wang H, Yang Z, Wang S, Zhao A, Wang H, Liu Z, Sui M, Bao L, Zeng Q, Hu J, Bao Z, Huang X. Genome-wide association analysis reveals the genetic basis of thermal tolerance in dwarf surf clam Mulinia lateralis. Genomics 2024; 116:110904. [PMID: 39084476 DOI: 10.1016/j.ygeno.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Recently, elevated seawater temperatures have resulted numerous adverse effects, including significant mortality among bivalves. The dwarf surf clam, Mulinia lateralis, is considered a valuable model species for bivalve research due to its rapid growth and short generation time. The successful cultivation in laboratory setting throughout its entire life cycle makes it an ideal candidate for exploring the potential mechanisms underlying bivalve responses to thermal stress. In this study, a total of 600 clams were subjected to a 17-day thermal stress experiment at a temperature of 30 °C which is the semi-lethal temperature for this species. Ninety individuals who perished initially were classified as heat-sensitive populations (HSP), while 89 individuals who survived the experiment were classified as heat-tolerant populations (HTP). Subsequently, 179 individuals were then sequenced, and 21,292 single nucleotide polymorphisms (SNPs) were genotyped for downstream analysis. The heritability estimate for survival status was found to be 0.375 ± 0.127 suggesting a genetic basis for thermal tolerance trait. Furthermore, a genome-wide association study (GWAS) identified three SNPs and 10 candidate genes associated with thermal tolerance trait in M. lateralis. These candidate genes were involved in the ETHR/EHF signaling pathway and played pivotal role in signal sensory, cell adhesion, oxidative stress, DNA damage repair, etc. Additionally, qPCR results indicated that, excluding MGAT4A, ZAN, and RFC1 genes, all others exhibited significantly higher expression in the HTP (p < 0.05), underscoring the critical involvement of the ETHR/EHF signaling pathway in M. lateralis' thermal tolerance. These results unveil the presence of standing genetic variations associated with thermal tolerance in M. lateralis, highlighting the regulatory role of the ETHR/EHF signaling pathway in the bivalve's response to thermal stress, which contribute to comprehension of the genetic basis of thermal tolerance in bivalves.
Collapse
Affiliation(s)
- Haoran Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Academy of Future Ocean, Ocean University of China, Qingdao, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mingyi Sui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lijingjing Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Academy of Future Ocean, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
2
|
Yang J, Tang R, Chen S, Chen Y, Yuan K, Huang R, Wang L. Exposure to high-sugar diet induces transgenerational changes in sweet sensitivity and feeding behavior via H3K27me3 reprogramming. eLife 2023; 12:e85365. [PMID: 37698486 PMCID: PMC10558205 DOI: 10.7554/elife.85365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Human health is facing a host of new threats linked to unbalanced diets, including high-sugar diet (HSD), which contributes to the development of both metabolic and behavioral disorders. Studies have shown that diet-induced metabolic dysfunctions can be transmitted to multiple generations of offspring and exert long-lasting health burden. Meanwhile, whether and how diet-induced behavioral abnormalities can be transmitted to the offspring remains largely unclear. Here, we showed that ancestral HSD exposure suppressed sweet sensitivity and feeding behavior in the offspring in Drosophila. These behavioral deficits were transmitted through the maternal germline and companied by the enhancement of H3K27me3 modifications. PCL-PRC2 complex, a major driver of H3K27 trimethylation, was upregulated by ancestral HSD exposure, and disrupting its activity eliminated the transgenerational inheritance of sweet sensitivity and feeding behavior deficits. Elevated H3K27me3 inhibited the expression of a transcriptional factor Cad and suppressed sweet sensitivity of the sweet-sensing gustatory neurons, reshaping the sweet perception and feeding behavior of the offspring. Taken together, we uncovered a novel molecular mechanism underlying behavioral abnormalities spanning multiple generations of offspring upon ancestral HSD exposure, which would contribute to the further understanding of long-term health risk of unbalanced diet.
Collapse
Affiliation(s)
- Jie Yang
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Shiye Chen
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Yinan Chen
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- The Biobank of Xiangya Hospital, Xiangya Hospital, Central South UniversityChangshaChina
| | - Rui Huang
- Center for Neurointelligence, School of Medicine, Chongqing UniversityChongqingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
3
|
Mc Auley MT. An evolutionary perspective of lifespan and epigenetic inheritance. Exp Gerontol 2023; 179:112256. [PMID: 37460026 DOI: 10.1016/j.exger.2023.112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
In the last decade epigenetics has come to the fore as a discipline which is central to biogerontology. Age associated epigenetic changes are routinely linked with pathologies, including cardiovascular disease, cancer, and Alzheimer's disease; moreover, epigenetic clocks are capable of correlating biological age with chronological age in many species including humans. Recent intriguing empirical observations also suggest that inherited epigenetic effects could influence lifespan/longevity in a variety of organisms. If this is the case, an imperative exists to reconcile lifespan/longevity associated inherited epigenetic processes with the evolution of ageing. This review will critically evaluate inherited epigenetic effects from an evolutionary perspective. The overarching aim is to integrate the evidence which suggests epigenetic inheritance modulates lifespan/longevity with the main evolutionary theories of ageing.
Collapse
|
4
|
Hilker M, Salem H, Fatouros NE. Adaptive Plasticity of Insect Eggs in Response to Environmental Challenges. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:451-469. [PMID: 36266253 DOI: 10.1146/annurev-ento-120120-100746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that (a) parents adjust the egg phenotype to the actual needs, (b) eggs themselves respond to environmental challenges, and (c) egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany;
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany;
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
5
|
Beneficial commensal bacteria promote Drosophila growth by down-regulating the expression of peptidoglycan recognition proteins. iScience 2022; 25:104357. [PMID: 35601912 PMCID: PMC9121327 DOI: 10.1016/j.isci.2022.104357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/24/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
|
6
|
Mazzucco R, Schlötterer C. Long-term gut microbiome dynamics in Drosophila melanogaster reveal environment-specific associations between bacterial taxa at the family level. Proc Biol Sci 2021; 288:20212193. [PMID: 34905708 PMCID: PMC8670958 DOI: 10.1098/rspb.2021.2193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The influence of the microbiome on its host is well-documented, but the interplay of its members is not yet well-understood. Even for simple microbiomes, the interaction among members of the microbiome is difficult to study. Longitudinal studies provide a promising approach to studying such interactions through the temporal covariation of different taxonomic units. By contrast to most longitudinal studies, which span only a single host generation, we here present a post hoc analysis of a whole-genome dataset of 81 samples that follows microbiome composition for up to 180 host generations, which cover nearly 10 years. The microbiome diversity remained rather stable in replicated Drosophila melanogaster populations exposed to two different temperature regimes. The composition changed, however, systematically across replicates of the two temperature regimes. Significant associations between families, mostly specific to one temperature regime, indicate functional interdependence of different microbiome components. These associations also involve moderately abundant families, which emphasizes their functional importance, and highlights the importance of looking beyond the common constituents of the Drosophila microbiome.
Collapse
Affiliation(s)
- Rupert Mazzucco
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien 1210, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien 1210, Austria
| |
Collapse
|
7
|
Bonilla M, McPherson M, Coreas J, Boulos M, Chavol P, Alrabadi RI, Loza-Coll M. Repeated ethanol intoxications of Drosophila melanogaster adults increases the resistance to ethanol of their progeny. Alcohol Clin Exp Res 2021; 45:1370-1382. [PMID: 34120365 PMCID: PMC8295206 DOI: 10.1111/acer.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/16/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND For decades, Drosophila melanogaster has been used as a model organism to understand the genetics and neurobiology of ethanol intoxication and tolerance. Previous research has shown that acute and chronic pre-exposures to ethanol can trigger the development of functional ethanol tolerance in flies and has unveiled some of the genetic pathways involved in the process. To our knowledge, however, no previous work has systematically explored whether repeated intoxications of adult flies can affect the ethanol tolerance of their progeny. METHODS Adult flies were intoxicated several times (once daily, over several days), and their F1 and F2 progeny were subjected to a functional tolerance test in which flies are exposed to ethanol and video recorded twice within 5 hr. Their behavior was subsequently analyzed to determine how long it took them to become sedated during the first and second exposures. One- and 2-way ANOVAs were used to determine whether parental treatment had an effect on their progeny's baseline resistance and/or acquired functional tolerance to ethanol. RESULTS Parental flies that were intoxicated several times produced F1 and F2 progeny with a significantly higher resistance to ethanol than progeny from unexposed controls. Further, parental intoxications inconsistently increased the progeny's capacity to develop rapid functional tolerance upon re-exposure to ethanol. The transmission of increased ethanol resistance to progeny lasted several days after the last parental intoxication. CONCLUSION To our knowledge, this is the first demonstration that repeated parental daily intoxications affect the progeny's response to ethanol in fruit flies. Our findings support the use of D. melanogaster to explore conserved pathways underlying the transmission of ethanol tolerance and can help in the identificaton of novel strategies for managing alcohol use disorder.
Collapse
Affiliation(s)
- Michelle Bonilla
- Department of Biology - California State University, Northridge (CSUN)
| | - Michael McPherson
- Department of Biology - California State University, Northridge (CSUN)
| | - Jocelyn Coreas
- Department of Biology - California State University, Northridge (CSUN)
| | - Michael Boulos
- Department of Biology - California State University, Northridge (CSUN)
| | - Paniz Chavol
- Department of Biology - California State University, Northridge (CSUN)
| | - Ranna I. Alrabadi
- Department of Biology - California State University, Northridge (CSUN)
| | - Mariano Loza-Coll
- Department of Biology - California State University, Northridge (CSUN)
| |
Collapse
|
8
|
Le Lann C, van Baaren J, Visser B. Dealing with predictable and unpredictable temperatures in a climate change context: the case of parasitoids and their hosts. J Exp Biol 2021; 224:224/Suppl_1/jeb238626. [PMID: 33627468 DOI: 10.1242/jeb.238626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Earth's climate is changing at a rapid pace. To survive in increasingly fluctuating and unpredictable environments, species can either migrate or evolve through rapid local adaptation, plasticity and/or bet-hedging. For small ectotherm insects, like parasitoids and their hosts, phenotypic plasticity and bet-hedging could be critical strategies for population and species persistence in response to immediate, intense and unpredictable temperature changes. Here, we focus on studies evaluating phenotypic responses to variable predictable thermal conditions (for which phenotypic plasticity is favoured) and unpredictable thermal environments (for which bet-hedging is favoured), both within and between host and parasitoid generations. We then address the effects of fluctuating temperatures on host-parasitoid interactions, potential cascading effects on the food web, as well as biological control services. We conclude our review by proposing a road map for designing experiments to assess if plasticity and bet-hedging can be adaptive strategies, and to disentangle how fluctuating temperatures can affect the evolution of these two strategies in parasitoids and their hosts.
Collapse
Affiliation(s)
- Cécile Le Lann
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Joan van Baaren
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Wood ZT, Shepard ID, Hurley ST, Paisker MR, Hensley VR, Kinnison MT. Sex-Dependent Cold Tolerance at the Northern Invasive Range Limit of Gambusia affinis on Cape Cod, Massachusetts. COPEIA 2020. [DOI: 10.1643/ce-19-332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Zachary T. Wood
- Ecology and Environmental Sciences Program, School of Biology and Ecology, 5751 Murray Hall, University of Maine, Orono, Maine; (ZTW) . Send reprint requests to ZTW
| | - Isaac D. Shepard
- Ecology and Environmental Sciences Program, School of Biology and Ecology, 5751 Murray Hall, University of Maine, Orono, Maine; (ZTW) . Send reprint requests to ZTW
| | - Stephen T. Hurley
- Massachusetts Division of Fisheries & Wildlife, Buzzards Bay, Massachusetts
| | - Mitchell R. Paisker
- Ecology and Environmental Sciences Program, School of Biology and Ecology, 5751 Murray Hall, University of Maine, Orono, Maine; (ZTW) . Send reprint requests to ZTW
| | - Vanessa R. Hensley
- Ecology and Environmental Sciences Program, School of Biology and Ecology, 5751 Murray Hall, University of Maine, Orono, Maine; (ZTW) . Send reprint requests to ZTW
| | - Michael T. Kinnison
- Ecology and Environmental Sciences Program, School of Biology and Ecology, 5751 Murray Hall, University of Maine, Orono, Maine; (ZTW) . Send reprint requests to ZTW
| |
Collapse
|
10
|
Navarro-Martín L, Martyniuk CJ, Mennigen JA. Comparative epigenetics in animal physiology: An emerging frontier. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100745. [PMID: 33126028 DOI: 10.1016/j.cbd.2020.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
11
|
Zhu H, Cui Y, Luo C, Liu F. Quantifying Temperature Compensation of Bicoid Gradients with a Fast T-Tunable Microfluidic Device. Biophys J 2020; 119:1193-1203. [PMID: 32853562 PMCID: PMC7499060 DOI: 10.1016/j.bpj.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022] Open
Abstract
As a reaction-diffusion system strongly affected by temperature, early fly embryos surprisingly show highly reproducible and accurate developmental patterns during embryogenesis under temperature perturbations. To reveal the underlying temperature compensation mechanism, it is important to overcome the challenge in quantitative imaging on fly embryos under temperature perturbations. Inspired by microfluidics generating temperature steps on fly embryos, here we design a microfluidic device capable of ensuring the normal development of multiple fly embryos as well as achieving real-time temperature control and fast temperature switches for quantitative live imaging with a home-built two-photon microscope. We apply this system to quantify the temperature compensation of the morphogen Bicoid (Bcd) gradient in fly embryos. The length constant of the exponential Bcd gradient reaches the maximum at 25°C within the measured temperatures of 18-29°C and gradually adapts to the corresponding value at new temperatures upon a fast temperature switch. The relaxation time of such an adaptation becomes longer if the temperature is switched in a later developmental stage. This age-dependent temperature compensation could be explained if the traditional synthesis-diffusion-degradation model is extended to incorporate the dynamic change of the parameters controlling the formation of Bcd gradients.
Collapse
Affiliation(s)
- Hongcun Zhu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Yeping Cui
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Peking University, Beijing, China; The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China; Center for Quantitative Biology, Peking University, Beijing, China.
| |
Collapse
|
12
|
Moulin TC, Ferro F, Berkins S, Hoyer A, Williams MJ, Schiöth HB. Transient Administration of Dopaminergic Precursor Causes Inheritable Overfeeding Behavior in Young Drosophila melanogaster Adults. Brain Sci 2020; 10:brainsci10080487. [PMID: 32731370 PMCID: PMC7465534 DOI: 10.3390/brainsci10080487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 11/16/2022] Open
Abstract
Imbalances in dopaminergic signaling during development have been indicated as part of the underlying neurobiology of several psychiatric illnesses, including schizophrenia, major depression, bipolar disorder, and food addiction. Yet, how transient manipulation of dopaminergic signaling influences long-lasting behavioral consequences, or if these modifications can induce inheritable traits, it is still not understood. In this study, we used the Drosophila melanogaster model to test if transient pharmacological activation of the dopaminergic system leads to modulations of feeding and locomotion in adult flies. We observed that transient administration of a dopaminergic precursor, levodopa, at 6 h, 3 days or 5 days post-eclosion, induced overfeeding behavior, while we did not find significant effects on locomotion. Moreover, this phenotype was inherited by the offspring of flies treated 6 h or 3 days post-eclosion, but not the offspring of those treated 5 days post-eclosion. These results indicate that transient alterations in dopaminergic signaling can produce behavioral alterations in adults, which can then be carried to descendants. These findings provide novel insights into the conditions in which environmental factors can produce transgenerational eating disorders.
Collapse
Affiliation(s)
- Thiago C. Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
- Correspondence:
| | - Federico Ferro
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
| | - Samuel Berkins
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
| | - Angela Hoyer
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
| | - Michael J. Williams
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
| | - Helgi B. Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.F.); (S.B.); (A.H.); (M.J.W.); (H.B.S.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
13
|
Paternal inheritance of diet induced metabolic traits correlates with germline regulation of diet induced coding gene expression. Genomics 2020; 112:567-573. [DOI: 10.1016/j.ygeno.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
|