1
|
Nozue H, Shigarami T, Fukuda S, Chino T, Saruta R, Shirai K, Nozue M, Kumazaki S. Growth-phase dependent morphological alteration in higher plant thylakoid is accompanied by changes in both photodamage and repair rates. PHYSIOLOGIA PLANTARUM 2021; 172:1983-1996. [PMID: 33786842 DOI: 10.1111/ppl.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Thylakoid membranes of young leaves consist of grana and stroma lamellae (stroma-grana [SG] structure). The SG thylakoid is gradually converted into isolated grana (IG), almost lacking the stroma lamellae during growth. This morphological alteration was found to cause a reduction in maximum photosynthetic rate and an enhancement of photoinhibition in photosystem II (PSII). In situ microspectrometric measurements of chlorophyll fluorescence in individual chloroplasts suggested an increase of the PSII/PSI ratio in IG thylakoids of mature leaves. Western blot analysis of isolated IG thylakoids showed relative increases in some PSII components, including the core protein (D1) and light-harvesting components CP24 and Lhcb2. Notably, a nonphotochemical quenching-related factor in the PSII supercomplex, PsbS, decreased by 40%. Changes in the high light response of PSII were detected through parameters of pulse-amplitude modulation fluorometry. Chlorophyll fluorescence lifetime indicated an increase of fluorescence quantum yield in IG. A minimal photodamage-repair rate analysis on a lincomycin treatment of the leaves indicated that repair rate constant of IG is slower than that of SG, while photodamage rate of IG is higher than that of SG. These results suggest that IG thylakoids are relatively sensitive to high light, which is not only due to a higher photodamage rate caused by some rearrangements of PS complexes, but also to the retarded PSII repair that may result from the lack of stroma lamellae. The IG thylakoids found among many plant species thus seem to be an adaptive form to low light environments, although their physiological roles still remain unclear.
Collapse
Affiliation(s)
- Hatsumi Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Takashi Shigarami
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Shinji Fukuda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takayuki Chino
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Ryouta Saruta
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Kana Shirai
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Masayuki Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Shigeichi Kumazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Gacek DA, Holleboom CP, Liao PN, Negretti M, Croce R, Walla PJ. Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29. PHOTOSYNTHESIS RESEARCH 2020; 143:19-30. [PMID: 31659623 DOI: 10.1007/s11120-019-00676-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/07/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid-chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, [Formula: see text], which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, [Formula: see text], and a considerable increase in [Formula: see text]. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased [Formula: see text]. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing [Formula: see text]. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on [Formula: see text] and [Formula: see text] than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased [Formula: see text] when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
Collapse
Affiliation(s)
- Daniel A Gacek
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Christoph-Peter Holleboom
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Pen-Nan Liao
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Marco Negretti
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Peter Jomo Walla
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany.
| |
Collapse
|