1
|
Zhuang X, Xiao R, Fu Y, Yang B, Fan J, Lu F, Qin T, Yang X, Hu X, Yin J, Li W, Kang X, Chen G, Hu D, Sun C. MRE11:p.K464R mutation mediates olaparib resistance by enhancing DNA damage repair in HGSOC. Cell Biosci 2023; 13:178. [PMID: 37759323 PMCID: PMC10537967 DOI: 10.1186/s13578-023-01117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although the clinical application of PARP inhibitors has brought hope to ovarian cancer, the problem of its resistance has become increasingly prominent. Therefore, clinical experts have been focused on finding specific indicators and therapeutic targets that can be used for resistance monitoring of PARP inhibitors. RESULTS By cfDNA detecting during Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer, we found the presence of MRE11:p.K464R mutation was strongly associated with acquired Olaparib resistance. Structural analysis revealed that the MRE11:p.K464R mutation is situated at a critical site where the MRE11 protein interacts with other biomolecules, leading to potential structural and functional abnormalities of MRE11 protein. Functionally, MRE11:p.K464R mutation enhanced the tolerance of Olaparib by reducing the DNA damage. Mechanistically, MRE11:p.K464R mutation improved the efficiency of DNA damage repair and induce Olaparib resistance by enhancing its binding activity with the interacting proteins (including RAD50 and RPS3). Among them, the enhanced binding of MRE11:p.K464R mutation to RAD50/RPS3 facilitated non-homologous end joining (NHEJ) repair in tumor cells, thereby expanding the scope of research into acquired resistance to PARP inhibitors. CONCLUSIONS Our findings provide a theoretical basis for MRE11:p.K464R mutation as a specific indicator of resistance monitoring in Olaparib treatment, and the exploration of its resistance mechanism provides a novel insights for the formulation of combination ther therapies after Olaparib resistance.
Collapse
Affiliation(s)
- Xucui Zhuang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rourou Xiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Funian Lu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Qin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohang Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyuan Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Kang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianxing Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Ahn WS, Kim TS, Park YJ, Park YK, Kim HD, Kim J. Production, characterization, and epitope mapping of monoclonal antibodies of ribosomal protein S3 (rpS3). Anim Cells Syst (Seoul) 2021; 25:323-336. [PMID: 34745438 PMCID: PMC8567880 DOI: 10.1080/19768354.2021.1980100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribosomal protein S3 (rpS3), a member of 40S small ribosomal subunit, is a multifunctional protein with various extra-ribosomal functions including DNA repair endonuclease activity and is secreted from cancer cells. Therefore, antibodies with high specificity against rpS3 protein could be useful cancer biomarkers. In this study, polyclonal antibody (pAb) and monoclonal antibodies (mAbs) were raised against rpS3 protein and epitope mapping was performed for each antibody; the amino acid residues of rpS3 were scanned from amino acid 185 to 243 through peptide scanning to reveal the epitopes of each mAb. Results showed that pAb R2 has an epitope from amino acid 203 to 230, mAb M7 has an epitope from amino acid 213 to 221, and mAb M8 has an epitope from amino acid 197 to 219. Taken together, novel mAbs and pAb against rpS3 were raised and mapped against rpS3 with different specific epitopes.
Collapse
Affiliation(s)
- Woo-Sung Ahn
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yong Jun Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Young Kwang Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Tapak L, Afshar S, Afrasiabi M, Ghasemi MK, Alirezaei P. Application of Genetic Algorithm-Based Support Vector Machine in Identification of Gene Expression Signatures for Psoriasis Classification: A Hybrid Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5520710. [PMID: 34540995 PMCID: PMC8443357 DOI: 10.1155/2021/5520710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Psoriasis is a chronic autoimmune disease impairing significantly the quality of life of the patient. The diagnosis of the disease is done via a visual inspection of the lesional skin by dermatologists. Classification of psoriasis using gene expression is an important issue for the early and effective treatment of the disease. Therefore, gene expression data and selection of suitable gene signatures are effective sources of information. METHODS We aimed to develop a hybrid classifier for the diagnosis of psoriasis based on two machine learning models of the genetic algorithm and support vector machine (SVM). The method also conducts gene signature selection. A publically available gene expression dataset was used to test the model. RESULTS A number of 181 probe sets were selected among the original 54,675 probes using the hybrid model with a prediction accuracy of 100% over the test set. A number of 10 hub genes were identified using the protein-protein interaction network. Nine out of 10 identified genes were found in significant modules. CONCLUSIONS The results showed that the genetic algorithm improved the SVM classifier performance significantly implying the ability of the proposed model in terms of detecting relevant gene expression signatures as the best features.
Collapse
Affiliation(s)
- Leili Tapak
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohammad Kazem Ghasemi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pedram Alirezaei
- Department of Dermatology, Psoriasis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Park YJ, Kim SH, Kim TS, Lee SM, Cho BS, Seo CI, Kim HD, Kim J. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair. Cell Mol Life Sci 2021; 78:3591-3606. [PMID: 33464383 PMCID: PMC11072392 DOI: 10.1007/s00018-020-03754-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
In mammalian cells, the bulky DNA adducts caused by ultraviolet radiation are mainly repaired via the nucleotide excision repair (NER) pathway; some defects in this pathway lead to a genetic disorder known as xeroderma pigmentosum (XP). Ribosomal protein S3 (rpS3), a constituent of the 40S ribosomal subunit, is a multi-functional protein with various extra-ribosomal functions, including a role in the cellular stress response and DNA repair-related activities. We report that rpS3 associates with transcription factor IIH (TFIIH) via an interaction with the xeroderma pigmentosum complementation group D (XPD) protein and complements its function in the NER pathway. For optimal repair of UV-induced duplex DNA lesions, the strong helicase activity of the TFIIH complex is required for unwinding damaged DNA around the lesion. Here, we show that XP-D cells overexpressing rpS3 showed markedly increased resistance to UV radiation through XPD and rpS3 interaction. Additionally, the knockdown of rpS3 caused reduced NER efficiency in HeLa cells and the overexpression of rpS3 partially restored helicase activity of the TFIIH complex of XP-D cells in vitro. We also present data suggesting that rpS3 is involved in post-excision processing in NER, assisting TFIIH in expediting the repair process by increasing its turnover rate when DNA is damaged. We propose that rpS3 is an accessory protein of the NER pathway and its recruitment to the repair machinery augments repair efficiency upon UV damage by enhancing XPD helicase function and increasing its turnover rate.
Collapse
Affiliation(s)
- Y J Park
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - S H Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - T S Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - S M Lee
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - B S Cho
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - C I Seo
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - H D Kim
- TechnoComplex Building, HAEL Lab, Korea University, Seoul, 02841, Korea
| | - J Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea.
- TechnoComplex Building, HAEL Lab, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
5
|
Yang HW, Jung Y, Kim HD, Kim J. Ribosomal protein S3-derived repair domain peptides regulate UV-induced matrix metalloproteinase-1. Biochem Biophys Res Commun 2020; 530:149-154. [PMID: 32828277 DOI: 10.1016/j.bbrc.2020.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
Ultraviolet (UV) radiation is a major factor that causes wrinkle formation by affecting the collagen level in the skin. Here, we show that a short peptide (A8) derived from the repair domain of the ribosomal protein S3 (rpS3) reduces UV irradiation-induced increase in matrix metalloproteinase-1 (MMP-1) and prevents collagen degradation by reducing the activation of the mitogen-activated protein kinase (MAPK) signaling proteins (extracellular signal-regulated kinase [ERK], p38, and c-Jun N-terminal kinases [JNK]) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in cells. Furthermore, A8 also prevents the increase in the levels of inflammatory modulators such as tumor necrosis factor-alpha (TNF-α) or interleukin-6 (IL-6) in UV-irradiated cells. Collectively, our study suggests that the A8 peptide, derived from yeast or human, has anti-photoaging potential as it prevents UV-induced wrinkle formation.
Collapse
Affiliation(s)
- Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Youjin Jung
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea; HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea.
| |
Collapse
|