1
|
Guo L, Huang E, Wang T, Ling Y, Li Z. Exploring the molecular mechanisms of asthma across multiple datasets. Ann Med 2024; 56:2258926. [PMID: 38489401 PMCID: PMC10946276 DOI: 10.1080/07853890.2023.2258926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/09/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Asthma, a prevalent chronic respiratory disorder, remains enigmatic, notwithstanding considerable advancements in our comprehension. Continuous efforts are crucial for discovering novel molecular targets and gaining a comprehensive understanding of its pathogenesis. MATERIALS AND METHODS In this study, we analyzed gene expression data from 212 individuals, including asthma patients and healthy controls, to identify 267 differentially expressed genes, among which C1orf64 and C7orf26 emerged as potential key genes in asthma pathogenesis. Various bioinformatics tools, including differential gene expression analysis, pathway enrichment, drug target prediction, and single-cell analysis, were employed to explore the potential roles of the genes. RESULTS Quantitative PCR demonstrated differential expression of C1orf64 and C7orf26 in the asthmatic airway epithelial tissue, implying their potential involvement in asthma pathogenesis. GSEA enrichment analysis revealed significant enrichment of these genes in signaling pathways associated with asthma progression, such as ABC transporters, cell cycle, CAMs, DNA replication, and the Notch signaling pathway. Drug target prediction, based on upregulated and downregulated differential expression, highlighted potential asthma treatments, including Tyrphostin-AG-126, Cephalin, Verrucarin-a, and Emetine. The selection of these drugs was based on their significance in the analysis and their established anti-inflammatory and antiviral invasion properties. Utilizing Seurat and Celldex packages for single-cell sequencing analysis unveiled disease-specific gene expression patterns and cell types. Expression of C1orf64 and C7orf26 in T cells, NK cells, and B cells, instrumental in promoting hallmark features of asthma, was observed, suggesting their potential influence on asthma development and progression. CONCLUSION This study uncovers novel genetic aspects of asthma, highlighting potential therapeutic pathways. It exemplifies the power of integrative bioinformatics in decoding complex disease patterns. However, these findings require further validation, and the precise roles of C1orf64 and C7orf26 in asthma warrant additional investigation to validate their therapeutic potential.
Collapse
Affiliation(s)
- Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongting Wang
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Ling
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Alradi M, Askari H, Shaw M, Bhavsar JD, Kingham BF, Polson SW, Fancher IS. A long-term high-fat diet induces differential gene expression changes in spatially distinct adipose tissue of male mice. Physiol Genomics 2024; 56:819-832. [PMID: 39348460 PMCID: PMC11573270 DOI: 10.1152/physiolgenomics.00080.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
The accumulation of visceral adipose tissue (VAT) is strongly associated with cardiovascular disease and diabetes. In contrast, individuals with increased subcutaneous adipose tissue (SAT) without corresponding increases in VAT are associated with a metabolic healthy obese phenotype. These observations implicate dysfunctional VAT as a driver of disease processes, warranting investigation into obesity-induced alterations of distinct adipose depots. To determine the effects of obesity on adipose gene expression, male mice (n = 4) were fed a high-fat diet to induce obesity or a normal laboratory diet (lean controls) for 12-14 mo. Mesenteric VAT and inguinal SAT were isolated for bulk RNA sequencing. AT from lean controls served as a reference to obesity-induced changes. The long-term high-fat diet induced the expression of 169 and 814 unique genes in SAT and VAT, respectively. SAT from obese mice exhibited 308 differentially expressed genes (164 upregulated and 144 downregulated). VAT from obese mice exhibited 690 differentially expressed genes (262 genes upregulated and 428 downregulated). KEGG pathway and GO analyses revealed that metabolic pathways were upregulated in SAT versus downregulated in VAT while inflammatory signaling was upregulated in VAT. We next determined common genes that were differentially regulated between SAT and VAT in response to obesity and identified four genes that exhibited this profile: elovl6 and kcnj15 were upregulated in SAT/downregulated in VAT while trdn and hspb7 were downregulated in SAT/upregulated in VAT. We propose that these genes in particular should be further pursued to determine their roles in SAT versus VAT with respect to obesity.NEW & NOTEWORTHY A long-term high-fat diet induced the expression of more than 980 unique genes across subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). The high-fat diet also induced the differential expression of nearly 1,000 AT genes. We identified four genes that were oppositely expressed in SAT versus VAT in response to the high-fat diet and propose that these genes in particular may serve as promising targets aimed at resolving VAT dysfunction in obesity.
Collapse
Affiliation(s)
- Malak Alradi
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, Delaware, United States
| | - Hassan Askari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mark Shaw
- Delware Biotechnology Institute, University of Delaware, Newark, Delaware, United States
| | - Jaysheel D Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Brewster F Kingham
- Delware Biotechnology Institute, University of Delaware, Newark, Delaware, United States
| | - Shawn W Polson
- Delware Biotechnology Institute, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
- Department of Computer and Information Sciences, College of Engineering, University of Delaware, Newark, Delaware, United States
| | - Ibra S Fancher
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, Delaware, United States
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
3
|
Chen Z, Li P, Shen L, Jiang X. Heat shock protein B7 (HSPB7) inhibits lung adenocarcinoma progression by inhibiting glycolysis. Oncol Rep 2023; 50:196. [PMID: 37732539 PMCID: PMC10560864 DOI: 10.3892/or.2023.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
In the present study, it was aimed to investigate the effects and potential mechanisms of heat shock protein B7 (HSPB7) on lung adenocarcinoma (LUAD). Bioinformatic analysis was performed to explore the association between HSPB7 expression and patients with LUAD. MTT, colony formation, wound healing and Transwell assays were performed to examine the proliferative, migratory and invasive abilities of H1975 and A549 cells. Western blot analysis was conducted to determine the corresponding protein expression. Co‑Immunoprecipitation and Chromatin immunoprecipitation assays were carried out to reveal the interaction between HSPB7 and myelodysplastic syndrome 1 and ecotropic viral integration site 1 complex locus (MECOM). In addition, an animal model was conducted by the subcutaneous injection of A549 cells into BALB/c nude mice, and tumor weight and size were measured. HSPB7 was downregulated in LUAD tissues and cells, and its expression level correlated with patient prognosis. Cell functional data revealed that silencing of HSPB7 promoted lung cancer cell proliferation, migration, invasion and epithelial mesenchymal transition (EMT); whereas overexpression of HSPB7 led to the opposite results. Furthermore, bioinformatics analysis showed that HSPB7 inhibited glycolysis. HSPB7 decreased glucose consumption, lactic acid production, and lactate dehydrogenase A, hexokinase 2 and pyruvate kinase muscle isoform 2 protein levels. The results demonstrated that MECOM was a transcription factor of HSPB7. Collectively, these results suggested that HSPB7 is regulated by MECOM, and that HSPB7 attenuates LUAD cell proliferation, migration, invasion and EMT by inhibiting glycolysis.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Peipei Li
- Department of General Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Lingguang Shen
- Department of General Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xiuyu Jiang
- Health Management Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
4
|
Kaushik AC, Zhao Z. Machine learning-driven exploration of drug therapies for triple-negative breast cancer treatment. Front Mol Biosci 2023; 10:1215204. [PMID: 37602329 PMCID: PMC10436744 DOI: 10.3389/fmolb.2023.1215204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Breast cancer is the second leading cause of cancer death in women among all cancer types. It is highly heterogeneous in nature, which means that the tumors have different morphologies and there is heterogeneity even among people who have the same type of tumor. Several staging and classifying systems have been developed due to the variability of different types of breast cancer. Due to high heterogeneity, personalized treatment has become a new strategy. Out of all breast cancer subtypes, triple-negative breast cancer (TNBC) comprises ∼10%-15%. TNBC refers to the subtype of breast cancer where cells do not express estrogen receptors, progesterone receptors, or human epidermal growth factor receptors (ERs, PRs, and HERs). Tumors in TNBC have a diverse set of genetic markers and prognostic indicators. We scanned the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases for potential drugs using human breast cancer cell lines and drug sensitivity data. Three different machine-learning approaches were used to evaluate the prediction of six effective drugs against the TNBC cell lines. The top biomarkers were then shortlisted on the basis of their involvement in breast cancer and further subjected to testing for radion resistance using data from the Cleveland database. It was observed that Panobinostat, PLX4720, Lapatinib, Nilotinib, Selumetinib, and Tanespimycin were six effective drugs against the TNBC cell lines. We could identify potential derivates that may be used against approved drugs. Only one biomarker (SETD7) was sensitive to all six drugs on the shortlist, while two others (SRARP and YIPF5) were sensitive to both radiation and drugs. Furthermore, we did not find any radioresistance markers for the TNBC. The proposed biomarkers and drug sensitivity analysis will provide potential candidates for future clinical investigation.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
5
|
Heat Shock Protein B7 Inhibits the Progression of Endometrial Carcinoma by Inhibiting PI3K/AKT/mTOR Pathway. Reprod Sci 2023; 30:590-600. [PMID: 35859224 DOI: 10.1007/s43032-022-01041-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE To investigate the role and mechanism of action of Heat shock protein B7 (HSPB7) in endometrial carcinoma (EC). METHODS GEPIA (Gene Expression Profiling Interactive Analysis) was used to analyze the expression and prognostic value of HSPB7 in TCGA data. HSPB7 mRNA and protein expression levels were detected by qRT-PCR and Western blot, respectively. EC cell proliferation, apoptosis, migration, and invasion were determined by colony formation, EdU, flow cytometry, and transwell assays. Mitochondrial membrane potential was determined using JC-1 probe. In addition, apoptosis-related and metastasis-related proteins were quantitatively evaluated. A gene set enrichment analysis of the signaling pathways by which HSPB7 influences EC was performed and the levels of enriched pathway-related proteins were evaluated. RESULTS We first proved that HSPB7 was downregulated in EC tissues and HSPB7 levels were positively related to survival rates. In functional assays, HSPB7 overexpression suppressed the proliferation, migration, and invasion of EC cells and conversely promoted apoptosis. Moreover, HSPB7 overexpression decreased the mitochondrial membrane potential of EC cells significantly. Bioinformatics analyses revealed that the PI3K/AKT/mTOR pathway was significantly enriched in EC. HSPB7 inhibited the phosphorylation of the PI3K/AKT/mTOR pathway to reduce proliferation, migration and invasion, and increased apoptosis in EC cells. CONCLUSION HSPB7 was downregulated in EC and influenced EC cell proliferation, invasion, migration, and apoptosis via the PI3K/AKT/mTOR signaling pathway. These findings provide a novel perspective for the development of EC treatment strategies.
Collapse
|
6
|
Machine-Learning-Based m5C Score for the Prognosis Diagnosis of Osteosarcoma. JOURNAL OF ONCOLOGY 2021; 2021:1629318. [PMID: 34671397 PMCID: PMC8523252 DOI: 10.1155/2021/1629318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Background Osteosarcoma is a common and highly metastatic malignant tumor, and m5C RNA methylation regulates various biological processes. The purpose of this study was to explore the prognostic role of m5C in osteosarcoma using machine learning. Methods Osteosarcoma gene data and the corresponding clinical information were downloaded from the GEO database. Machine learning methods were used to screen m5C-related genes and construct m5C scores. In addition, the clusterProfiler package was used to predict the m5C-related functional pathways. xCell and CIBERSORT were used to calculate the immune microenvironment cells. GSVA was applied to analyze different categories of m5C genes, and the correlation between the GSVA and m5C scores was evaluated. Results Twenty m5C genes were identified, and 54 related genes were screened. The m5C score was constructed based on the PCA score. With an increase in the m5C score, the expression of m5C genes and their related genes changed. Functional analysis indicated that the focal adhesion, cell-substrate adherens junction, cell adhesion molecule binding, and E2F targets might change with the m5C score. The naive B cells and CD4+ memory T cell also changed with the m5C score. The results of the correlation analysis showed that the m5C score was significantly correlated with the reader and eraser genes. Conclusion The m5C score might be a prognostic index for osteosarcoma.
Collapse
|
7
|
Zhang C, Li Y, Qin J, Yu C, Ma G, Chen H, Xu X. TMT-Based Quantitative Proteomic Analysis Reveals the Effect of Bone Marrow Derived Mesenchymal Stem Cell on Hair Follicle Regeneration. Front Pharmacol 2021; 12:658040. [PMID: 34194323 PMCID: PMC8237093 DOI: 10.3389/fphar.2021.658040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Hair loss (HL) is a common chronic problem of poorly defined etiology. Herein, we explored the functionality of bone marrow-derived mesenchymal stem cell (BMSC) and conditioned medium (MSC-CM) as regulators of hair follicle proliferation and regeneration, and the mechanistic basis for such activity. BMSC were cultured and identified in vitro through the induction of multilineage differentiation and the use of a CCK-8 kit. The dorsal skin of mice was then injected with BMSC and MSC-CM, and the impact of these injections on hair cycle transition and hair follicle stem cell (HFSC) proliferation was then evaluated via hematoxylin and eosin (H&E) staining and immunofluorescent (IF) staining. We then conducted a tandem mass tags (TMT)-based quantitative proteomic analysis of control mice and mice treated with BMSC or MSC-CM to identify differentially expressed proteins (DEPs) associated with these treatments. Parallel reaction monitoring (PRM) was utilized as a means of verifying our proteomic analysis results. Herein, we found that BMSC and MSC-CM injection resulted in the transition of telogen hair follicles to anagen hair follicles, and we observed the enhanced proliferation of HFSCs positive for Krt15 and Sox9. Our TMT analyses identified 1,060 and 770 DEPs (fold change>1.2 or<0.83 and p < 0.05) when comparing the BMSC vs. control and MSC-CM vs. control groups, respectively. Subsequent PRM validation of 14 selected DEPs confirmed these findings, and led to the identification of Stmn1, Ncapd2, Krt25, and Ctps1 as hub DEPs in a protein-protein interaction network. Together, these data suggest that BMSC and MSC-CM treatment can promote the proliferation of HFSCs, thereby facilitating hair follicle regeneration. Our proteomics analyses further indicate that Krt25, Cpm, Stmn1, and Mb may play central roles in hair follicle transition in this context and may represent viable clinical targets for the treatment of HL.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - YuanHong Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - Jie Qin
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - ChengQian Yu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - Gang Ma
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - HongDuo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - XueGang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| |
Collapse
|
8
|
Muranova LK, Shatov VM, Bukach OV, Gusev NB. Cardio-Vascular Heat Shock Protein (cvHsp, HspB7), an Unusual Representative of Small Heat Shock Protein Family. BIOCHEMISTRY (MOSCOW) 2021; 86:S1-S11. [PMID: 33827396 DOI: 10.1134/s0006297921140017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
HspB7 is one of ten human small heat shock proteins. This protein is expressed only in insulin-dependent tissues (heart, skeletal muscle, and fat tissue), and expression of HspB7 is regulated by many different factors. Single nucleotide polymorphism is characteristic for the HspB7 gene and this polymorphism correlates with cardio-vascular diseases and obesity. HspB7 has an unusual N-terminal sequence, a conservative α-crystallin domain, and very short C-terminal domain lacking conservative IPV tripeptide involved in a small heat shock proteins oligomer formation. Nevertheless, in the isolated state HspB7 forms both small oligomers (probably dimers) and very large oligomers (aggregates). HspB7 is ineffective in suppression of amorphous aggregation of model proteins induced by heating or reduction of disulfide bonds, however it is very effective in prevention of aggregation of huntingtin fragments enriched with Gln residues. HspB7 can be an effective sensor of electrophilic agents. This protein interacts with the contractile and cytoskeleton proteins (filamin C, titin, and actin) and participates in protection of the contractile apparatus and cytoskeleton from different adverse conditions. HspB7 possesses tumor suppressive activity. Further investigations are required to understand molecular mechanisms of HspB7 participation in numerous biological processes.
Collapse
Affiliation(s)
- Lydia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav M Shatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olesya V Bukach
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Sakharkar MK, Dhillon SK, Rajamanickam K, Heng B, Braidy N, Guillemin GJ, Yang J. Alteration in Gene Pair Correlations in Tryptophan Metabolism as a Hallmark in Cancer Diagnosis. Int J Tryptophan Res 2020; 13:1178646920977013. [PMID: 33354111 PMCID: PMC7734567 DOI: 10.1177/1178646920977013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/02/2020] [Indexed: 02/01/2023] Open
Abstract
Tryptophan metabolism plays essential roles in both immunomodulation and cancer development. Indoleamine 2,3-dioxygenase, a rate-limiting enzyme in the metabolic pathway, is overexpressed in different types of cancer. To get a better understanding of the involvement of tryptophan metabolism in cancer development, we evaluated the expression and pairwise correlation of 62 genes in the metabolic pathway across 12 types of cancer. Only gene AOX1, encoding aldehyde oxidase 1, was ubiquitously downregulated, Furthermore, we observed that the 62 genes were widely and strongly correlated in normal controls, however, the gene pair correlations were significantly lost in tumor patients for all 12 types of cancer. This implicated that gene pair correlation coefficients of the tryptophan metabolic pathway could be applied as a prognostic and/or diagnostic biomarker for cancer.
Collapse
Affiliation(s)
- Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarinder Kaur Dhillon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Karthic Rajamanickam
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Benjamin Heng
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nady Braidy
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Faculty of Medicine, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Jin C, Shuai T, Tang Z. HSPB7 regulates osteogenic differentiation of human adipose derived stem cells via ERK signaling pathway. Stem Cell Res Ther 2020; 11:450. [PMID: 33097082 PMCID: PMC7583167 DOI: 10.1186/s13287-020-01965-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
Background Heat shock protein B7 (HSPB7), which belongs to small heat shock protein family, has been reported to be involved in diverse biological processes and diseases. However, whether HSPB7 regulates osteogenic differentiation of human adipose derived stem cells (hASCs) remains unexplored. Methods The expression level of HSPB7 during the osteogenesis of hASCs was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis. Lentivirus transfection was used to knock down or overexpress HSPB7, which enabled us to investigate the effect of HSPB7 on osteogenic differentiation of hASCs. U0126 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) siRNA were used to identify the mechanism of the HSPB7/ERK1/2 axis in regulating osteogenic differentiation of hASCs. Moreover, ectopic bone formation in nude mice and osteoporosis mice model was used to investigate the effect of HSPB7 on osteogenesis in vivo. Results In this study, we found the expression of HSPB7 was significantly downregulated during the osteogenic differentiation of hASCs. HSPB7 knockdown remarkably promoted osteogenic differentiation of hASCs, while HSPB7 overexpression suppressed osteogenic differentiation of hASCs both in vitro and in vivo. Moreover, we discovered that the enhancing effect of HSPB7 knockdown on osteogenic differentiation was related to the activation of extracellular signal-regulated protein kinase (ERK) signaling pathway. Inhibition of ERK signaling pathway with U0126 or silencing ERK1/2 effectively blocked the stimulation of osteogenic differentiation induced by HSPB7 knockdown. Additionally, we found that HSPB7 expression was markedly increased in mouse bone marrow mesenchymal stem cells (mBMSCs) from the osteoporotic mice which suggested that HSPB7 might be utilized as a potential target in the development of effective therapeutic strategies to treat osteoporosis and other bone diseases. Conclusion Taken together, these findings uncover a previously unrecognized function of HSPB7 in regulating osteogenic differentiation of hASCs, partly via the ERK signaling pathway.
Collapse
Affiliation(s)
- Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ting Shuai
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
11
|
Naderi A. Genomic and epigenetic aberrations of chromosome 1p36.13 have prognostic implications in malignancies. Chromosome Res 2020; 28:307-330. [PMID: 32816122 DOI: 10.1007/s10577-020-09638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
Deletions of chromosome 1p36 are common in malignancies; however, there is limited information regarding the biological and prognostic implications of 1p36 in cancer. Steroid Receptor-Associated and Regulated Protein (SRARP) is a tumor suppressor on chromosome 1p36.13 that its inactivation predicts poor cancer outcome, indicating that the 1p36.13 segment requires further studies. Therefore, a comprehensive multi-omics analysis of The Cancer Genome Atlas (TCGA), the Pan-Cancer Analysis of Whole Genomes (PCAWD), the International Cancer Genome Consortium (ICGC), and the Genomic Data Commons (GDC) Pan-Cancer datasets was conducted to investigate the prognostic implications of 1p36.13 in malignancies. This study revealed that expression and DNA methylation of multiple genes on 1p36.13 are significantly associated with survival in primary tumors and normal adjacent tissues. In addition, copy-number loss in every gene on 1p36.13 predicts poor cancer outcome. Importantly, copy-number loss and somatic mutations of chromosome 1p36.13 segment are associated with worse survival in primary tumors, and DNA hypermethylation of 1p36.13 predicts poor outcome in normal adjacent tissues. Therefore, genomic and epigenetic aberrations of chromosome 1p36.13 have promising prognostic implications in cancer.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA. .,Queensland University of Technology, Gardens Point, Brisbane, Queensland, 4001, Australia.
| |
Collapse
|
12
|
Sun H, Cui Y, Wang H, Liu H, Wang T. Comparison of methods for the detection of outliers and associated biomarkers in mislabeled omics data. BMC Bioinformatics 2020; 21:357. [PMID: 32795265 PMCID: PMC7646480 DOI: 10.1186/s12859-020-03653-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background Previous studies have reported that labeling errors are not uncommon in omics data. Potential outliers may severely undermine the correct classification of patients and the identification of reliable biomarkers for a particular disease. Three methods have been proposed to address the problem: sparse label-noise-robust logistic regression (Rlogreg), robust elastic net based on the least trimmed square (enetLTS), and Ensemble. Ensemble is an ensembled classification based on distinct feature selection and modeling strategies. The accuracy of biomarker selection and outlier detection of these methods needs to be evaluated and compared so that the appropriate method can be chosen. Results The accuracy of variable selection, outlier identification, and prediction of three methods (Ensemble, enetLTS, Rlogreg) were compared for simulated and an RNA-seq dataset. On simulated datasets, Ensemble had the highest variable selection accuracy, as measured by a comprehensive index, and lowest false discovery rate among the three methods. When the sample size was large and the proportion of outliers was ≤5%, the positive selection rate of Ensemble was similar to that of enetLTS. However, when the proportion of outliers was 10% or 15%, Ensemble missed some variables that affected the response variables. Overall, enetLTS had the best outlier detection accuracy with false positive rates < 0.05 and high sensitivity, and enetLTS still performed well when the proportion of outliers was relatively large. With 1% or 2% outliers, Ensemble showed high outlier detection accuracy, but with higher proportions of outliers Ensemble missed many mislabeled samples. Rlogreg and Ensemble were less accurate in identifying outliers than enetLTS. The prediction accuracy of enetLTS was better than that of Rlogreg. Running Ensemble on a subset of data after removing the outliers identified by enetLTS improved the variable selection accuracy of Ensemble. Conclusions When the proportion of outliers is ≤5%, Ensemble can be used for variable selection. When the proportion of outliers is > 5%, Ensemble can be used for variable selection on a subset after removing outliers identified by enetLTS. For outlier identification, enetLTS is the recommended method. In practice, the proportion of outliers can be estimated according to the inaccuracy of the diagnostic methods used.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, 030001, Shanxi, China.,Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, City, Yantai, 264003, Shandong, China
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, USA
| | - Hui Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, 030001, Shanxi, China
| | - Haixia Liu
- Department of Health Statistics, School of Public Health and Management, Binzhou Medical University, City, Yantai, 264003, Shandong, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan City, 030001, Shanxi, China.
| |
Collapse
|
13
|
Zhou JG, Yang J, Jin SH, Xiao S, Shi L, Zhang TY, Ma H, Gaipl US. Development and Validation of a Gene Signature for Prediction of Relapse in Stage I Testicular Germ Cell Tumors. Front Oncol 2020; 10:1147. [PMID: 32850325 PMCID: PMC7412879 DOI: 10.3389/fonc.2020.01147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Background: Testicular germ cell tumors (TGCTs) are commonly diagnosed tumors in young men. However, a satisfactory approach to predict relapse of stage I TGCTs is still lacking. Therefore, this study aimed to develop a robust risk score model for stage I TGCTs. Method: RNA-sequence data of stage I TGCTs and normal testis samples were downloaded and analyzed to identify different expression genes. Gene-based prognostic model was constructed in The Cancer Genome Atlas (TCGA) using least absolute shrinkage and selection operator (LASSO) regression analysis and validated in GSE99420 dataset. Potential biological functions of the genes in prognostic model were determined via Gene Set Enrichment Analysis (GSEA) between high-risk and low-risk patients. Results: A total of 9,391 differentially expressed genes and 84 prognosis-related genes were identified. An eight-gene-based risk score model was constructed to divide patients into high or low risk of relapse. The low-risk patients had a significantly better relapse-free survival (RFS) than high-risk patients in both training and validation cohorts (HR = 0.129, 95% CI = 0.059-0.284, P < 0.001; HR = 0.277, 95% CI = 0.116-0.661, P = 0.004, respectively). The area under the receiver operating characteristic curve (AUC) values at 5 years was 0.805 and 0.724 in the training and validation cohorts, respectively. Functional enrichment analyses showed that DNA replication, ribosome, cell cycle, and TGF-beta signaling pathway may contribute to the relapse process. Conclusion: In summary, our analysis provided a novel eight-gene signature that could predict RFS in stage I TGCT patients.
Collapse
Affiliation(s)
- Jian-Guo Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Jie Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Su-Han Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Siyu Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Shi
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ting-You Zhang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
14
|
Naderi A. Steroid receptor-associated and regulated protein is a biomarker in predicting the clinical outcome and treatment response in malignancies. Cancer Rep (Hoboken) 2020; 3:e1267. [PMID: 32706923 DOI: 10.1002/cnr2.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Steroid receptor-associated and regulated protein (SRARP) has recently been identified as a novel tumor suppressor in malignancies of multiple tissue origins. SRARP is located on chromosome 1p36.13 and is widely inactivated by deletions and epigenetic silencing in malignancies. Therefore, additional studies are required to explore SRARP as a potential cancer biomarker. AIM This study explores the application of SRARP as a novel biomarker in malignancies of multiple tissue origins using the analysis of large genomic datasets. METHODS AND RESULTS A comprehensive genomic analysis of large cancer datasets was carried out to examine the association of SRARP expression and copy-number with molecular and clinical features in malignancies of multiple tissue origins. This study demonstrated that SRARP under-expression and copy-number loss are strongly associated with the loss of other tumor suppressors such as TP53 and NF1 mutations and oncogenic gains, including N-MYC amplification and ERG rearrangement, suggesting that SRARP inactivation is associated with wider genomic instability in malignancies. Importantly, SRARP under-expression and copy-number loss are strong predictors of poor clinical and/or pathological features in breast, colorectal, lung, prostate, gastric, endometrial, cervical, brain, ovarian, bladder, thyroid, and hepatocellular cancers as well as neuroblastoma, uveal melanoma, and acute myeloid leukemia with highly significant odds ratios. Finally, higher SRARP expression and copy-number predict a better response to several cancer drugs. CONCLUSION This study suggests that the SRARP inactivation presents a robust biomarker in predicting molecular and clinicopathological features, and treatment response in malignancies.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
15
|
Sakharkar MK, Kaur Dhillon S, Chidambaram SB, Essa MM, Yang J. Gene Pair Correlation Coefficients in Sphingolipid Metabolic Pathway as a Potential Prognostic Biomarker for Breast Cancer. Cancers (Basel) 2020; 12:cancers12071747. [PMID: 32630169 PMCID: PMC7409333 DOI: 10.3390/cancers12071747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023] Open
Abstract
Complex diseases such as cancer are usually governed by dynamic and simultaneous modifications of multiple genes. Since sphingolipids are potent bioactive molecules and regulate many important pathophysiological processes such as carcinogenesis, we studied the gene pair correlations of 36 genes (31 genes in the sphingolipid metabolic pathway and 5 genes encoding the sphingosine-1-phosphate receptors) between breast cancer patients and healthy controls. It is remarkable to observe that the gene expressions were widely and strongly correlated in healthy controls but in general lost in breast cancer patients. This study suggests that gene pair correlation coefficients could be applied as a systematic and novel method for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (M.K.S.); (J.Y.)
| | - Sarinder Kaur Dhillon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru 570 015, India;
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman;
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (M.K.S.); (J.Y.)
| |
Collapse
|