1
|
Yang Q, Chen K, Chen S, Wang Y, Xia Y, Chen J, Shen Y. Blue light promotes conjunctival epithelial-mesenchymal transition and collagen deposition through ITGB4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117584. [PMID: 39732060 DOI: 10.1016/j.ecoenv.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
The increasing prevalence of LED technology heightened blue light (BL) exposure, raising concerns about its long-term effects on ocular health. This study investigated the transcriptomic response of conjunctiva to BL exposure, highlighting potential biomarkers for conjunctival injury. We exposed human conjunctival epithelial cells and C57BL/6 mice to BL to establish in vitro and in vivo models and identified the responsive genes in mice's conjunctiva to BL exposure by RNA sequencing transcriptome analysis. Western blotting, wound healing assays, transwell assay, and phalloidin staining assessed phenotypes of epithelial-mesenchymal transition (EMT). BL disrupted cell conjunction and regulated EMT-related proteins. RNA sequencing analysis revealed upregulation of ITGB4 and enrichment of cell migration and adhesion pathways. Reactive oxygen species-mediated damage caused by BL upregulated ITGB4 expression, promoting cell migration and EMT through the extracellular signal-regulated kinase /Snail pathway.
Collapse
Affiliation(s)
- Qianjie Yang
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Yinhao Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yutong Xia
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinbo Chen
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Wan H, Zhong L, Xia T, Zhang D. Silencing Exosomal circ102927 Inhibits Foot Melanoma Metastasis via Regulating Invasiveness, Epithelial-Mesenchymal Transition and Apoptosis. Cancer Manag Res 2024; 16:825-839. [PMID: 39044746 PMCID: PMC11263183 DOI: 10.2147/cmar.s460315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Background Exosomes contain abundant circular RNAs (circRNAs), playing an important role in intercellular communication. However, the function and underlying molecular mechanism of exosomal circRNAs in foot metastatic melanoma remain unclear. Methods Twelve differentially expressed exosomal circRNAs between patients with metastatic and primary foot melanoma were screened through high-throughput sequencing, and their expression levels were detected by the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). CircRNA102927 silencing and overexpression A2058 cell line was constructed, and the effects of circRNA102927 on cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) were assessed using cell counting kit-8 (CCK-8), flow cytometry, wound healing, Transwell, and Western blot assays, respectively. Results Twelve differentially expressed exosomal circRNAs were screened and ROC curve showed that six circRNAs could be used as the diagnostic biomarkers for metastatic melanoma. Melanoma-secreted exosomes induced the differentiation of CD4+ T cells into Treg cells. CircRNA102927 was highly expressed in metastatic melanomas. Functionally, circRNA102927 silencing inhibited proliferation, EMT, migration, and invasion in metastatic melanoma cells, while promoting apoptosis. Meanwhile, overexpression of circRNA102927 had the opposite effects. Conclusion Our investigation suggests that silencing exosomal circRNA102927 may suppress foot melanoma metastasis by inhibiting invasiveness, EMT and promoting apoptosis.
Collapse
Affiliation(s)
- Huiying Wan
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ling Zhong
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Tian Xia
- Department of Pathology, Air Force Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Huang CC, Tsai MC, Wu YL, Lee YJ, Yen AT, Wang CJ, Kao SH. Gallic acid attenuates metastatic potential of human colorectal cancer cells through the miR-1247-3p-modulated integrin/FAK axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2077-2085. [PMID: 38100242 DOI: 10.1002/tox.24087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Colorectal cancer (CRC) exhibits highly metastatic potential even in the early stages of tumor progression. Gallic acid (GA), a common phenolic compound in plants, is known to possess potent antioxidant and anticancer activities, thereby inducing cell death or cell cycle arrest. However, whether GA reduces the invasiveness of CRC cells without inducing cell death remains unclear. Herein, we aimed to investigate the antimetastatic activity of low-dose GA on CRC cells and determine its underlying mechanism. Cell viability and tumorigenicity were analyzed by MTS, cell adhesion, and colony formation assay. Invasiveness was demonstrated using migration and invasion assays. Changes in protein phosphorylation and expression were assessed by Western blot. The involvement of microRNAs was validated by microarray analysis and anti-miR antagonist. Our findings showed that lower dose of GA (≤100 μM) did not affect cell viability but reduced the capabilities of colony formation, cell adhesion, and invasiveness in CRC cells. Cellularly, GA downregulated the cellular level of integrin αV/β3, talin-1, and tensin and diminished the phosphorylated FAK, paxillin, Src, and AKT in DLD-1 cells. Microarray results revealed that GA increased miR-1247-3p expression, and pretreatment of anti-miR antagonist against miR-1247-3p restored the GA-reduced integrin αV/β3 and the GA-inhibited paxillin activation in DLD-1 cells. Consistently, the in vivo xenograft model showed that GA administration inhibited tumor growth and liver metastasis derived from DLD-1 cells. Collectively, our findings indicated that GA inhibited the metastatic capabilities of CRC cells, which may result from the suppression of integrin/FAK axis mediated by miR1247-3p.
Collapse
Affiliation(s)
- Chi-Chou Huang
- Department of Colorectal Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chang Tsai
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Liang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Cardiovascular Surgery, Surgical Department, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - An-Ting Yen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chau-Jong Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Zhang X, Han P, Qiu J, Huang F, Luo Q, Cheng J, Shan K, Yang Y, Zhang C. Single-cell RNA sequencing reveals the complex cellular niche of pterygium. Ocul Surf 2024; 32:91-103. [PMID: 38290663 DOI: 10.1016/j.jtos.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Pterygium is a vision-threatening conjunctival fibrovascular degenerated disease with a high global prevalence up to 12 %, while no absolute pharmacotherapy has been applied in clinics. In virtue of single-cell RNA sequencing (scRNA-seq) technique, our study investigated underlying pathogeneses and potential therapeutic targets of pterygium from the cellular transcriptional level. METHODS A total of 45605 cells from pterygium of patients and conjunctiva of normal controls (NC) were conducted with scRNA-seq, and then analyzed via integrated analysis, pathway enrichment, pseudotime trajectory, and cell-cell communications. Besides, immunofluorescence and western blot were performed in vivo and in vitro to verify our findings. RESULTS In brief, 9 major cellular types were defined, according to canonical markers. Subsequently, we further determined the subgroups of each major cell lineages. Several newly identified cell sub-clusters could promote pterygium, including immuno-fibroblasts, epithelial mesenchymal transition (EMT)-epithelial cells, and activated vascular endothelial cells (activated-vEndo). Besides, we also probed the enrichment of immune cells in pterygium. Particularly, macrophages, recruited by ACKR1+activated-vEndo, might play an important role in the development of pterygium by promoting angiogenesis, immune suppression, and inflammation. CONCLUSION An intricate cellular niche was revealed in pterygium via scRNA-seq analysis and the interactions between macrophages and ACKR1+ activated-vEndo might be the key part in the development of pterygia.
Collapse
Affiliation(s)
- Xueling Zhang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Peizhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jini Qiu
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Feifei Huang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Qiting Luo
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jingyi Cheng
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Kun Shan
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Yujing Yang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Chaoran Zhang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
5
|
Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27:65. [PMID: 35922753 PMCID: PMC9347108 DOI: 10.1186/s11658-022-00354-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood–brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Science, Neyshabur University of Medical Science, Neyshabur, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Cheng Z, Zhang Y, Wu S, Zhao R, Yu Y, Zhou Y, Zhou Z, Dong Y, Qiu A, Xu H, Liu Y, Zhang W, Tian T, Wu Q, Gu H, Chu M. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113451. [PMID: 35378401 DOI: 10.1016/j.ecoenv.2022.113451] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Existing studies reported that some circular RNAs (circRNAs) play vital roles in the development of pulmonary fibrosis. However, few studies explored the biomarker potential of circRNAs for pulmonary fibrosis based on population data. Therefore, we aimed to identify peripheral blood circRNAs as potential biomarkers for diagnosing silicosis and idiopathic pulmonary fibrosis (IPF). In brief, an RNA-seq screening based on 4 silicosis cases and 4 controls was initially performed. Differentially expressed circRNAs were combined with the human serum circRNA dataset to identify overlapping serum-detectable circRNAs, followed by validation using the GEO dataset (3 IPF cases and 3 controls) and subsequent qRT-PCR, including 84 additional individuals. Following the above steps, 243 differentially expressed circRNAs were identified during the screening stage, with fold changes ≥ 1.5 and P < 0.05. Of note, the human serum circRNA dataset encompassed 28 of 243 circRNAs. GEO (GSE102660) validation revealed two highly expressed circRNAs (P < 0.05) in the IPF case group. Furthermore, at the enlarged sample validation stage, hsa_circ_0058493 was highly expressed in both silicosis and IPF cases (silicosis: P = 1.16 × 10-6; IPF: P = 7.46 × 10-5). Additionally, hsa_circ_0058493 expression was significantly increased in MRC-5 cells upon TGF-β1 treatment, while hsa_circ_0058493 knockdown inhibited the expression of fibrotic molecules by affecting the epithelial-mesenchymal transition process. These shreds of evidence indicated that hsa_circ_0058493 might serve as a novel biomarker for diagnosing silicosis and IPF.
Collapse
Affiliation(s)
- Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yingyi Zhang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Shuangshuang Wu
- Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Zhao
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Zhen Zhou
- Department of Mathematics and Applied Mathematics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Hongyan Gu
- Department of Respiratory, the Sixth People's Hospital of Nantong, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
7
|
Chen J, Liang JQ, Zhen YF, Chang L, Zhou ZT, Shen XJ. DCAF1-targeting microRNA-3175 activates Nrf2 signaling and inhibits dexamethasone-induced oxidative injury in human osteoblasts. Cell Death Dis 2021; 12:1024. [PMID: 34716304 PMCID: PMC8556244 DOI: 10.1038/s41419-021-04300-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Activation of nuclear-factor-E2-related factor 2 (Nrf2) signaling can protect human osteoblasts from dexamethasone-induced oxidative injury. DDB1 and CUL4 associated factor 1 (DCAF1) is a novel ubiquitin E3 ligase for Nrf2 protein degradation. We identified a novel DCAF1-targeting miRNA, miR-3175. RNA pull-down, Argonaute 2 RNA-immunoprecipitation, and RNA fluorescent in situ hybridization results confirmed a direct binding between miR-3175 and DCAF1 mRNA in primary human osteoblasts. DCAF1 3'-untranslated region luciferase activity and its expression were significantly decreased after miR-3175 overexpression but were augmented with miR-3175 inhibition in human osteoblasts and hFOB1.19 osteoblastic cells. miR-3175 overexpression activated Nrf2 signaling, causing Nrf2 protein stabilization, antioxidant response (ARE) activity increase, and transcription activation of Nrf2-dependent genes in human osteoblasts and hFOB1.19 cells. Furthermore, dexamethasone-induced oxidative injury and apoptosis were largely attenuated by miR-3175 overexpression in human osteoblasts and hFOB1.19 cells. Importantly, shRNA-induced silencing or CRISPR/Cas9-mediated Nrf2 knockout abolished miR-3175 overexpression-induced osteoblast cytoprotection against dexamethasone. Conversely, DFAC1 knockout, by the CRISPR/Cas9 method, activated the Nrf2 cascade and inhibited dexamethasone-induced cytotoxicity in hFOB1.19 cells. Importantly, miR-3175 expression was decreased in necrotic femoral head tissues of dexamethasone-taking patients, where DCAF1 mRNA was upregulated. Together, silencing DCAF1 by miR-3175 activated Nrf2 signaling to inhibit dexamethasone-induced oxidative injury and apoptosis in human osteoblasts.
Collapse
Affiliation(s)
- Jing Chen
- Department of Endocrinology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jin-Qian Liang
- Department of Orthopaedics, Peking Union Medical College Hospital, Beijing, China
| | - Yun-Fang Zhen
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital of Soochow University, Suzhou, China
| | - Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhen-Tao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xiong-Jie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
8
|
de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55:691-715. [PMID: 33081543 DOI: 10.1080/10409238.2020.1828260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | - Maureen Spit
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Huang H, Qing XY, Zhou Q, Li HD, Hu ZY. Silencing of microRNA-3175 represses cell proliferation and invasion in prostate cancer by targeting the potential tumor-suppressor SCN4B. Kaohsiung J Med Sci 2020; 37:20-26. [PMID: 32833340 DOI: 10.1002/kjm2.12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-3175 (miR-3175) expression is upregulated in prostate cancer, but its roles and the underlying mechanisms in prostate cancer cell growth and invasion need to be elucidated. This study aimed to uncover the roles of miR-3175 in regulating cell growth and migration, as well as the expression of its predicted target gene cardiac sodium channel β4-subunit gene (SCN4B). Real-time quantitative PCR (RT-qPCR) and/or western blotting techniques were used to measure miR-3175 and SCN4B expression levels in prostate cancer cells. Inhibitor or mimics transfections were used to overexpress or silence miR-3175 in prostate cancer cells. MTT and Edu assays were applied to assess cell viability. Scratch assay and transwell chambers were used to examine cell migration and invasion abilities. The interaction between miR-3175 and SCN4B was determined by means of luciferase gene reporter, RT-qPCR, and western blotting assays. The results showed that miR-3175 expression was increased and SCN4B expression was decreased in prostate cancer cell lines as compared with normal human prostatic epithelial cells. Compared with the control group, knockdown of miR-3175 resulted in strong inhibitions of cell growth, migration, invasion, and N-cadherin expression, together with an increase in E-cadherin expression. In addition, knockdown of miR-3175 dramatically increased the luciferase activity of the luciferase vector of SCN4B, and increased SCN4B expression. Together, this study illustrated that downregulation of miR-3175 repressed the proliferation and invasion of prostate cancer cells, which might be induced by SCN4B downregulation.
Collapse
Affiliation(s)
- He Huang
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Yan Qing
- Department of Oncology, Chengdu Seventh People's Hospital, Chengdu, China
| | - Qiong Zhou
- Department of Medical, the Third Hospital of Nanchang, Nanchang, China
| | - Han-Dan Li
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhu-Yun Hu
- Department of Urology, the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|