1
|
Ma M, Li H, Wang C, Li T, Wang J, Yuan H, Yu L, Wang J, Li L, Lin S. A comparative study reveals the relative importance of prokaryotic and eukaryotic proton pump rhodopsins in a subtropical marginal sea. ISME COMMUNICATIONS 2023; 3:79. [PMID: 37596487 PMCID: PMC10439184 DOI: 10.1038/s43705-023-00292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Proton-pump rhodopsin (PPR) in marine microbes can convert solar energy to bioavailable chemical energy. Whereas bacterial PPR has been extensively studied, counterparts in microeukaryotes are less explored, and the relative importance of the two groups is poorly understood. Here, we sequenced whole-assemblage metatranscriptomes and investigated the diversity and expression dynamics of PPR in microbial eukaryotes and prokaryotes at a continental shelf and a slope site in the northern South China Sea. Data showed the whole PPRs transcript pool was dominated by Proteorhodopsins and Xanthorhodopsins, followed by Bacteriorhodopsin-like proteins, dominantly contributed by prokaryotes both in the number and expression levels of PPR unigenes, although at the continental slope station, microeukaryotes and prokaryotes contributed similarly in transcript abundance. Furthermore, eukaryotic PPRs are mainly contributed by dinoflagellates and showed significant correlation with nutrient concentrations. Green light-absorbing PPRs were mainly distributed in >3 μm organisms (including microeukaryotes and their associated bacteria), especially at surface layer at the shelf station, whereas blue light-absorbing PPRs dominated the <3 μm (mainly bacterial) communities at both study sites, especially at deeper layers at the slope station. Our study portrays a comparative PPR genotype and expression landscape for prokaryotes and eukaryotes in a subtropical marginal sea, suggesting PPR's role in niche differentiation and adaptation among marine microbes.
Collapse
Affiliation(s)
- Minglei Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Hongfei Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, 515063, China
| | - Jierui Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- Central Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
2
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|