1
|
El Kurdi A, Kaeser G, Scheerer P, Hoffmann D, Akkus E, Elstner M, Krauß N, Lamparter T. Interaction between bacterial phytochromes Agp1 and Agp2 of Agrobacterium fabrum by fluorescence resonance energy transfer and docking studies. FEBS Lett 2025; 599:848-865. [PMID: 39865424 PMCID: PMC11931990 DOI: 10.1002/1873-3468.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins. For fluorescence resonance energy transfer (FRET) measurements, various Agp1 mutants and wild-type Agp2 were labeled with specific fluorophores to study their interaction. FRET efficiencies rose from position 122 to 545 of Agp1. The photosensory chromophore module (PCM) of Agp1 did not show a FRET signal, but the PCM of Agp2 did. Docking models suggest that Agp1 and Agp2 interact with their histidine kinase and PCM perpendicular to each, around 45 amino acids of Agp1 or Agp2 are involved.
Collapse
Affiliation(s)
- Afaf El Kurdi
- Allgemeine BotanikKarlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP)KarlsruheGermany
| | - Gero Kaeser
- Allgemeine BotanikKarlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP)KarlsruheGermany
| | - Patrick Scheerer
- Charité ‐ Universitätsmedizin Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular SignalingBerlinGermany
| | - David Hoffmann
- Institut für Physikalische ChemieKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Ebru Akkus
- Institut für Physikalische ChemieKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Marcus Elstner
- Institut für Physikalische ChemieKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Norbert Krauß
- Allgemeine BotanikKarlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP)KarlsruheGermany
| | - Tilman Lamparter
- Allgemeine BotanikKarlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP)KarlsruheGermany
| |
Collapse
|
2
|
Huber C, Strack M, Schultheiß I, Pielage J, Mechler X, Hornbogen J, Diller R, Frankenberg-Dinkel N. Darkness inhibits autokinase activity of bacterial bathy phytochromes. J Biol Chem 2024; 300:107148. [PMID: 38462162 PMCID: PMC11021371 DOI: 10.1016/j.jbc.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Bathy phytochromes are a subclass of bacterial biliprotein photoreceptors that carry a biliverdin IXα chromophore. In contrast to prototypical phytochromes that adopt a red-light-absorbing Pr ground state, the far-red light-absorbing Pfr-form is the thermally stable ground state of bathy phytochromes. Although the photobiology of bacterial phytochromes has been extensively studied since their discovery in the late 1990s, our understanding of the signal transduction process to the connected transmitter domains, which are often histidine kinases, remains insufficient. Initiated by the analysis of the bathy phytochrome PaBphP from Pseudomonas aeruginosa, we performed a systematic analysis of five different bathy phytochromes with the aim to derive a general statement on the correlation of photostate and autokinase output. While all proteins adopt different Pr/Pfr-fractions in response to red, blue, and far-red light, only darkness leads to a pure or highly enriched Pfr-form, directly correlated with the lowest level of autokinase activity. Using this information, we developed a method to quantitatively correlate the autokinase activity of phytochrome samples with well-defined stationary Pr/Pfr-fractions. We demonstrate that the off-state of the phytochromes is the Pfr-form and that different Pr/Pfr-fractions enable the organisms to fine-tune their kinase output in response to a certain light environment. Furthermore, the output response is regulated by the rate of dark reversion, which differs significantly from 5 s to 50 min half-life. Overall, our study indicates that bathy phytochromes function as sensors of light and darkness, rather than red and far-red light, as originally postulated.
Collapse
Affiliation(s)
- Christina Huber
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Merle Strack
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Isabel Schultheiß
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Julia Pielage
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Xenia Mechler
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Justin Hornbogen
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Rolf Diller
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Nicole Frankenberg-Dinkel
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany.
| |
Collapse
|
3
|
Kaeser G, Krauß N, Roughan C, Sauthof L, Scheerer P, Lamparter T. Phytochrome-Interacting Proteins. Biomolecules 2023; 14:9. [PMID: 38275750 PMCID: PMC10813442 DOI: 10.3390/biom14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Phytochromes are photoreceptors of plants, fungi, slime molds bacteria and heterokonts. These biliproteins sense red and far-red light and undergo light-induced changes between the two spectral forms, Pr and Pfr. Photoconversion triggered by light induces conformational changes in the bilin chromophore around the ring C-D-connecting methine bridge and is followed by conformational changes in the protein. For plant phytochromes, multiple phytochrome interacting proteins that mediate signal transduction, nuclear translocation or protein degradation have been identified. Few interacting proteins are known as bacterial or fungal phytochromes. Here, we describe how the interacting partners were identified, what is known about the different interactions and in which context of signal transduction these interactions are to be seen. The three-dimensional arrangement of these interacting partners is not known. Using an artificial intelligence system-based modeling software, a few predicted and modulated examples of interactions of bacterial phytochromes with their interaction partners are interpreted.
Collapse
Affiliation(s)
- Gero Kaeser
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Clare Roughan
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| | - Luisa Sauthof
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; (L.S.); (P.S.)
| | - Patrick Scheerer
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; (L.S.); (P.S.)
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften (JKIP), Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany; (G.K.); (N.K.); (C.R.)
| |
Collapse
|
4
|
Phytochrome Mediated Responses in Agrobacterium fabrum: Growth, Motility and Plant Infection. Curr Microbiol 2021; 78:2708-2719. [PMID: 34023916 PMCID: PMC8213605 DOI: 10.1007/s00284-021-02526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
Abstract
The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1− and agp2− knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2.
Collapse
|
5
|
Lamparter T, Xue P, Elkurdi A, Kaeser G, Sauthof L, Scheerer P, Krauß N. Phytochromes in Agrobacterium fabrum. FRONTIERS IN PLANT SCIENCE 2021; 12:642801. [PMID: 33995441 PMCID: PMC8117939 DOI: 10.3389/fpls.2021.642801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The focus of this review is on the phytochromes Agp1 and Agp2 of Agrobacterium fabrum. These are involved in regulation of conjugation, gene transfer into plants, and other effects. Since crystal structures of both phytochromes are known, the phytochrome system of A. fabrum provides a tool for following the entire signal transduction cascade starting from light induced conformational changes to protein interaction and the triggering of DNA transfer processes.
Collapse
Affiliation(s)
- Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Peng Xue
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Afaf Elkurdi
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Luisa Sauthof
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Patrick Scheerer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| |
Collapse
|
6
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|