1
|
Sánchez JC, Alemán A, Henao JF, Olaya JC, Ehrlich BE. NCS-1 protein regulates TRPA1 channel through the PI3K pathway in breast cancer and neuronal cells. J Physiol Biochem 2024; 80:451-463. [PMID: 38564162 PMCID: PMC11074019 DOI: 10.1007/s13105-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
The physical and functional interaction between transient receptor potential channel ankyrin 1 (TRPA1) and neuronal calcium sensor 1 (NCS-1) was assessed. NCS-1 is a calcium (Ca2+) sensor found in many tissues, primarily neurons, and TRPA1 is a Ca2+ channel involved not only in thermal and pain sensation but also in conditions such as cancer and chemotherapy-induced peripheral neuropathy, in which NCS-1 is also a regulatory component.We explored the interactions between these two proteins by employing western blot, qRT-PCR, co-immunoprecipitation, Ca2+ transient monitoring with Fura-2 spectrophotometry, and electrophysiology assays in breast cancer cells (MDA-MB-231) with different levels of NCS-1 expression and neuroblastoma cells (SH-SY5Y).Our findings showed that the expression of TRPA1 was directly correlated with NCS-1 levels at both the protein and mRNA levels. Additionally, we found a physical and functional association between these two proteins. Physically, the NCS-1 and TRPA1 co-immunoprecipitate. Functionally, NCS-1 enhanced TRPA1-dependent Ca2+ influx, current density, open probability, and conductance, where the functional effects depended on PI3K. Conclusion: NCS-1 appears to act not only as a Ca2+ sensor but also modulates TRPA1 protein expression and channel function in a direct fashion through the PI3K pathway. These results contribute to understanding how Ca2+ homeostasis is regulated and provides a mechanism underlying conditions where Ca2+ dynamics are compromised, including breast cancer. With a cellular pathway identified, targeted treatments can be developed for breast cancer and neuropathy, among other related diseases.
Collapse
Affiliation(s)
- Julio C Sánchez
- Department of Basic Sciences, Laboratory of Cell Physiology, Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, 660003, Pereira, Risaralda, Colombia.
| | - Alexander Alemán
- Department of Basic Sciences, Laboratory of Cell Physiology, Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, 660003, Pereira, Risaralda, Colombia
| | - Juan F Henao
- Department of Basic Sciences, Laboratory of Cell Physiology, Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, 660003, Pereira, Risaralda, Colombia
| | - Juan C Olaya
- Department of Basic Sciences, Laboratory of Cell Physiology, Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, 660003, Pereira, Risaralda, Colombia
| | - Barbara E Ehrlich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
2
|
So CL, Robitaille M, Sadras F, McCullough MH, Milevskiy MJG, Goodhill GJ, Roberts-Thomson SJ, Monteith GR. Cellular geometry and epithelial-mesenchymal plasticity intersect with PIEZO1 in breast cancer cells. Commun Biol 2024; 7:467. [PMID: 38632473 PMCID: PMC11024093 DOI: 10.1038/s42003-024-06163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Differences in shape can be a distinguishing feature between different cell types, but the shape of a cell can also be dynamic. Changes in cell shape are critical when cancer cells escape from the primary tumor and undergo major morphological changes that allow them to squeeze between endothelial cells, enter the vasculature, and metastasize to other areas of the body. A shift from rounded to spindly cellular geometry is a consequence of epithelial-mesenchymal plasticity, which is also associated with changes in gene expression, increased invasiveness, and therapeutic resistance. However, the consequences and functional impacts of cell shape changes and the mechanisms through which they occur are still poorly understood. Here, we demonstrate that altering the morphology of a cell produces a remodeling of calcium influx via the ion channel PIEZO1 and identify PIEZO1 as an inducer of features of epithelial-to-mesenchymal plasticity. Combining automated epifluorescence microscopy and a genetically encoded calcium indicator, we demonstrate that activation of the PIEZO1 force channel with the PIEZO1 agonist, YODA 1, induces features of epithelial-to-mesenchymal plasticity in breast cancer cells. These findings suggest that PIEZO1 is a critical point of convergence between shape-induced changes in cellular signaling and epithelial-mesenchymal plasticity in breast cancer cells.
Collapse
Affiliation(s)
- Choon Leng So
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Francisco Sadras
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Michael H McCullough
- Queensland Brain Institute and School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, and School of Computing, ANU College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2600, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 2010, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute and School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
- Departments of Developmental Biology and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
3
|
NCS1 overexpression restored mitochondrial activity and behavioral alterations in a zebrafish model of Wolfram syndrome. Mol Ther Methods Clin Dev 2022; 27:295-308. [PMID: 36320410 PMCID: PMC9594121 DOI: 10.1016/j.omtm.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disease resulting in deafness, optic atrophy, diabetes, and neurological disorders. Currently, no treatment is available for patients. The mutated gene, WFS1, encodes an endoplasmic reticulum (ER) protein, Wolframin. We previously reported that Wolframin regulated the ER-mitochondria Ca2+ transfer and mitochondrial activity by protecting NCS1 from degradation in patients' fibroblasts. We relied on a zebrafish model of WS, the wfs1ab KO line, to analyze the functional and behavioral impact of NCS1 overexpression as a novel therapeutic strategy. The wfs1ab KO line showed an increased locomotion in the visual motor and touch-escape responses. The absence of wfs1 did not impair the cellular unfolded protein response, in basal or tunicamycin-induced ER stress conditions. In contrast, metabolic analysis showed an increase in mitochondrial respiration in wfs1ab KO larvae. Interestingly, overexpression of NCS1 using mRNA injection restored the alteration of mitochondrial respiration and hyperlocomotion. Taken together, these data validated the wfs1ab KO zebrafish line as a pertinent experimental model of WS and confirmed the therapeutic potential of NCS1. The wfs1ab KO line therefore appeared as an efficient model to identify novel therapeutic strategies, such as gene or pharmacological therapies targeting NCS1 that will correct or block WS symptoms.
Collapse
|
4
|
So CL, Meinert C, Xia Q, Robitaille M, Roberts-Thomson SJ, Monteith GR. Increased matrix stiffness suppresses ATP-induced sustained Ca2+ influx in MDA-MB-231 breast cancer cells. Cell Calcium 2022; 104:102569. [DOI: 10.1016/j.ceca.2022.102569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
5
|
Disulfide Dimerization of Neuronal Calcium Sensor-1: Implications for Zinc and Redox Signaling. Int J Mol Sci 2021; 22:ijms222212602. [PMID: 34830487 PMCID: PMC8623652 DOI: 10.3390/ijms222212602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10–30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.
Collapse
|
6
|
Fischer TT, Nguyen LD, Ehrlich BE. Neuronal calcium sensor 1 (NCS1) dependent modulation of neuronal morphology and development. FASEB J 2021; 35:e21873. [PMID: 34499766 DOI: 10.1096/fj.202100731r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) signaling is critical for neuronal functioning and requires the concerted interplay of numerous Ca2+ -binding proteins, including neuronal calcium sensor 1 (NCS1). Although an important role of NCS1 in neuronal processes and in neurodevelopmental and neurodegenerative diseases has been established, the underlying mechanisms remain enigmatic. Here, we systematically investigated the functions of NCS1 in the brain. Using Golgi-Cox staining, we observed a reduction in dendritic complexity and spine density in the prefrontal cortex and the dorsal hippocampus of Ncs1-/- mice, which may underlie concomitantly observed deficits in memory acquisition. Subsequent RNA sequencing of Ncs1-/- and Ncs1+/+ mouse brain tissues revealed that NCS1 modulates gene expression related to neuronal morphology and development. Investigation of developmental databases further supported a molecular role of NCS1 during brain development by identifying temporal gene expression patterns. Collectively, this study provides insights into NCS1-dependent signaling and lays the foundation for a better understanding of NCS1-associated diseases.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA.,Department of Celluar and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021; 11:621614. [PMID: 34178620 PMCID: PMC8222984 DOI: 10.3389/fonc.2021.621614] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
Collapse
Affiliation(s)
- María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Camila Torres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
8
|
Grosshans HK, Fischer TT, Steinle JA, Brill AL, Ehrlich BE. Neuronal Calcium Sensor 1 is up-regulated in response to stress to promote cell survival and motility in cancer cells. Mol Oncol 2020; 14:1134-1151. [PMID: 32239615 PMCID: PMC7266285 DOI: 10.1002/1878-0261.12678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Changes in intracellular calcium (Ca2+) signaling can modulate cellular machinery required for cancer progression. Neuronal calcium sensor 1 (NCS1) is a ubiquitously expressed Ca2+‐binding protein that promotes tumor aggressiveness by enhancing cell survival and metastasis. However, the underlying mechanism by which NCS1 contributes to increased tumor aggressiveness has yet to be identified. In this study, we aimed to determine (a) whether NCS1 expression changes in response to external stimuli, (b) the importance of NCS1 for cell survival and migration, and (c) the cellular mechanism(s) through which NSC1 modulates these outcomes. We found that NCS1 abundance increases under conditions of stress, most prominently after stimulation with the pro‐inflammatory cytokine tumor necrosis factor α, in a manner dependent on nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NFκB). We found that NFκB signaling is activated in human breast cancer tissue, which was accompanied by an increase in NCS1 mRNA expression. Further exploration into the relevance of NCS1 in breast cancer progression showed that knockout of NCS1 (NCS1 KO) caused decreased cell survival and motility, increased baseline intracellular Ca2+ levels, and decreased inositol 1,4,5‐trisphosphate‐mediated Ca2+ responses. Protein kinase B (Akt) activity was decreased in NCS1 KO cells, which could be rescued by buffering intracellular Ca2+. Conversely, Akt activity was increased in cells overexpressing NCS1 (NCS1 OE). We therefore conclude that NCS1 acts as cellular stress response protein up‐regulated by stress‐induced NFκB signaling and that NCS1 influences cell survival and motility through effects on Ca2+ signaling and Akt pathway activation.
Collapse
Affiliation(s)
- Henrike K Grosshans
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Tom T Fischer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.,Institute of Pharmacology, Heidelberg University, Germany
| | - Julia A Steinle
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|