1
|
Fang Y, Wang Y, Ma H, Guo Y, Xu R, Chen X, Chen X, Lv Y, Li P, Gao Y. TFAP2A downregulation mediates tumor-suppressive effect of miR-8072 in triple-negative breast cancer via inhibiting SNAI1 transcription. Breast Cancer Res 2024; 26:103. [PMID: 38890750 PMCID: PMC11186287 DOI: 10.1186/s13058-024-01858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents a highly aggressive subset of breast malignancies characterized by its challenging clinical management and unfavorable prognosis. While TFAP2A, a member of the AP-2 transcription factor family, has been implicated in maintaining the basal phenotype of breast cancer, its precise regulatory role in TNBC remains undefined. METHODS In vitro assessments of TNBC cell growth and migratory potential were conducted using MTS, colony formation, and EdU assays. Quantitative PCR was employed to analyze mRNA expression levels, while Western blot was utilized to evaluate protein expression and phosphorylation status of AKT and ERK. The post-transcriptional regulation of TFAP2A by miR-8072 and the transcriptional activation of SNAI1 by TFAP2A were investigated through luciferase reporter assays. A xenograft mouse model was employed to assess the in vivo growth capacity of TNBC cells. RESULTS Selective silencing of TFAP2A significantly impeded the proliferation and migration of TNBC cells, with elevated TFAP2A expression observed in breast cancer tissues. Notably, TNBC patients exhibiting heightened TFAP2A levels experienced abbreviated overall survival. Mechanistically, TFAP2A was identified as a transcriptional activator of SNAI1, a crucial regulator of epithelial-mesenchymal transition (EMT) and cellular proliferation, thereby augmenting the oncogenic properties of TFAP2A in TNBC. Moreover, miR-8072 was unveiled as a negative regulator of TFAP2A, exerting potent inhibitory effects on TNBC cell growth and migration. Importantly, the tumor-suppressive actions mediated by the miR-8072/TFAP2A axis were intricately associated with the attenuation of AKT/ERK signaling cascades and the blockade of EMT processes. CONCLUSIONS Our findings unravel the role and underlying molecular mechanism of TFAP2A in driving tumorigenesis of TNBC. Targeting the TFAP2A/SNAI1 pathway and utilizing miR-8072 as a suppressor represent promising therapeutic strategies for treating TNBC.
Collapse
Affiliation(s)
- Yujie Fang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yali Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hongning Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Central Laboratory of People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuqi Guo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Rongrong Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xixi Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Lv
- Oncology Department of Cancer Hospital, General Hospital, Ningxia Medical University, Yinchuan, China.
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yujing Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Aquino-Acevedo AN, Orengo-Orengo JA, Cruz-Robles ME, Saavedra HI. Mitotic kinases are emerging therapeutic targets against metastatic breast cancer. Cell Div 2024; 19:21. [PMID: 38886738 PMCID: PMC11184769 DOI: 10.1186/s13008-024-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.
Collapse
Affiliation(s)
- Alexandra N Aquino-Acevedo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Joel A Orengo-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Melanie E Cruz-Robles
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA.
| |
Collapse
|
3
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
4
|
Farheen J, Hosmane NS, Zhao R, Zhao Q, Iqbal MZ, Kong X. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement. Mater Today Bio 2022; 16:100450. [PMID: 36267139 PMCID: PMC9576993 DOI: 10.1016/j.mtbio.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Narayan S. Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - M. Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
5
|
Tsirigoti C, Ali MM, Maturi V, Heldin CH, Moustakas A. Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells. Cell Death Dis 2022; 13:832. [PMID: 36171192 PMCID: PMC9519755 DOI: 10.1038/s41419-022-05280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023]
Abstract
The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFβ. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture. Loss of SNAI1 de-repressed the transcription factor FOXA1, a pioneering factor of mammary luminal progenitors. FOXA1 induced a specific gene program, including the androgen receptor (AR). Inhibiting AR via a specific antagonist regenerated the basal phenotype and blocked acinar differentiation. Thus, loss of SNAI1 in the context of triple-negative breast carcinoma cells promotes an intermediary luminal progenitor phenotype that gains differentiation plasticity based on the dual transcriptional action of FOXA1 and AR. This function of SNAI1 provides means to separate cell invasiveness from progenitor cell de-differentiation as independent cellular programs.
Collapse
Affiliation(s)
- Chrysoula Tsirigoti
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mohamad Moustafa Ali
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Varun Maturi
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Department of Pharmacy, Drug Delivery, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Carl-Henrik Heldin
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
6
|
Zhang M, Meng M, Liu Y, Qi J, Zhao Z, Qiao Y, Hu Y, Lu W, Zhou Z, Xu P, Zhou Q. Triptonide effectively inhibits triple-negative breast cancer metastasis through concurrent degradation of Twist1 and Notch1 oncoproteins. Breast Cancer Res 2021; 23:116. [PMID: 34922602 PMCID: PMC8684143 DOI: 10.1186/s13058-021-01488-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/13/2021] [Indexed: 01/19/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is highly metastatic and lethal. Due to a lack of druggable targets for this disease, there are no effective therapies in the clinic. Methods We used TNBC cells and xenografted mice as models to explore triptonide-mediated inhibition of TNBC metastasis and tumor growth. Colony formation assay was used to quantify the tumorigenesis of TNBC cells. Wound-healing and cell trans-well assays were utilized to measure cell migration and invasion. Tube formation assay was applied to access tumor cell-mediated vasculogenic mimicry. Western blot, quantitative-PCR, immunofluorescence imaging, and immunohistochemical staining were used to measure the expression levels of various tumorigenic genes in TNBC cells. Results Here, we showed that triptonide, a small molecule from the traditional Chinese medicinal herb Tripterygium wilfordii Hook F, potently inhibited TNBC cell migration, invasion, and vasculogenic mimicry, and effectively suppressed TNBC tumor growth and lung metastasis in xenografted mice with no observable toxicity. Molecular mechanistic studies revealed that triptonide strongly triggered the degradation of master epithelial-mesenchymal transition (EMT)-inducing protein Twist1 through the lysosomal system and reduced Notch1 expression and NF-κB phosphorylation, which consequently diminished the expression of pro-metastatic and angiogenic genes N-cadherin, VE-cadherin, and vascular endothelial cell growth factor receptor 2 (VEGFR2). Conclusions Triptonide effectively suppressed TNBC cell tumorigenesis, vasculogenic mimicry, and strongly inhibited the metastasis of TNBC via degradation of Twist1 and Notch1 oncoproteins, downregulation of metastatic and angiogenic gene expression, and reduction of NF-κB signaling pathway. Our findings provide a new strategy for treating highly lethal TNBC and offer a potential new drug candidate for combatting this aggressive disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01488-7.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yanxing Hu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Lu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Peng Xu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
8
|
Singh D, Deshmukh RK, Das A. SNAI1-mediated transcriptional regulation of epithelial-to-mesenchymal transition genes in breast cancer stem cells. Cell Signal 2021; 87:110151. [PMID: 34537302 DOI: 10.1016/j.cellsig.2021.110151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) tumors are composed of a heterogeneous population containing both cancer cells and cancer stem cells (CSCs). These CSCs are generated through an epithelial-to-mesenchymal transition (EMT), thus making it pertinent to identify the unique EMT-molecular targets that regulate this phenomenon. METHODS AND RESULTS In the present study, we performed in silico analysis of microarray data from luminal, Her2+, and TNBC cell lines and identified 15 relatively unexplored EMT-related differentially expressed genes (DEGs) along with the markedly high expression of EMT-transcription factor (EMT-TF), SNAI1. Interestingly, stable overexpression of SNAI1 in MCF-7 induced the expression of DEGs along with increased migration, invasion, and in vitro tumorigenesis that was comparable to TNBCs. Next, stable SNAI1 overexpression led to increased expression of DEGs that was reverted with SNAI1 silencing in both breast cancer cells and CSCs sorted from various TNBC cell lines. Higher fold enrichment of SNAI1 on E-boxes in the promoter regions suggested a positive regulation of ALCAM, MMP2, MMP13, MMP14, VCAN, ANKRD1, KRT16, CTGF, TGFRIIβ, PROCR negative regulation of CDH1, DSP and DSC3B by SNAI1 leading to EMT. Furthermore, SNAI1-mediated increased migration, invasion, and tumorigenesis in these sorted cells led to the activation of signaling mediators, ERK1/2, STAT3, Src, and FAK. Finally, the SNAI1-mediated activation of breast CSC phenotypes was perturbed by inhibition of downstream target, MMPs using Ilomastat. CONCLUSION Thus, the molecular investigation for the gene regulatory framework in the present study identified MMPs, a downstream effector in the SNAI1-mediated EMT regulation.
Collapse
Affiliation(s)
- Digvijay Singh
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Rohit K Deshmukh
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
9
|
Synthesis and evaluation of the epithelial-to- mesenchymal inhibitory activity of indazole-derived imidazoles as dual ALK5/p38α MAP inhibitors. Eur J Med Chem 2021; 216:113311. [PMID: 33677350 DOI: 10.1016/j.ejmech.2021.113311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Drugs of targeting both activin receptor-like kinase 5 (ALK5) and p38α have therapeutic advantages, making them attractive treatment options for tumors. Two series of 4-(1H-indazol-5-yl)-5-(6-methylpyridin-2-yl)-1H-imidazoles 13a-g and 4-(1-methyl-1H-indazol-5-yl)-5-(6-methylpyridin-2-yl)-1H-imidazoles 20a-g were synthesized and evaluated for ALK5 and p38α mitogen-activated protein kinase inhibitory activity. The most potent compound, 13c (J-1090), inhibited ALK5- and p38α-mediated phosphorylation with half-maximal inhibitor concentrations of 0.004 μM and 0.004 μM, respectively, in the enzymatic assay. In this study, the effectiveness of 13c in transforming growth factor (TGF-β)-exposed U87MG cells was investigated using western blotting, immunofluorescence assays, cell migration assay, invasion assay, and RT-PCR analysis. 13c inhibited the protein expression of Slug and the protein and RNA expression of the mesenchymal-related proteins N-cadherin and vimentin. Furthermore, 13c markedly suppressed TGF-β-induced epithelial-to-mesenchymal transition (EMT), migration, and invasion in U87MG cells. These results suggest that 13c is a novel inhibitor of ALK5 with potential utility in the treatment of human glioma.
Collapse
|
10
|
Yastrebova MA, Khamidullina AI, Tatarskiy VV, Scherbakov AM. Snail-Family Proteins: Role in Carcinogenesis and Prospects for Antitumor Therapy. Acta Naturae 2021; 13:76-90. [PMID: 33959388 PMCID: PMC8084295 DOI: 10.32607/actanaturae.11062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
The review analyzes Snail family proteins, which are transcription factors involved in the regulation of the epithelial-mesenchymal transition (EMT) of tumor cells. We describe the structure of these proteins, their post-translational modification, and the mechanisms of Snail-dependent regulation of genes. The role of Snail proteins in carcinogenesis, invasion, and metastasis is analyzed. Furthermore, we focus on EMT signaling mechanisms involving Snail proteins. Next, we dissect Snail signaling in hypoxia, a condition that complicates anticancer treatment. Finally, we offer classes of chemical compounds capable of down-regulating the transcriptional activity of Snails. Given the important role of Snail proteins in cancer biology and the potential for pharmacological inhibition, Snail family proteins may be considered promising as therapeutic targets.
Collapse
Affiliation(s)
- M. A. Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. I. Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - V. V. Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | - A. M. Scherbakov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
11
|
Guerrero-Martínez JA, Ceballos-Chávez M, Koehler F, Peiró S, Reyes JC. TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat Commun 2020; 11:6196. [PMID: 33273453 PMCID: PMC7713251 DOI: 10.1038/s41467-020-19877-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The Transforming Growth Factor-β (TGFβ) signaling pathway controls transcription by regulating enhancer activity. How TGFβ-regulated enhancers are selected and what chromatin changes are associated with TGFβ-dependent enhancers regulation are still unclear. Here we report that TGFβ treatment triggers fast and widespread increase in chromatin accessibility in about 80% of the enhancers of normal mouse mammary epithelial-gland cells, irrespective of whether they are activated, repressed or not regulated by TGFβ. This enhancer opening depends on both the canonical and non-canonical TGFβ pathways. Most TGFβ-regulated genes are located around enhancers regulated in the same way, often creating domains of several co-regulated genes that we term TGFβ regulatory domains (TRD). CRISPR-mediated inactivation of enhancers within TRDs impairs TGFβ-dependent regulation of all co-regulated genes, demonstrating that enhancer targeting is more promiscuous than previously anticipated. The area of TRD influence is restricted by topologically associating domains (TADs) borders, causing a bias towards co-regulation within TADs.
Collapse
Affiliation(s)
- Jose A Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain
| | - María Ceballos-Chávez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain
| | - Florian Koehler
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Jose C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
12
|
Xu W, Chen B, Ke D, Chen X. MicroRNA-138-5p targets the NFIB-Snail1 axis to inhibit colorectal cancer cell migration and chemoresistance. Cancer Cell Int 2020; 20:475. [PMID: 33013202 PMCID: PMC7528477 DOI: 10.1186/s12935-020-01573-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer ranks among the most lethal diseases worldwide. Although much progress has been made in research and treatment of colorectal cancer in recent years, the underlying mechanisms related to migration of the cancer cells and the reason for chemoresistance still remain unclear. In this research, we explored the underlying effect of miR-138-5p in colorectal cancer. Methods We used qRT-PCR to investigate the expression of miR-138-5p, Snail1, NFIB in colorectal cancer cells. Lentiviral vectors containing miR-138-5p mimics and inhibitors were constructed and transfected cells. Wound healing assay was applied to illustrate interferences on cell migration. Fluorouracial, doxorubicin, cisplat in were used to detect chemotherapy resistance. In order to identify target genes, bioinformatic methods were applied. Snail1 and NFIB protein expression in stable cell lines was detected using Western blot. Double luciferase and CHIP experiment were used to verify binding sites. We used rescue experiments to further explore the interactions among Snail1, NFIB and miR-138-5p. Results The expression of miR-138-5p in colorectal cancer cells was low. miR-138-5p inhibited cell migration in colorectal cancer, and could negatively regulate chemotherapy resistance. miR-138-5p targeted NFIB, and regulated Snail1 expression, which mediated colorectal cancer cell migration and chemotherapy resistance. Conclusions Our research indicates that miR-138-5p could be a crucial modulator controlling colorectal cancer cell migration and chemoresistance, by acting upon the NFIB-Snail1 axis. miR-138-5p has an emerging prospect to be exploited as a new target for colorectal cancer.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008 Henan People's Republic of China
| | - Beibei Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008 Henan People's Republic of China
| | - Dianshan Ke
- Department of Cell Biology, Southern Medical University, 510515 Guangzhou, Guangdong China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008 Henan People's Republic of China
| |
Collapse
|
13
|
Breast Cancer Subtypes Underlying EMT-Mediated Catabolic Metabolism. Cells 2020; 9:cells9092064. [PMID: 32927665 PMCID: PMC7563728 DOI: 10.3390/cells9092064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Efficient catabolic metabolism of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essentially required for cancer cell survival, especially in metastatic cancer progression. Epithelial–mesenchymal transition (EMT) plays an important role in metabolic rewiring of cancer cells as well as in phenotypic conversion and therapeutic resistance. Snail (SNAI1), a well-known inducer of cancer EMT, is critical in providing ATP and NADPH via suppression of several gatekeeper genes involving catabolic metabolism, such as phosphofructokinase 1 (PFK1), fructose-1,6-bisphosphatase 1 (FBP1), and acetyl-CoA carboxylase 2 (ACC2). Paradoxically, PFK1 and FBP1 are counter-opposing and rate-limiting reaction enzymes of glycolysis and gluconeogenesis, respectively. In this study, we report a distinct metabolic circuit of catabolic metabolism in breast cancer subtypes. Interestingly, PFKP and FBP1 are inversely correlated in clinical samples, indicating different metabolic subsets of breast cancer. The luminal types of breast cancer consist of the pentose phosphate pathway (PPP) subset by suppression of PFKP while the basal-like subtype (also known as triple negative breast cancer, TNBC) mainly utilizes glycolysis and mitochondrial fatty acid oxidation (FAO) by loss of FBP1 and ACC2. Notably, PPP remains active via upregulation of TIGAR in the FBP1-loss basal-like subset, indicating the importance of PPP in catabolic cancer metabolism. These results indicate different catabolic metabolic circuits and thus therapeutic strategies in breast cancer subsets.
Collapse
|
14
|
Caobi A, Dutta RK, Garbinski LD, Esteban-Lopez M, Ceyhan Y, Andre M, Manevski M, Ojha CR, Lapierre J, Tiwari S, Parira T, El-Hage N. The Impact of CRISPR-Cas9 on Age-related Disorders: From Pathology to Therapy. Aging Dis 2020; 11:895-915. [PMID: 32765953 PMCID: PMC7390517 DOI: 10.14336/ad.2019.0927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
With advances in medical technology, the number of people over the age of 60 is on the rise, and thus, increasing the prevalence of age-related pathologies within the aging population. Neurodegenerative disorders, cancers, metabolic and inflammatory diseases are some of the most prevalent age-related pathologies affecting the growing population. It is imperative that a new treatment to combat these pathologies be developed. Although, still in its infancy, the CRISPR-Cas9 system has become a potent gene-editing tool capable of correcting gene-mediated age-related pathology, and therefore ameliorating or eliminating disease symptoms. Deleting target genes using the CRISPR-Cas9 system or correcting for gene mutations may ameliorate many different neurodegenerative disorders detected in the aging population. Cancer cells targeted by the CRISPR-Cas9 system may result in an increased sensitivity to chemotherapeutics, lower proliferation, and higher cancer cell death. Finally, reducing gene targeting inflammatory molecules production through microRNA knockout holds promise as a therapeutic strategy for both arthritis and inflammation. Here we present a review based on how the expanding world of genome editing can be applied to disorders and diseases affecting the aging population.
Collapse
Affiliation(s)
- Allen Caobi
- 1Departments of Immunology and Nano-medicine
| | | | - Luis D Garbinski
- 3Cell Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang KC, Sedeeq M, Taiyab A, Hashemabadi M, Pardakhty A, Mandegary A, Thiery JP, Aref AR, Azimi I. EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 2020; 77:2701-2722. [PMID: 32008085 PMCID: PMC11104910 DOI: 10.1007/s00018-020-03449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ganesan Arunkumar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kun-Che Chang
- Department of Ophthalmology, School of Medicine, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA
| | - Mohammed Sedeeq
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohammad Hashemabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology and Department of Toxicology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Jean-Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
16
|
Hu Y, Yan Y, Xu Y, Yang H, Fang L, Liu Y, Li X, Li Q, Yan H. Expression and clinical significance of WWOX, Elf5, Snail1 and EMT related factors in epithelial ovarian cancer. Oncol Lett 2020; 19:1281-1290. [PMID: 31966058 PMCID: PMC6956397 DOI: 10.3892/ol.2019.11213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
Expression and clinical significance of WW domain-containing oxidoreductase (WWOX), Elf5, Snail1 and epithelial-mesenchymal transition (EMT) related factors in epithelial ovarian cancer were investigated. Ovarian cancer tissues of 300 epithelial ovarian cancer patients and the adjacent normal tissues were analyzed. Immunohistochemical method was used to detect the expressions of WWOX, Elf5, Snail1 and EMT marker molecules in the specimens. The relationship between the indicators and clinicopathological parameters, and prognosis of patients with ovarian cancer was analyzed. The relationship between WWOX, Elf5, Snail1 and EMT marker molecules E-cadherin, N-cadherin and vimentin in ovarian cancer tissues was analyzed. The expression levels of WWOX, Elf5, Snail1 and EMT marker molecules in epithelial ovarian cancer tissues were significantly different from those in adjacent normal tissues, and were related to surgical pathological stage, pathological grade and lymph node metastasis. High expressions of WWOX and Elf5 were related to the survival rate of patients. The survival rate of patients with positive expression was significantly higher than that of negative expression. FIGO stage, pathological grade, lymph node metastasis and expression of WWOX and Elf5 were all independent factors affecting postoperative prognosis in ovarian cancer patients. In conclusion, the expression levels of WWOX, Elf5, Snail1 and EMT related factors in epithelial ovarian cancer tissues are consistent and different. The expression levels of WWOX and Elf5 are related to the survival and prognosis of patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yakun Hu
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yuchen Yan
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yang Xu
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - He Yang
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lisha Fang
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yongli Liu
- Department of Gynaecology, Xuzhou No. 1 People's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xin Li
- Department of Gynaecology, Xuzhou Maternal and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Qiang Li
- Xuzhou Medical University Science Park Co. Ltd., Xuzhou, Jiangsu 221000, P.R. China
| | - Hongchao Yan
- Department of Gynaecology and Obstetrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Xuzhou Medical University Science Park Co. Ltd., Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
17
|
Zhao Y, Brasier AR. Uronic acid pathway metabolites regulate mesenchymal transition and invasiveness in lung adenocarcinoma. ACTA ACUST UNITED AC 2019; 3. [PMID: 31754654 DOI: 10.21037/biotarget.2019.09.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yingxin Zhao
- Department of Internal Medicine, Institute for Translational Sciences, Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Allan R Brasier
- School of Medicine and Public Health, Madison, Wisconsin, USA.,Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Dong R, Yu J, Yu F, Yang S, Qian Q, Zha Y. IGF-1/IGF-1R blockade ameliorates diabetic kidney disease through normalizing Snail1 expression in a mouse model. Am J Physiol Endocrinol Metab 2019; 317:E686-E698. [PMID: 31361542 DOI: 10.1152/ajpendo.00071.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study investigated the role of insulin-like growth factor-1/insulin-like growth factor-1 receptor (IGF-1/IGF-1R) in the genesis and progression of diabetic kidney disease (DKD) in a streptozotocin (STZ)-induced mouse diabetes model. We showed elevated IGF-1 expression in the DKD kidneys after 16 wk of diabetic onset. Intraperitoneal administration of IGF-1R inhibitor (glycogen synthase kinase-3β, GSK4529) from week 8 to week 16 postdiabetes induction ameliorated urinary albumin excretion and kidney histological changes due to diabetes, including amelioration of glomerulomegaly, inflammatory infiltration, and tubulointerstitial fibrosis. The GSK4529 treatment also attenuated alterations in renal tubular expression of E-cad and matrix protein fibronectin. Moreover, renal fibrosis in DKD (without treatment) was associated with Snail1 overexpression that was effectively prevented by IGF-1R inhibition. Further experiments in cultured renal epithelial cells (NRK) showed that IGF-1 silencing reproduced in vivo effects of IGF-1R inhibition with markedly attenuated Snail1 expression and near normalization of the Ecad1 and fibronectin expression pattern. Further Snail1 silencing prevented high-glucose-induced changes without affecting IGF-1 expression, consistent with Snail1 acting downstream to IGF-1. The antifibrotic effects were also shown with benazepril or insulin treatment but to a much lesser degree. In summary, in STZ-induced diabetic mice, activation of IGF-1 in diabetic kidneys induces fibrogenesis through Snail1 upregulation. The diabetes-related histological and functional changes, as well as fibrogenesis, can be attenuated by IGF-1/IGF-1R inhibition.
Collapse
Affiliation(s)
- Rong Dong
- Guizhou University School of medicine, Gui Yang, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Jiali Yu
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Funxun Yu
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Gui Yang, China
| | - Qi Qian
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Yan Zha
- Guizhou University School of medicine, Gui Yang, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
| |
Collapse
|
19
|
Hu Y, Zheng Y, Dai M, Wang X, Wu J, Yu B, Zhang H, Cui Y, Kong W, Wu H, Yu X. G9a and histone deacetylases are crucial for Snail2-mediated E-cadherin repression and metastasis in hepatocellular carcinoma. Cancer Sci 2019; 110:3442-3452. [PMID: 31432592 PMCID: PMC6825017 DOI: 10.1111/cas.14173] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Functional E-cadherin loss, a hallmark of epithelial-mesenchymal transition (EMT), is important for metastasis. However, the mechanism of Snail2 in hepatocellular carcinoma (HCC) EMT and metastasis remains unclear. Here, we showed that Snail2 was upregulated in primary HCC, and significantly increased during transforming growth factor-β-induced liver cell EMT. Snail2-overexpressing and knockdown cell lines have been established to determine its function in EMT in HCC. H3K9 methylation was upregulated and H3K4 and H3K56 acetylation were downregulated at the E-cadherin promoter in Snail2-overexpressing cancer cells. Furthermore, Snail2 interacted with G9a and histone deacetylases (HDACs) to form a complex to suppress E-cadherin transcription. Snail2 overexpression enhanced migration and invasion in HCC cells, whereas G9a and HDAC inhibition significantly reversed this effect. Moreover, Snail2 overexpression in cancer cells increased tumor metastasis and shortened survival time in mice, whereas G9a and HDAC inhibitors extended survival. Our study not only reveals a critical mechanism underlying the epigenetic regulation of EMT but also suggests novel treatment strategies for HCC.
Collapse
Affiliation(s)
- Yue Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yayuan Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Mingrui Dai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xueju Wang
- Pathology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
20
|
Freihen V, Rönsch K, Mastroianni J, Frey P, Rose K, Boerries M, Zeiser R, Busch H, Hecht A. SNAIL1 employs β‐Catenin‐LEF1 complexes to control colorectal cancer cell invasion and proliferation. Int J Cancer 2019; 146:2229-2242. [DOI: 10.1002/ijc.32644] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 07/15/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Vivien Freihen
- Institute of Molecular Medicine and Cell Research, Faculty of MedicineUniversity of Freiburg Freiburg Germany
- Faculty of BiologyUniversity of Freiburg Freiburg Germany
| | - Kerstin Rönsch
- Institute of Molecular Medicine and Cell Research, Faculty of MedicineUniversity of Freiburg Freiburg Germany
| | - Justin Mastroianni
- Faculty of BiologyUniversity of Freiburg Freiburg Germany
- Department of Hematology, Oncology and Stem Cell TransplantationMedical Center ‐ University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
| | - Patrick Frey
- Institute of Molecular Medicine and Cell Research, Faculty of MedicineUniversity of Freiburg Freiburg Germany
- Faculty of BiologyUniversity of Freiburg Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM)University of Freiburg Freiburg Germany
| | - Katja Rose
- Institute of Molecular Medicine and Cell Research, Faculty of MedicineUniversity of Freiburg Freiburg Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Faculty of MedicineUniversity of Freiburg Freiburg Germany
- German Cancer Consortium (DKTK) Freiburg Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
- Institute of Medical Bioinformatics and System Medicine, University Medical Center FreiburgFaculty of Medicine, University of Freiburg Freiburg Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell TransplantationMedical Center ‐ University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of Freiburg Freiburg Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of CardiogeneticsUniversity of Lübeck Lübeck Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Faculty of MedicineUniversity of Freiburg Freiburg Germany
- Faculty of BiologyUniversity of Freiburg Freiburg Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of Freiburg Freiburg Germany
| |
Collapse
|
21
|
Genome-wide mapping of DNA-binding sites identifies stemness-related genes as directly repressed targets of SNAIL1 in colorectal cancer cells. Oncogene 2019; 38:6647-6661. [DOI: 10.1038/s41388-019-0905-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/26/2022]
|
22
|
Tsubakihara Y, Moustakas A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int J Mol Sci 2018; 19:ijms19113672. [PMID: 30463358 PMCID: PMC6274739 DOI: 10.3390/ijms19113672] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Metastasis of tumor cells from primary sites of malignancy to neighboring stromal tissue or distant localities entails in several instances, but not in every case, the epithelial-mesenchymal transition (EMT). EMT weakens the strong adhesion forces between differentiated epithelial cells so that carcinoma cells can achieve solitary or collective motility, which makes the EMT an intuitive mechanism for the initiation of tumor metastasis. EMT initiates after primary oncogenic events lead to secondary secretion of cytokines. The interaction between tumor-secreted cytokines and oncogenic stimuli facilitates EMT progression. A classic case of this mechanism is the cooperation between oncogenic Ras and the transforming growth factor β (TGFβ). The power of TGFβ to mediate EMT during metastasis depends on versatile signaling crosstalk and on the regulation of successive waves of expression of many other cytokines and the progressive remodeling of the extracellular matrix that facilitates motility through basement membranes. Since metastasis involves many organs in the body, whereas EMT affects carcinoma cell differentiation locally, it has frequently been debated whether EMT truly contributes to metastasis. Despite controversies, studies of circulating tumor cells, studies of acquired chemoresistance by metastatic cells, and several (but not all) metastatic animal models, support a link between EMT and metastasis, with TGFβ, often being a common denominator in this link. This article aims at discussing mechanistic cases where TGFβ signaling and EMT facilitate tumor cell dissemination.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| |
Collapse
|