1
|
Umeda Y, Kimura S, Kimura J, Imamura Y, Ishizuka T. Tepotinib for the Treatment of Lung Adenocarcinoma Harboring MET Y1003N Point Mutation: A Case Report. Thorac Cancer 2024. [PMID: 39676462 DOI: 10.1111/1759-7714.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
The mesenchymal-epithelial transition factor (MET) Y1003 mutation, like MET ex14 skipping, is an oncogenic driver mutation that suppresses MET degradation. Herein, we report the case of a 63-year-old female patient with lung adenocarcinoma harboring the MET Y1003N mutation, who was treated with tepotinib, a selective type 1b MET tyrosine kinase inhibitor. To the best of our knowledge, no such cases have been reported. The woman was referred to our hospital with the chief complaint of chest pain. After a detailed examination, she was diagnosed with stage IVB lung adenocarcinoma. Next-generation sequencing revealed an MET Y1003N mutation in the tumor. Tepotinib was administered as the eighth-line treatment, and the best overall response was a partial response that lasted for 8 months. In lung adenocarcinomas harboring the MET Y1003 mutation, selective type 1b MET tyrosine kinase inhibitors may be an important treatment option, even in heavily pretreated settings.
Collapse
Affiliation(s)
- Yukihiro Umeda
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Satomi Kimura
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
- Department of Respiratory Medicine, Japanese Red Cross Fukui Hospital, Fukui, Japan
| | - Junya Kimura
- Division of Diagnostic Pathology/Surgical Pathology, University of Fukui Hospital, Eiheiji, Fukui, Japan
| | - Yoshiaki Imamura
- Division of Diagnostic Pathology/Surgical Pathology, University of Fukui Hospital, Eiheiji, Fukui, Japan
| | - Tamotsu Ishizuka
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| |
Collapse
|
2
|
Ren J, Lv L, Tao X, Zhai X, Chen X, Yu H, Zhao X, Kong X, Yu Z, Dong D, Liu J. The role of CBL family ubiquitin ligases in cancer progression and therapeutic strategies. Front Pharmacol 2024; 15:1432545. [PMID: 39130630 PMCID: PMC11310040 DOI: 10.3389/fphar.2024.1432545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinya Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xin Kong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Guérin C, Tulasne D. Recording and classifying MET receptor mutations in cancers. eLife 2024; 13:e92762. [PMID: 38652103 PMCID: PMC11042802 DOI: 10.7554/elife.92762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Tyrosine kinase inhibitors (TKI) directed against MET have been recently approved to treat advanced non-small cell lung cancer (NSCLC) harbouring activating MET mutations. This success is the consequence of a long characterization of MET mutations in cancers, which we propose to outline in this review. MET, a receptor tyrosine kinase (RTK), displays in a broad panel of cancers many deregulations liable to promote tumour progression. The first MET mutation was discovered in 1997, in hereditary papillary renal cancer (HPRC), providing the first direct link between MET mutations and cancer development. As in other RTKs, these mutations are located in the kinase domain, leading in most cases to ligand-independent MET activation. In 2014, novel MET mutations were identified in several advanced cancers, including lung cancers. These mutations alter splice sites of exon 14, causing in-frame exon 14 skipping and deletion of a regulatory domain. Because these mutations are not located in the kinase domain, they are original and their mode of action has yet to be fully elucidated. Less than five years after the discovery of such mutations, the efficacy of a MET TKI was evidenced in NSCLC patients displaying MET exon 14 skipping. Yet its use led to a resistance mechanism involving acquisition of novel and already characterized MET mutations. Furthermore, novel somatic MET mutations are constantly being discovered. The challenge is no longer to identify them but to characterize them in order to predict their transforming activity and their sensitivity or resistance to MET TKIs, in order to adapt treatment.
Collapse
Affiliation(s)
- Célia Guérin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - David Tulasne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| |
Collapse
|
4
|
Akkus E, Tuncalı T, Akın HY, Aydın Y, Beşışık SK, Gürkan E, Ratip S, Salihoğlu A, Sargın D, Ünal A, Turcan A, Sevindik ÖG, Demir M, Beksac M. Germline genetic variants in Turkish familial multiple myeloma/monoclonal gammopathy of undetermined significance cases. Br J Haematol 2024; 204:931-938. [PMID: 38115798 DOI: 10.1111/bjh.19271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Multiple myeloma (MM) is a haematological malignancy primarily affecting the elderly, with a striking male predilection and ethnic disparities in incidence. Familial predisposition to MM has long been recognized, but the genetic underpinnings remain elusive. This study aimed to investigate germline variants in Turkish families with recurrent MM cases. A total of 37 MM-affected families, comprising 77 individuals, were included. Targeted next-generation sequencing analysis yielded no previously reported rare variants. Whole exome sequencing analysis in 11 families identified rare disease-causing variants in various genes, some previously linked to familial MM and others not previously associated. Notably, genes involved in ubiquitination, V(D)J recombination and the PI3K/AKT/mTOR pathway were among those identified. Furthermore, a specific variant in BNIP1 (rs28199) was found in 13 patients across nine families, indicating its potential significance in MM pathogenesis. While this study sheds light on genetic variations in familial MM in Turkey, its limitations include sample size and the absence of in vivo investigations. In conclusion, familial MM likely involves a polygenic inheritance pattern with rare, disease-causing variants in various genes, emphasizing the need for international collaborative efforts to unravel the intricate genetic basis of MM and develop targeted therapies.
Collapse
Affiliation(s)
- Erman Akkus
- Department of Internal Medicine, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Timur Tuncalı
- Department of Medical Genetics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hasan Yalım Akın
- Department of Hematology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Yıldız Aydın
- Department of Hematology, Florence Nightingale Hospitals, Istanbul, Turkey
| | - Sevgi Kalayoğlu Beşışık
- Department of Internal Medicine, Division of Hematology, Istanbul University Medical Faculty, Istanbul, Turkey
| | - Emel Gürkan
- Department of Hematology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Siret Ratip
- Department of Hematology, Acibadem Healthcare Group, Istanbul, Turkey
| | - Ayşe Salihoğlu
- Department of Hematology, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Deniz Sargın
- Department of Hematology, Medipol University Faculty of Medicine, İstanbul, Turkey
| | - Ali Ünal
- Department of Hematology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | | | - Ömür Gökmen Sevindik
- Department of Hematology, Medipol University Faculty of Medicine, İstanbul, Turkey
| | - Muzaffer Demir
- Department of Hematology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Meral Beksac
- Department of Hematology, Ankara University Faculty of Medicine, Ankara, Turkey
- Department of Hematology, Ankara Liv Hospital, Istinye University, Ankara, Turkey
| |
Collapse
|
5
|
Guo H, Zhou C, Zheng M, Zhang J, Wu H, He Q, Ding L, Yang B. Insights into the role of derailed endocytic trafficking pathway in cancer: From the perspective of cancer hallmarks. Pharmacol Res 2024; 201:107084. [PMID: 38295915 DOI: 10.1016/j.phrs.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
The endocytic trafficking pathway is a highly organized cellular program responsible for the regulation of membrane components and uptake of extracellular substances. Molecules internalized into the cell through endocytosis will be sorted for degradation or recycled back to membrane, which is determined by a series of sorting events. Many receptors, enzymes, and transporters on the membrane are strictly regulated by endocytic trafficking process, and thus the endocytic pathway has a profound effect on cellular homeostasis. However, the endocytic trafficking process is typically dysregulated in cancers, which leads to the aberrant retention of receptor tyrosine kinases and immunosuppressive molecules on cell membrane, the loss of adhesion protein, as well as excessive uptake of nutrients. Therefore, hijacking endocytic trafficking pathway is an important approach for tumor cells to obtain advantages of proliferation and invasion, and to evade immune attack. Here, we summarize how dysregulated endocytic trafficking process triggers tumorigenesis and progression from the perspective of several typical cancer hallmarks. The impact of endocytic trafficking pathway to cancer therapy efficacy is also discussed.
Collapse
Affiliation(s)
- Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|