1
|
von Ehr J, Oberstrass L, Yazgan E, Schnaubelt LI, Blümel N, McNicoll F, Weigand JE, Zarnack K, Müller-McNicoll M, Korn SM, Schlundt A. Arid5a uses disordered extensions of its core ARID domain for distinct DNA- and RNA-recognition and gene regulation. J Biol Chem 2024; 300:107457. [PMID: 38866324 PMCID: PMC11262183 DOI: 10.1016/j.jbc.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024] Open
Abstract
AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.
Collapse
Affiliation(s)
- Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Lasse Oberstrass
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marburg, Germany
| | - Ege Yazgan
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lara Ina Schnaubelt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Nicole Blümel
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Francois McNicoll
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia E Weigand
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marburg, Germany
| | - Kathi Zarnack
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Max-Planck Institute for Biophysics, Frankfurt, Germany
| | - Sophie Marianne Korn
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; University of Greifswald, Institute of Biochemistry, Greifswald, Germany.
| |
Collapse
|
2
|
Yoodee S, Peerapen P, Plumworasawat S, Malaitad T, Thongboonkerd V. Identification and characterization of ARID1A-interacting proteins in renal tubular cells and their molecular regulation of angiogenesis. J Transl Med 2023; 21:862. [PMID: 38017409 PMCID: PMC10683333 DOI: 10.1186/s12967-023-04750-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Defects and deficiency of AT-rich interactive domain-containing protein 1A (ARID1A) encoded by a tumor suppressor gene ARID1A have recently been suggested to get involved in angiogenesis, a crucial process in carcinogenesis. However, molecular mechanisms of ARID1A deficiency to induce angiogenesis in kidney cancer remain underinvestigated. METHODS We performed large-scale identification of ARID1A protein interactors in renal tubular epithelial cells (RTECs) using immunoprecipitation (IP) followed by nanoLC-ESI-LTQ-Orbitrap tandem mass spectrometry (MS/MS). Their roles in angiogenesis were investigated using various assays. RESULTS A total of 74 ARID1A-interacting proteins were identified. Protein-protein interactions analysis revealed that these identified proteins interacted directly or indirectly with ARID1A. Among them, the direct interaction between ARID1A and β-actin was validated by IP and reciprocal IP followed by Western blotting. Small interfering RNA (siRNA) was used for single and double knockdowns of ARID1A and ACTB. Semi-quantitative RT-PCR demonstrated that deficiency of ARID1A, but not ACTB, significantly affected expression of angiogenesis-related genes in RTECs (VEGF and FGF2 were increased, whereas PDGF and EGF were decreased). However, the knockdowns did not affect TGFB1 and FGF1 levels. The quantitative mRNA expression data of VEGF and TGFB1 were consistent with the secreted levels of their protein products as measured by ELISA. Only secreted products derived from ARID1A-deficient RTECs significantly increased endothelial cells (ECs) migration and tube formation. Some of the other carcinogenic features could also be confirmed in the ARID1A-deficient RTECs, including increased cell migration and chemoresistance. Double knockdowns of both ARID1A and ACTB did not enhance the effects of single ARID1A knockdown in all assays. CONCLUSIONS We report herein a large dataset of the ARID1A-interacting proteins in RTECs using an IP-MS/MS approach and confirm the direct interaction between ARID1A and β-actin. However, the role of ARID1A deficiency in angiogenesis is independent of β-actin.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Thanyalak Malaitad
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Guo CC, Xu HE, Ma X. ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery. Acta Pharmacol Sin 2023; 44:2139-2150. [PMID: 37488425 PMCID: PMC10618457 DOI: 10.1038/s41401-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023] Open
Abstract
The AT-rich interaction domain (ARID) family of DNA-binding proteins is a group of transcription factors and chromatin regulators with a highly conserved ARID domain that recognizes specific AT-rich DNA sequences. Dysfunction of ARID family members has been implicated in various human diseases including cancers and intellectual disability. Among them, ARID3a has gained increasing attention due to its potential involvement in autoimmunity. In this article we provide an overview of the ARID family, focusing on the structure and biological functions of ARID3a. It explores the role of ARID3a in autoreactive B cells and its contribution to autoimmune diseases such as systemic lupus erythematosus and primary biliary cholangitis. Furthermore, we also discuss the potential for drug discovery targeting ARID3a and present a plan for future research in this field.
Collapse
Affiliation(s)
- Cheng-Cen Guo
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
4
|
A novel heterozygous missense variant of the ARID4A gene identified in Han Chinese families with schizophrenia-diagnosed siblings that interferes with DNA-binding activity. Mol Psychiatry 2022; 27:2777-2786. [PMID: 35365808 DOI: 10.1038/s41380-022-01530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022]
Abstract
ARID4A plays an important role in regulating gene expression and cell proliferation. ARID4A belongs to the AT-rich interaction domain (ARID)-containing family, and a PWWP domain immediately precedes its ARID region. The molecular mechanism and structural basis of ARID4A are largely unknown. Whole-exome sequencing (WES) revealed that a novel heterozygous missense variant, ARID4A c.1231 C > G (p.His411Asp), was associated with schizophrenia (SCZ) in this study. We determined the crystal structure of the PWWP-ARID tandem at 2.05 Å, revealing an unexpected mode in which ARID4A assembles with its PWWP and ARID from a structural and functional supramodule. Our results further showed that compared with the wild type, the p.His411Asp ARID mutant protein adopts a less compact conformation and exhibits a weaker dsDNA-binding ability. The p.His411Asp mutation decreased the number of cells that were arrested in the G0-G1 phase and caused more cells to progress to the G2-M phase. In addition, the missense mutation promoted the proliferation of HEK293T cells. In conclusion, our data provide evidence that ARID4A p.His411Asp could cause a conformational change in the ARID4A ARID domain, influence the DNA binding function, and subsequently disturb the cell cycle arrest in the G1 phase. ARID4A is likely a susceptibility gene for SCZ; thus, these findings provide new insight into the role of ARID4A in psychiatric disorders.
Collapse
|
5
|
Giri M, Gupta P, Maulik A, Gracias M, Singh M. Structure and DNA binding analysis of AT-rich interaction domain present in human BAF-B specific subunit BAF250b. Protein Sci 2022; 31:e4294. [PMID: 35481652 PMCID: PMC8994505 DOI: 10.1002/pro.4294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022]
Abstract
BAF250b and its paralog BAF250a are the DNA-binding central hub proteins present in BAF-B and BAF-A classes of SWI/SNF chromatin-remodeling complexes. BAF250b contains an AT-rich interaction domain (ARID) and C-terminal BAF250_C domain, and it is found mutated in several cancers. ARID is a conserved helix-turn-helix motif-containing DNA-binding domain present in several eukaryotic proteins. The ARID of BAF250b has been proposed to play roles in recruiting SWI/SNF to the target gene promoters for their activation. BAF250b ARID structures had been deposited in the protein data bank by a structural genomics consortium. However, it is not well-studied for its DNA-binding and solution dynamic properties. Here, we report complete backbone NMR resonance assignments of human BAF250b ARID. NMR chemical shifts and the backbone dynamics showed that the solution structure of the protein matched the reported crystal structures. The structure and chemical shift indexing revealed the presence of a short β-sheet in the DNA-binding region of BAF250b ARID that was absent in the structure of its paralog BAF250a ARID. NMR chemical shift perturbations identified DNA-binding residues and revealed the DNA-binding interface on BAF250b ARID. NMR data-driven HADDOCK models of BAF250b ARID - DNA complexes revealed its plausible mode of DNA-binding. Isothermal titration calorimetry experiments showed that BAF250b ARID interacts with DNA sequences with moderate affinities like BAF250a ARID. However, distinct thermodynamic signatures were observed for binding of BAF250a ARID and BAF250b ARID to AT-rich DNA sequence, suggesting that subtle sequence and structural differences in these two proteins influence their DNA-binding.
Collapse
Affiliation(s)
- Malyasree Giri
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| | - Parul Gupta
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| | - Aditi Maulik
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| | - Magaly Gracias
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| | - Mahavir Singh
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruIndia
| |
Collapse
|
6
|
Korn SM, Schlundt A. Structures and nucleic acid-binding preferences of the eukaryotic ARID domain. Biol Chem 2022; 403:731-747. [PMID: 35119801 DOI: 10.1515/hsz-2021-0404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
The DNA-binding AT-rich interactive domain (ARID) exists in a wide range of proteins throughout eukaryotic kingdoms. ARID domain-containing proteins are involved in manifold biological processes, such as transcriptional regulation, cell cycle control and chromatin remodeling. Their individual domain composition allows for a sub-classification within higher mammals. ARID is categorized as binder of double-stranded AT-rich DNA, while recent work has suggested ARIDs as capable of binding other DNA motifs and also recognizing RNA. Despite a broad variability on the primary sequence level, ARIDs show a highly conserved fold, which consists of six α-helices and two loop regions. Interestingly, this minimal core domain is often found extended by helices at the N- and/or C-terminus with potential roles in target specificity and, subsequently function. While high-resolution structural information from various types of ARIDs has accumulated over two decades now, there is limited access to ARID-DNA complex structures. We thus find ourselves left at the beginning of understanding ARID domain target specificities and the role of accompanying domains. Here, we systematically summarize ARID domain conservation and compare the various types with a focus on their structural differences and DNA-binding preferences, including the context of multiple other motifs within ARID domain containing proteins.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
7
|
Wang Z, Liu D, Xu B, Tian R, Zuo Y. Modular arrangements of sequence motifs determine the functional diversity of KDM proteins. Brief Bioinform 2020; 22:5912575. [PMID: 32987405 DOI: 10.1093/bib/bbaa215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone lysine demethylases (KDMs) play a vital role in regulating chromatin dynamics and transcription. KDM proteins are given modular activities by its sequence motifs with obvious roles division, which endow the complex and diverse functions. In our review, according to functional features, we classify sequence motifs into four classes: catalytic motifs, targeting motifs, regulatory motifs and potential motifs. JmjC, as the main catalytic motif, combines to Fe2+ and α-ketoglutarate by residues H-D/E-H and S-N-N/Y-K-N/Y-T/S. Targeting motifs make catalytic motifs recognize specific methylated lysines, such as PHD that helps KDM5 to demethylate H3K4me3. Regulatory motifs consist of a functional network. For example, NLS, Ser-rich, TPR and JmjN motifs regulate the nuclear localization. And interactions through the CW-type-C4H2C2-SWIRM are necessary to the demethylase activity of KDM1B. Additionally, many conservative domains that have potential functions but no deep exploration are reviewed for the first time. These conservative domains are usually amino acid-rich regions, which have great research value. The arrangements of four types of sequence motifs generate that KDM proteins diversify toward modular activities and biological functions. Finally, we draw a blueprint of functional mechanisms to discuss the modular activity of KDMs.
Collapse
Affiliation(s)
- Zerong Wang
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Dongyang Liu
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University. He is now studying for a master's degree at the institute of botany of the Chinese Academy of Sciences. His research interests include bioinformatics and computational genomics
| | - Baofang Xu
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Ruixia Tian
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Yongchun Zuo
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University. His research interests include bioinformatics and integration analysis of multiomics in cell reprogramming
| |
Collapse
|
8
|
Giri M, Maulik A, Singh M. Signatures of Specific DNA Binding by the AT-Rich Interaction Domain of BAF250a. Biochemistry 2019; 59:100-113. [PMID: 31825600 DOI: 10.1021/acs.biochem.9b00852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The AT-rich interaction domain (ARID) containing BAF250a is a subunit of the BAF-A class of SWI/SNF chromatin remodeling complexes. The ARID belongs to a family of conserved DNA binding domains found in several eukaryotic proteins; however, its exact contribution to BAF250a function and the mechanism of its DNA binding are not well understood. Here we have probed the interaction of the BAF250a ARID with three different double-stranded DNA (dsDNA) sequences to understand its DNA binding properties. A comprehensive biophysical and thermodynamic study using nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry revealed the complex nature of BAF250a ARID-DNA interactions. The thermodynamic signatures of the BAF250a ARID with 12 A-T bp dsDNA (AT-12) are distinct from those of 12 G-C bp dsDNA (GC-12) or 12 bp Dickerson dodecamer DNA (DD-12) sequences. We observed that the binding of the BAF250a ARID with AT-12 DNA is enthalpically driven in a tested temperature range of 5-25 °C. BAF250a ARID/AT-12 DNA interaction exhibited a larger negative calorimetric specific heat change (ΔCp) compared to that of BAF250a ARID/GC-12 DNA or BAF250a ARID/DD-12 DNA interactions. In the presence of salt (NaCl), ARID/AT-12 DNA binding was less perturbed than ARID/GC-12 DNA or ARID/DD-12 DNA binding. Overall, these results show that BAF250a ARID/AT-12 DNA interaction has signatures of "specific" binding. Furthermore, using NMR chemical shift perturbation experiments, we have identified DNA binding residues on the BAF250a ARID and generated a data-driven HADDOCK model of the ARID/DNA complex that was further supported by mutating key lysine residues that were found to be important for DNA binding.
Collapse
Affiliation(s)
- Malyasree Giri
- Molecular Biophysics Unit , Indian Institute of Science , Bengaluru 560012 , India
| | - Aditi Maulik
- Molecular Biophysics Unit , Indian Institute of Science , Bengaluru 560012 , India
| | - Mahavir Singh
- Molecular Biophysics Unit , Indian Institute of Science , Bengaluru 560012 , India.,NMR Research Centre , Indian Institute of Science , Bengaluru 560012 , India
| |
Collapse
|