1
|
Hu B, Wang R, Zhang H, Wang X, Zhou S, Ma B, Luan Y, Wang X, Chen X, Zhang Z, Kang Q. Postnatal development of rat retina: a continuous observation and comparison between the organotypic retinal explant model and in vivo development. Neural Regen Res 2025; 20:900-912. [PMID: 38886961 PMCID: PMC11433907 DOI: 10.4103/nrr.nrr-d-23-01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/22/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00033/figure1/v/2024-06-17T092413Z/r/image-tiff The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures. However, the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies. Thus, we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina. In this study, we showed that postnatal retinal explants undergo normal development, and exhibit a consistent structure and timeline with retinas in vivo. Initially, we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells. We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin, respectively. Ki-67- and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis, and exhibited a high degree of similarity in abundance and distribution between groups. Additionally, we used Ceh-10 homeodomain-containing homolog, glutamate-ammonia ligase (glutamine synthetase), neuronal nuclei, and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells, Müller glia, mature neurons, and microglia, respectively. The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas. Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development. The findings confirm the accuracy and credibility of this model and support its use for long-term, systematic, and continuous observation.
Collapse
Affiliation(s)
- Baoqi Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, China
| | - Rui Wang
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Xiou Wang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Sijia Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Xin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Zhou X, Chen W, Zhuang D, Xu G, Puyang Y, Rui H. Knockdown of SETD5 Inhibits Colorectal Cancer Cell Growth and Stemness by Regulating PI3K/AKT/mTOR Pathway. Biochem Genet 2024:10.1007/s10528-024-10766-w. [PMID: 38641699 DOI: 10.1007/s10528-024-10766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/28/2024] [Indexed: 04/21/2024]
Abstract
SET domain-containing 5 (SETD5), a member of protein lysine methyltransferase family, is expressed in multiple cancers, making it potential therapeutic targets. However, the role of SETD5 in colorectal cancer remains largely unknown. The expression of SETD5 in the 30 pairs colorectal cancer tissues samples and cell lines were determined by qRT-PCR. The functions of SETD5 was detected by knocked-down or overexpression in colorectal cancer cell lines SW480 and HCT116 cells. Cell proliferative activity, cell death, and stemness characteristics were assessed. BEZ235, a PI3K/AKT/mTOR pathway inhibitor, was used to perform rescue experiment to analyze whether SETD5 exerted its effects through activating PI3K/AKT/mTOR pathway. SETD5 was substantially upregulated in colorectal cancer, and correlated to metastasis and clinical stage of patients. Knockdown of SETD5 inhibited SW480 and HCT116 cell growth, as evidenced by the inhibition of cell viability and clone-forming. Moreover, Knockdown of SETD5 suppressed the capability of tumor sphere formation of SW480 and HCT116 cells, and reduced the expression of stemness-related proteins Nanog and Sox2. Further western blot analysis revealed that SETD5 knockdown inhibited the phosphorylation of proteins associated with the PI3K/AKT/mTOR pathway. In contrast, overexpression of SETD5 exerted the opposite effects. Mechanistically, by blocking PI3K/AKT/mTOR pathway with BEZ235, the effects of SETD5 overexpression on cell viability and Nanog and Sox2 protein expression were reversed. Our results substantiated that SETD5 functioned as an oncogene by promoting cell growth and stemness in colorectal cancer cells through activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaohua Zhou
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Wenqiang Chen
- Department of Medical Oncology, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Duanming Zhuang
- Department of Gastroenterology, Economic Development Zone, Nanjing Gaochun People's Hospital, No. 53, Maoshan, Gaochun, 211300, Jiangsu, China.
| | - Guangqi Xu
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Yongqiang Puyang
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Hongqing Rui
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| |
Collapse
|
3
|
Sun W, Justice I, Green EM. Defining Biological and Biochemical Functions of Noncanonical SET Domain Proteins. J Mol Biol 2024; 436:168318. [PMID: 37863247 PMCID: PMC10957327 DOI: 10.1016/j.jmb.2023.168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Within the SET domain superfamily of lysine methyltransferases, there is a well-conserved subfamily, frequently referred to as the Set3 SET domain subfamily, which contain noncanonical SET domains carrying divergent amino acid sequences. These proteins are implicated in diverse biological processes including stress responses, cell differentiation, and development, and their disruption is linked to diseases including cancer and neurodevelopmental disorders. Interestingly, biochemical and structural analysis indicates that they do not possess catalytic methyltransferase activity. At the molecular level, Set3 SET domain proteins appear to play critical roles in the regulation of gene expression, particularly repression and heterochromatin maintenance, and in some cases, via scaffolding other histone modifying activities at chromatin. Here, we explore the common and unique functions among Set3 SET domain subfamily proteins and analyze what is known about the specific contribution of the conserved SET domain to functional roles of these proteins, as well as propose areas of investigation to improve understanding of this important, noncanonical subfamily of proteins.
Collapse
Affiliation(s)
- Winny Sun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Isabella Justice
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
4
|
CRISPR/Cas9-Induced Inactivation of the Autism-Risk Gene setd5 Leads to Social Impairments in Zebrafish. Int J Mol Sci 2022; 24:ijms24010167. [PMID: 36613611 PMCID: PMC9820161 DOI: 10.3390/ijms24010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Haploinsufficiency of the SETD5 gene, encoding a SET domain-containing histone methyltransferase, has been identified as a cause of intellectual disability and Autism Spectrum Disorder (ASD). Recently, the zebrafish has emerged as a valuable model to study neurodevelopmental disorders because of its genetic tractability, robust behavioral traits and amenability to high-throughput drug screening. To model human SETD5 haploinsufficiency, we generated zebrafish setd5 mutants using the CRISPR/Cas9 technology and characterized their morphological, behavioral and molecular phenotypes. According to our observation that setd5 is expressed in adult zebrafish brain, including those areas controlling social behavior, we found that setd5 heterozygous mutants exhibit defective aggregation and coordination abilities required for shoaling interactions, as well as indifference to social stimuli. Interestingly, impairment in social interest is rescued by risperidone, an antipsychotic drug used to treat behavioral traits in ASD individuals. The molecular analysis underscored the downregulation of genes encoding proteins involved in the synaptic structure and function in the adult brain, thus suggesting that brain hypo-connectivity could be responsible for the social impairments of setd5 mutant fishes. The zebrafish setd5 mutants display ASD-like features and are a promising setd5 haploinsufficiency model for drug screening aimed at reversing the behavioral phenotypes.
Collapse
|