1
|
Sun X, Liu Y, Cheng C, Sun H, Tian L. CTHRC1 modulates cell proliferation and invasion in hepatocellular carcinoma by DNA methylation. Discov Oncol 2024; 15:347. [PMID: 39134747 PMCID: PMC11319694 DOI: 10.1007/s12672-024-01194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Collagen triple helix repeat containing-1 (CTHRC1), an extracellular matrix protein, is highly expressed in hepatocellular carcinoma (HCC) and linked to poor prognosis. Nevertheless, the precise mechanism of CTHRC1 in HCC is unclear. METHODS Agena MassARRAY® Methylation Analysis assessed the methylation level of CTHRC1 in the promoter region. Functional assays were conducted to investigate the effects of CTHRC1 knockdown in Hep3B2.1 cells. RNA sequencing identified differentially expressed genes and lncRNAs associated with angiogenesis after CTHRC1 knockdown. Furthermore, differential alternative splicing (AS) and gene fusion events were analyzed using rMATS and Arriba. RESULTS In HCC cell lines, CTHRC1 was highly expressed and associated with hypomethylation. Downregulation of CTHRC1 inhibited Hep3B2.1 cell proliferation, migration, and invasion, blocked cells in the G1/S phase, and promoted apoptosis. We obtained 34 mRNAs and 7 lncRNAs differentially expressed between the NC and CTHRC1 inhibitor groups. Additionally, we found 4 angiogenesis-related mRNAs and lncRNAs significantly correlated with CTHRC1. RT-qPCR results showed that knockdown of CTHRC1 in Hep3B2.1 cells resulted in significantly aberrant expression of CXCL6, LINC02127, and AC020978.8. Moreover, the role of CTHRC1 in HCC development may be associated with events, like 12 AS events and 5 pairs of fusion genes. CONCLUSIONS High expressed CTHRC1 is associated with hypomethylation and may promote HCC development, involving events like angiogenesis, alternative splicing, and gene fusion.
Collapse
Affiliation(s)
- Xiangjun Sun
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, 276000, China
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Ye Liu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Changdong Cheng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Haoyu Sun
- Weifang Medical University, Weifang, 261053, China
| | - Liqiang Tian
- Department of Neurosurgery, Linyi People's Hospital, Lanshan District, Wohu Mountain Road and Wuhan Road Interchange, Linyi, 276000, China.
| |
Collapse
|
2
|
Cheng W, Xu T, Yang L, Yan N, Yang J, Fang S. Dramatic response to crizotinib through MET phosphorylation inhibition in rare TFG-MET fusion advanced squamous cell lung cancer. Oncologist 2024:oyae166. [PMID: 38954846 DOI: 10.1093/oncolo/oyae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
With the widespread use of next-generation sequencing (NGS) for solid tumors, mesenchymal-to-epithelial transition factor (MET) rearrangement/fusion has been confirmed in multiple cancer types. MET amplification and MET exon 14 skipping mutations induce protein autophosphorylation; however, the pathogenic mechanism and drug sensitivity of MET fusion remain unclear. The following report describes the clinical case of a patient diagnosed with squamous lung cancer bearing a TFG-MET gene fusion. In vitro assays demonstrated MET phosphorylation and oncogenic capacity due to the TFG-MET rearrangement, both of which were inhibited by crizotinib treatment. The patient was treated with crizotinib, which resulted in sustained partial remission for more than 17 months. Collectively, cellular analyses and our case report emphasize the potential of MET fusion as a predictive biomarker for personalized target therapy for solid tumors.
Collapse
Affiliation(s)
- Wanwan Cheng
- Department of Respiratory Medicine, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Xu
- Department of Respiratory Medicine, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Yang
- The Genetic Analysis Department, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Naimeng Yan
- The Genetic Analysis Department, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Jie Yang
- The Genetic Analysis Department, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Shencun Fang
- Department of Respiratory Medicine, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zuo Q, Park NH, Lee JK, Santaliz-Casiano A, Madak-Erdogan Z. Navigating nonalcoholic fatty liver disease (NAFLD): Exploring the roles of estrogens, pharmacological and medical interventions, and life style. Steroids 2024; 203:109330. [PMID: 37923152 DOI: 10.1016/j.steroids.2023.109330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The pursuit of studying this subject is driven by the urgency to address the increasing global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) and its profound health implications. NAFLD represents a significant public health concern due to its association with metabolic disorders, cardiovascular complications, and the potential progression to more severe conditions like non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Liver estrogen signaling is important for maintaining liver function, and loss of estrogens increases the likelihood of NAFLD in postmenopausal women. Understanding the multifaceted mechanisms underlying NAFLD pathogenesis, its varied treatment strategies, and their effectiveness is crucial for devising comprehensive and targeted interventions. By unraveling the intricate interplay between genetics, lifestyle, hormonal regulation, and gut microbiota, we can unlock insights into risk stratification, early detection, and personalized therapeutic approaches. Furthermore, investigating the emerging pharmaceutical interventions and dietary modifications offers the potential to revolutionize disease management. This review reinforces the role of collaboration in refining NAFLD comprehension, unveiling novel therapeutic pathways, and ultimately improving patient outcomes for this intricate hepatic condition.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Abrahamsson S, Eiengård F, Rohlin A, Dávila López M. PΨFinder: a practical tool for the identification and visualization of novel pseudogenes in DNA sequencing data. BMC Bioinformatics 2022; 23:59. [PMID: 35114952 PMCID: PMC8812246 DOI: 10.1186/s12859-022-04583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Processed pseudogenes (PΨgs) are disabled gene copies that are transcribed and may affect expression of paralogous genes. Moreover, their insertion in the genome can disrupt the structure or the regulatory region of a gene, affecting its expression level. These events have been identified as occurring mutations during cancer development, thus being able to identify PΨgs and their location will improve their impact on diagnostic testing, not only in cancer but also in inherited disorders. RESULTS We have implemented PΨFinder (P-psy-finder), a tool that identifies PΨgs, annotates known ones and predicts their insertion site(s) in the genome. The tool screens alignment files and provides user-friendly summary reports and visualizations. To demonstrate its applicability, we scanned 218 DNA samples from patients screened for hereditary colorectal cancer. We detected 423 PΨgs distributed in 96% of the samples, comprising 7 different parent genes. Among these, we confirmed the well-known insertion site of the SMAD4-PΨg within the last intron of the SCAI gene in one sample. While for the ubiquitous CBX3-PΨg, present in 82.6% of the samples, we found it reversed inserted in the second intron of the C15ORF57 gene. CONCLUSIONS PΨFinder is a tool that can automatically identify novel PΨgs from DNA sequencing data and determine their location in the genome with high sensitivity (95.92%). It generates high quality figures and tables that facilitate the interpretation of the results and can guide the experimental validation. PΨFinder is a complementary analysis to any mutational screening in the identification of disease-causing mutations within cancer and other diseases.
Collapse
Affiliation(s)
- Sanna Abrahamsson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 115, 405 30, Gothenburg, Sweden
| | - Frida Eiengård
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Unit of Genetic Analysis and Bioinformatics, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcela Dávila López
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 115, 405 30, Gothenburg, Sweden.
| |
Collapse
|
5
|
Han Z, Peng C, Yi J, Wang Y, Liu Q, Yang Y, Long S, Qiao L, Shen Y. Matrix-assisted laser desorption ionization mass spectrometry profiling of plasma exosomes evaluates osteosarcoma metastasis. iScience 2021; 24:102906. [PMID: 34401680 PMCID: PMC8355924 DOI: 10.1016/j.isci.2021.102906] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary sarcoma of bone among adolescents, often characterized by early lung metastasis resulting in high mortality. Recently, exosomes have been used in liquid biopsy to monitor tumors. Herein, we used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to profile human plasma exosomes for the evaluation of osteosarcoma lung metastasis. Forty patients with osteosarcoma with (n = 20) or without (n = 20) lung metastasis as well as 12 heathy controls were recruited. Exosomes were isolated from human plasma for MALDI-TOF MS analysis. Multivariate statistical analyses were performed based on the MALDI-TOF mass spectra. The strategy can efficiently differentiate osteosarcomas from healthy controls and further discriminate osteosarcoma lung metastasis from non-lung metastasis. We identified seven exosomal proteins as potential biomarkers of osteosarcoma lung metastasis. The proposed method holds great promise to clinically diagnose osteosarcoma and monitor osteosarcoma lung metastasis.
Collapse
Affiliation(s)
- Zhenzhen Han
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Peng
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Jia Yi
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yiwen Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yi Yang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shuping Long
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| |
Collapse
|
6
|
He F, Song K, Guan G, Huo J, Xin Y, Li T, Liu C, Zhu Q, Fan N, Guo Y, Wu L. The Phenomenon of Gene Rearrangement is Frequently Associated with TP53 Mutations and Poor Disease-Free Survival in Hepatocellular Carcinoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:723-736. [PMID: 34188519 PMCID: PMC8233541 DOI: 10.2147/pgpm.s313848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023]
Abstract
Purpose Gene rearrangements (GRs) have been reported to be related to adverse prognosis in some tumours, but the relationship in hepatocellular carcinoma (HCC) remains less studied. The objective of our study was to explore the clinicopathological characteristics and prognosis of HCC patients (HCCs) with GRs (GR-HCCs). Patients and Methods This retrospective study included 297 HCCs who underwent hepatectomy and had their tumours sequenced by next-generation sequencing. Categorical variables between groups were compared by the chi-square test. The impact of variables on disease-free survival (DFS) and survival after relapse (SAR) was analysed by the Kaplan–Meier method and Cox regression. Results We observed four repetitive GR events in 297 HCCs: BRD9/TERT, ARID2/intergenic, CDKN2A/intergenic and OBSCN truncation. GR-HCCs frequently presented with low tumour differentiation, tumour necrosis, microvascular invasion, elevated AFP and gene mutations (TP53, NTRK3 and BRD9). The 1-, 2-, and 3-year cumulative DFS rates in GR-HCCs were 45.1%, 31.9%, 31.9%, respectively, which were significantly lower than those of GR-negative HCCs (NGR-HCCs) (72.5%, 57.9%, and 49.0%, respectively; P = 0.001). GR was identified as an independent risk factor for inferior DFS in HCCs (HR = 1.980, 95% CI = 1.246–3.147; P = 0.004). However, there was no significant difference in SAR between GR-HCCs and NGR-HCCs receiving targeted therapy or immunotherapy. Conclusion GR is frequently associated with TP53 mutations and significantly affects DFS following radical resection for HCC. We recommend that GR-HCCs should be closely followed up as a high-risk group for postoperative recurrence.
Collapse
Affiliation(s)
- Fu He
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Kangjian Song
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Ge Guan
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Yang Xin
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Tianxiang Li
- Organ Transplant Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Chao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Qingwei Zhu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.,Department of Clinical Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Ning Fan
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuan Guo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
7
|
Wainberg M, Kamber RA, Balsubramani A, Meyers RM, Sinnott-Armstrong N, Hornburg D, Jiang L, Chan J, Jian R, Gu M, Shcherbina A, Dubreuil MM, Spees K, Meuleman W, Snyder MP, Bassik MC, Kundaje A. A genome-wide atlas of co-essential modules assigns function to uncharacterized genes. Nat Genet 2021; 53:638-649. [PMID: 33859415 PMCID: PMC8763319 DOI: 10.1038/s41588-021-00840-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023]
Abstract
A central question in the post-genomic era is how genes interact to form biological pathways. Measurements of gene dependency across hundreds of cell lines have been used to cluster genes into 'co-essential' pathways, but this approach has been limited by ubiquitous false positives. In the present study, we develop a statistical method that enables robust identification of gene co-essentiality and yields a genome-wide set of functional modules. This atlas recapitulates diverse pathways and protein complexes, and predicts the functions of 108 uncharacterized genes. Validating top predictions, we show that TMEM189 encodes plasmanylethanolamine desaturase, a key enzyme for plasmalogen synthesis. We also show that C15orf57 encodes a protein that binds the AP2 complex, localizes to clathrin-coated pits and enables efficient transferrin uptake. Finally, we provide an interactive webtool for the community to explore our results, which establish co-essentiality profiling as a powerful resource for biological pathway identification and discovery of new gene functions.
Collapse
Affiliation(s)
- Michael Wainberg
- Department of Genetics, Stanford University, Stanford, CA, USA,Department of Computer Science, Stanford University, Stanford, CA, USA,These authors contributed equally: Michael Wainberg, Roarke A. Kamber, Akshay Balsubramani
| | - Roarke A. Kamber
- Department of Genetics, Stanford University, Stanford, CA, USA,These authors contributed equally: Michael Wainberg, Roarke A. Kamber, Akshay Balsubramani
| | - Akshay Balsubramani
- Department of Genetics, Stanford University, Stanford, CA, USA,These authors contributed equally: Michael Wainberg, Roarke A. Kamber, Akshay Balsubramani
| | - Robin M. Meyers
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Daniel Hornburg
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Joanne Chan
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mingxin Gu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | - Michael C. Bassik
- Department of Genetics, Stanford University, Stanford, CA, USA,Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA,Correspondence and requests for materials should be addressed to M.C.B. or A.K. ;
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA,Department of Computer Science, Stanford University, Stanford, CA, USA,Correspondence and requests for materials should be addressed to M.C.B. or A.K. ;
| |
Collapse
|
8
|
Molecular Classification and Tumor Microenvironment Characterization of Gallbladder Cancer by Comprehensive Genomic and Transcriptomic Analysis. Cancers (Basel) 2021; 13:cancers13040733. [PMID: 33578820 PMCID: PMC7916565 DOI: 10.3390/cancers13040733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Gallbladder cancer (GBC) is a rare but lethal cancer. Molecular characterization of GBC is insufficient so far, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. Clustering analysis of RNA expression revealed two subclasses of 36 GBCs, which reflects the status of the tumor microenvironment (TME) and poor prognosis of GBC, including epithelial–mesenchymal transition (EMT), immune suppression, and the TGF-β signaling pathway. The knockout of miR125B1 in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutations of the genes related to the TGF-β signaling pathway were enriched in the poor-prognosis/TME-rich cluster of GBCs. This comprehensive molecular analysis provides a new classification of GBCs based on the TME activity, which is involved with EMT and immune suppression for poor prognosis of GBC. This information may be useful for GBC prognosis and therapeutic decision-making. Abstract Gallbladder cancer (GBC), a rare but lethal disease, is often diagnosed at advanced stages. So far, molecular characterization of GBC is insufficient, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. We performed a transcriptome analysis of both coding and non-coding RNAs from 36 GBC fresh-frozen samples. The results were integrated with those of comprehensive mutation profiling based on whole-genome or exome sequencing. The clustering analysis of RNA-seq data facilitated the classification of GBCs into two subclasses, characterized by high or low expression levels of TME (tumor microenvironment) genes. A correlation was observed between gene expression and pathological immunostaining. TME-rich tumors showed significantly poor prognosis and higher recurrence rate than TME-poor tumors. TME-rich tumors showed overexpression of genes involved in epithelial-to-mesenchymal transition (EMT) and inflammation or immune suppression, which was validated by immunostaining. One non-coding RNA, miR125B1, exhibited elevated expression in stroma-rich tumors, and miR125B1 knockout in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutation profiles revealed TP53 (47%) as the most commonly mutated gene, followed by ELF3 (13%) and ARID1A (11%). Mutations of ARID1A, ERBB3, and the genes related to the TGF-β signaling pathway were enriched in TME-rich tumors. This comprehensive analysis demonstrated that TME, EMT, and TGF-β pathway alterations are the main drivers of GBC and provides a new classification of GBCs that may be useful for therapeutic decision-making.
Collapse
|
9
|
Lee E, Lee JW, Lee B, Park K, Shim J, Yoo KH, Koo HH, Sung KW, Park WY. Genomic profile of MYCN non-amplified neuroblastoma and potential for immunotherapeutic strategies in neuroblastoma. BMC Med Genomics 2020; 13:171. [PMID: 33172452 PMCID: PMC7653769 DOI: 10.1186/s12920-020-00819-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Background MYCN amplification is the most important genomic feature in neuroblastoma (NB). However, limited studies have been conducted on the MYCN non-amplified NB including low- and intermediate-risk NB. Here, the genomic characteristics of MYCN non-amplified NB were studied to allow for the identification of biomarkers for molecular stratification. Methods Fifty-eight whole exome sequencing (WES) and forty-eight whole transcriptome sequencing (WTS) samples of MYCN non-amplified NB were analysed. Forty-one patients harboured WES and WTS pairs. Results In the MYCN non-amplified NB WES data, maximum recurrent mutations were found in MUC4 (26%), followed by RBMXL3 (19%), ALB (17%), and MUC16 and SEPD8 (14% each). Two gene fusions, CCDC32-CBX3 (10%) and SAMD5-SASH1 (6%), were recurrent in WTS analysis, and these fusions were detected mostly in non-high-risk patients with ganglioneuroblastoma histology. Analysis of risk-group-specific biomarkers showed that several genes and gene sets were differentially expressed between the risk groups, and some immune-related pathways tended to be activated in the high-risk group. Mutational signatures 6 and 18, which represent DNA mismatch repair associated mutations, were commonly detected in 60% of the patients. In the tumour mutation burden (TMB) analysis, four patients showed high TMB (> 3 mutations/Mb), and had mutations in genes related to either MMR or homologous recombination. Excluding four outlier samples with TMB > 3 Mb, high-risk patients had significantly higher levels of TMB compared with the non-high-risk patients. Conclusions This study provides novel insights into the genomic background of MYCN non-amplified NB. Activation of immune-related pathways in the high-risk group and the results of TMB and mutational signature analyses collectively suggest the need for further investigation to discover potential immunotherapeutic strategies for NB.
Collapse
Affiliation(s)
- Eunjin Lee
- Samsung Genome Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Boram Lee
- Samsung Genome Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Joonho Shim
- Samsung Genome Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea. .,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| |
Collapse
|
10
|
Elfman J, Pham LP, Li H. The relationship between chimeric RNAs and gene fusions: Potential implications of reciprocity in cancer. J Genet Genomics 2020; 47:341-348. [PMID: 33008771 DOI: 10.1016/j.jgg.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Justin Elfman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA
| | - Lam-Phong Pham
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA; Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA.
| |
Collapse
|