1
|
Schoberer J, Vavra U, Shin Y, Grünwald‐Gruber C, Strasser R. Elucidation of the late steps in the glycan-dependent ERAD of soluble misfolded glycoproteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17185. [PMID: 39642157 PMCID: PMC11712024 DOI: 10.1111/tpj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/08/2024]
Abstract
The endoplasmic reticulum (ER) utilizes ER-associated degradation (ERAD), a highly conserved eukaryotic pathway, to eliminate misfolded or unassembled proteins and maintain protein homeostasis in cells. The clearance of misfolded glycoproteins involves several distinct steps, including the recognition of a specific glycan signal, retrotranslocation to the cytosol, and subsequent degradation of the misfolded protein by the ubiquitin proteasome system. Confocal microscopy was used to track the fate of a well-characterized ERAD substrate via a self-complementing split fluorescent protein assay. The results demonstrate that a misfolded variant of the STRUBBELIG (SUB) extracellular protein domain (SUBEX-C57Y) is retrotranslocated to the cytosol when transiently expressed in Nicotiana benthamiana leaf epidermal cells. Retrotranslocation requires a protein domain with a lesion that is exposed in the lumen of the ER, N-glycan trimming by α-mannosidases, HRD1-mediated ubiquitination, and the ATPase function of CDC48. The retrotranslocated SUBEX-C57Y ERAD substrate undergoes deglycosylation, and proteasomal degradation is blocked by a catalytically inactive cytosolic peptide N-glycanase. These findings define distinct aspects of ERAD that have been elusive until now and may represent the default pathway for degrading misfolded glycoproteins in plants.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Yun‐Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Clemens Grünwald‐Gruber
- Core Facility Mass SpectrometryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
2
|
Honda A, Seino J, Huang C, Nakano M, Suzuki T. Occurrence of free glycans in salmonid serum. Biochem Biophys Res Commun 2025; 742:151096. [PMID: 39637704 DOI: 10.1016/j.bbrc.2024.151096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Free N-glycans (FNGs) are oligosaccharides that are structurally related to N-linked glycans, and are widely found in nature. The mechanisms responsible for the formation and degradation of intracellular FNGs are well characterized in mammalian cells. More recent analysis in mammalian sera shows that there are various types of extracellular free glycans, including FNGs. However, it is unknown whether these free glycans are widely distributed in vertebrates. In this study, we investigated the occurrence of free glycans in salmonid serum. We found that it contained sialyl or neutral FNGs and sialyl lactose/N-acetyllactosamine (LacNAc)-type glycans, which was consistent with that found in mammalian sera. Many of the structures of FNGs matched those of N-glycans from serum glycoproteins. This study revealed that various types of free glycans are present in fish serum, demonstrating their wide occurrence among vertebrates.
Collapse
Affiliation(s)
- Akinobu Honda
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Chengcheng Huang
- Chemical Glycobiology Laboratory, Institute for Glyco-core (iGOCRE), Tokai National Higher Education and Research System Nagoya University, Furo-cho, Nagoya, Aichi, 464-8601, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, 739-8528, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
3
|
Hirayama H, Fujihira H, Suzuki T. Development of new NGLY1 assay systems - toward developing an early screening method for NGLY1 deficiency. Glycobiology 2024; 34:cwae067. [PMID: 39206713 PMCID: PMC11442003 DOI: 10.1093/glycob/cwae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cytosolic peptide: N-glycanase (PNGase/NGLY1 in mammals) is an amidase (EC:3.5.1.52) widely conserved in eukaryotes. It catalyzes the removal of N-glycans on glycoproteins, converting N-glycosylated Asn into Asp residues. This enzyme also plays a role in the quality control system for nascent glycoproteins. Since the identification of a patient with an autosomal recessive genetic disorder caused by NGLY1 gene dysfunction, known as NGLY1 deficiency or NGLY1 congenital disorder of deglycosylation (OMIM: 615273), in 2012, more than 100 cases have been reported worldwide. NGLY1 deficiency is characterized by a wide array of symptoms, such as global mental delay, intellectual disability, abnormal electroencephalography findings, seizure, movement disorder, hypolacrima or alacrima, and liver dysfunction. Unfortunately, no effective therapeutic treatments for this disease have been established. However, administration of adeno-associated virus 9 (AAV9) vector harboring human NGLY1 gene to an NGLY1-deficient rat model (Ngly1-/- rat) by intracerebroventricular injection was found to drastically improve motor function defects. This observation indicated that early therapeutic intervention could alleviate various symptoms originating from central nervous system dysfunction in this disease. Therefore, there is a keen interest in the development of facile diagnostic methods for NGLY1 deficiency. This review summarizes the history of assay development for PNGase/NGLY1 activity, as well as the recent progress in the development of novel plate-based assay systems for NGLY1, and also discusses future perspectives.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| |
Collapse
|
4
|
Huang C, Seino J, Honda A, Fujihira H, Wu D, Okahara K, Kitazume S, Nakaya S, Kitajima K, Sato C, Suzuki T. Rat hepatocytes secrete free oligosaccharides. J Biol Chem 2024; 300:105712. [PMID: 38309509 PMCID: PMC10912633 DOI: 10.1016/j.jbc.2024.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
We recently established a method for the isolation of serum-free oligosaccharides, and characterized various features of their structures. However, the precise mechanism for how these glycans are formed still remains unclarified. To further investigate the mechanism responsible for these serum glycans, here, we utilized rat primary hepatocytes to examine whether they are able to secrete free glycans. Our findings indicated that a diverse array of free oligosaccharides such as sialyl/neutral free N-glycans (FNGs), as well as sialyl lactose/LacNAc-type glycans, were secreted into the culture medium by primary hepatocytes. The structural features of these free glycans in the medium were similar to those isolated from the sera of the same rat. Further evidence suggested that an oligosaccharyltransferase is involved in the release of the serum-free N-glycans. Our results indicate that the liver is indeed secreting various types of free glycans directly into the serum.
Collapse
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Akinobu Honda
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Di Wu
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Kyohei Okahara
- Discovery Concept Validation Function, KAN Research Institute, Inc, Kobe, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Shuichi Nakaya
- Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
5
|
Huang C, Seino J, Fujihira H, Sato K, Fujinawa R, Sumer-Bayraktar Z, Ishii N, Matsuo I, Nakaya S, Suzuki T. Occurrence of free N-glycans with a single GlcNAc at the reducing termini in animal sera. Glycobiology 2021; 32:314-332. [PMID: 34939097 DOI: 10.1093/glycob/cwab124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies demonstrated the occurrence of sialyl free N-glycans (FNGs) in sera from a variety of animals. Unlike the intracellular FNGs that mainly carry a single N-acetylglucosamine at their reducing termini (Gn1-type), these extra-cellular FNGs have an N,N'-diacetylchitobiose at their reducing termini (Gn2-type). The detailed mechanism for how they are formed, however, remains unclarified. In this study, we report on an improved method for isolating FNGs from sera and found that, not only sialyl FNGs, but also neutral FNGs are present in animal sera. Most of the neutral oligomannose-type FNGs were found to be Gn1-type. We also found that a small portion of sialyl FNGs were Gn1-type. The ratio of Gn1-type sialyl FNGs varies between species, and appears to be partially correlated with the distribution of lysosomal chitobiase activity. We also identified small sialylated glycans similar to milk oligosaccharides, such as sialyl lactose or sialyl N-acetyllactosamine in sera. Our results indicate that there are variety of free oligosaccharides in sera and the mechanism responsible for their formation is more complicated than currently envisaged.
Collapse
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 133-8421, Japan
| | - Keiko Sato
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Zeynep Sumer-Bayraktar
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Shuichi Nakaya
- Global Application Development Center, Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Hirayama H, Suzuki T. Assay for the peptide:N-glycanase/NGLY1 and disease-specific biomarkers for diagnosing NGLY1 deficiency. J Biochem 2021; 171:169-176. [PMID: 34791337 DOI: 10.1093/jb/mvab127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Cytosolic peptide:N-glycanase (NGLY1 in mammals), a highly conserved enzyme in eukaryotes, catalyzes the deglycosylation of N-glycans that are attached to glycopeptide/glycoproteins. In 2012, an autosomal recessive disorder related to the NGLY1 gene, which was referred to as NGLY1 deficiency, was reported. Since then, more than 100 patients have been identified. Patients with this disease exhibit various symptoms, including various motor deficits and other neurological problems. Effective therapeutic treatments for this disease, however, have not been established. Most recently, it was demonstrated that the intracerebroventricular administration of an adeno-associated virus 9 vector expressing human NGLY1 during the weaning period allowed some motor functions to be recovered in Ngly1-/- rats. This observation led us to hypothesize that a therapeutic intervention for improving these motor deficits or other neurological symptoms found in the patients might be possible. To achieve this, it is critical to establish robust and facile methods for assaying NGLY1 activity in biological samples, for the early diagnosis and evaluation of the therapeutic efficacy for the treatment of NGLY1 deficiency. In this mini-review, we summarize progress made in the development of various assay methods for NGLY1 activity, as well as a recent progress in the identification of NGLY1 deficiency-specific biomarkers.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Japan.,Takeda-CiRA Joint Program (T-CiRA), Kanagawa, Japan
| |
Collapse
|
7
|
Kuribara T, Totani K. Structural insights into N-linked glycan-mediated protein folding from chemical and biological perspectives. Curr Opin Struct Biol 2020; 68:41-47. [PMID: 33296772 DOI: 10.1016/j.sbi.2020.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/26/2022]
Abstract
About half of all newly synthesized proteins have N-linked glycans. These glycans play pivotal roles in controlling the folding, sorting, and degradation of glycoproteins via several glycan-related proteins. The glycan-mediated protein quality control system is important for cellular homeostasis. In this review, we summarize recent advances in our understanding of the system and discuss structural insights from chemical and biological perspectives. In particular, we focus on the mechanisms by which these mediators respond to several folding states of glycoproteins.
Collapse
Affiliation(s)
- Taiki Kuribara
- Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Kiichiro Totani
- Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8633, Japan.
| |
Collapse
|