1
|
Guo W, Liu W, Wang J, Fan X. Extracellular vesicles and macrophages in tumor microenvironment: Impact on cervical cancer. Heliyon 2024; 10:e35063. [PMID: 39165926 PMCID: PMC11334669 DOI: 10.1016/j.heliyon.2024.e35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Cervical cancer is a serious threat to women's health. Extracellular vesicles exist in most body fluids for communication between organisms, having different effects on the occurrence, development, angiogenesis, and metastasis of cervical cancer, and are expected to become new targets for treatment. Macrophages are natural immune systems closely linked to the development of cervical cancer. In recent years, an increasing number of studies have confirmed the role of extracellular vesicles and macrophages in the gynecologic tumor environment. This article reviews the mechanism of action and application prospects of extracellular vesicles and macrophages in the cervical cancer microenvironment. In addition, the relationship between extracellular vesicles and macrophages from different sources is described, which provides ideas for the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Wen Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Wenqiong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Junqing Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xinran Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| |
Collapse
|
2
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
3
|
Niu L, Wang Q, Feng F, Yang W, Xie Z, Zheng G, Zhou W, Duan L, Du K, Li Y, Tian Y, Chen J, Xie Q, Fan A, Dan H, Liu J, Fan D, Hong L, Zhang J, Zheng J. Small extracellular vesicles-mediated cellular interactions between tumor cells and tumor-associated macrophages: Implication for immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166917. [PMID: 37820821 DOI: 10.1016/j.bbadis.2023.166917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.
Collapse
Affiliation(s)
- Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ye Tian
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Liu S, Li W, Liang L, Zhou Y, Li Y. The regulatory relationship between transcription factor STAT3 and noncoding RNA. Cell Mol Biol Lett 2024; 29:4. [PMID: 38172648 PMCID: PMC10763091 DOI: 10.1186/s11658-023-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), as a key node in numerous carcinogenic signaling pathways, is activated in various tumor tissues and plays important roles in tumor formation, metastasis, and drug resistance. STAT3 is considered a potential subtarget for tumor therapy. Noncoding RNA (ncRNA) is a special type of RNA transcript. Transforming from "junk" transcripts into key molecules involved in cell apoptosis, growth, and functional regulation, ncRNA has been proven to be closely related to various epithelial-mesenchymal transition and drug resistance processes in tumor cells over the past few decades. Research on the relationship between transcription factor STAT3 and ncRNAs has attracted increased attention. To date, existing reviews have mainly focused on the regulation by ncRNAs on the transcription factor STAT3; there has been no review of the regulation by STAT3 on ncRNAs. However, understanding the regulation of ncRNAs by STAT3 and its mechanism is important to comprehensively understand the mutual regulatory relationship between STAT3 and ncRNAs. Therefore, in this review, we summarize the regulation by transcription factor STAT3 on long noncoding RNA, microRNA, and circular RNA and its possible mechanisms. In addition, we provide an update on research progress on the regulation of STAT3 by ncRNAs. This will provide a new perspective to comprehensively understand the regulatory relationship between transcription factor STAT3 and ncRNAs, as well as targeting STAT3 or ncRNAs to treat diseases such as tumors.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
6
|
Ma JL, Xu DP, Tao YF, Zheng T, Xu P, Qiang J. Integrated transcriptome and miRNA sequencing analyses reveal that hypoxia stress induces immune and metabolic disorders in gill of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108909. [PMID: 37353064 DOI: 10.1016/j.fsi.2023.108909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The survival and growth of fish are significantly impacted by a hypoxic environment (low dissolved oxygen). In this study, we compared tissue structure, physiological changes, and mRNA/miRNA transcriptome, in gills of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) between the hypoxic group (DO: 0.55 mg/L, HG) and the control group (DO: 5 mg/L, CG). The results showed that the gill filaments in the hypoxic group showed curling, engorgement, and apoptotic cells increased, and that exposure for 96 h resulted in a reduction in the antioxidant capacity. We constructed and sequenced miRNA and mRNA libraries from gill tissues of GIFT at 96 h of hypoxia stress. Between the HG and CG, a total of 14 differentially expressed (DE) miRNAs and 1557 DE genes were obtained. GO and KEGG enrichment showed that DE genes were mainly enriched in immune and metabolic pathways such as natural killer cell mediated cytotoxicity, steroid biosynthesis, primary immunodeficiency, and synthesis and degradation of ketone bodies. Based on the results of mRNA sequencing and screening for miRNA-mRNA pairs, we selected and verified six DE miRNAs and their probable target genes. The sequencing results were consistent with the qRT-PCR validation results. The result showed that under hypoxia stress, the innate immune response was up-regulated, and the adaptive immune response was down-regulated in the gill of GIFT. The synthesis of cholesterol in gill cells is reduced, which is conducive to the absorption of solvent oxygen. These findings offer fresh information about the processes of fish adaptation to hypoxic stress.
Collapse
Affiliation(s)
- Jun-Lei Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Dong-Po Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.
| |
Collapse
|
7
|
Liu CG, Chen J, Goh RMWJ, Liu YX, Wang L, Ma Z. The role of tumor-derived extracellular vesicles containing noncoding RNAs in mediating immune cell function and its implications from bench to bedside. Pharmacol Res 2023; 191:106756. [PMID: 37019192 DOI: 10.1016/j.phrs.2023.106756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.
Collapse
|
8
|
Zhang Q, Wang C, Li S, Li Y, Chen M, Hu Y. Screening of core genes prognostic for sepsis and construction of a ceRNA regulatory network. BMC Med Genomics 2023; 16:37. [PMID: 36855106 PMCID: PMC9976425 DOI: 10.1186/s12920-023-01460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE To screen out core genes potentially prognostic for sepsis and construct a competing endogenous RNA (ceRNA) regulatory network. METHODS Subjects included in this project were 23 sepsis patients and 10 healthy people. RNA-seq for lncRNA, miRNA and mRNA was performed in the peripheral blood samples. Differentially expressed RNAs (DER) were screened out for further analysis. GO annotation and GSEA functional clustering were performed to view the functional enrichment of DEmRNAs. Core genes of prognostic significance were screened out with the weighted correlation network analysis (WGCNA). Meta-analysis and Survival analysis was devised in different microarray datasets. RT-qPCR was conducted to validate these core genes. A ceRNA network was accordingly constructed according to the correlation analysis and molecular interaction prediction. RESULTS RNA-seq and differential analysis screened out 1,044 DEmRNAs, 66 DEmiRNAs and 155 DElncRNAs. The GO and GSEA analysis revealed that DEmRNAs are mainly involved in inflammatory response, immune regulation, neutrophil activation. WGCNA revealed 4 potential core genes, including CD247, IL-2Rβ, TGF-βR3 and IL-1R2. In vitro cellular experiment showed up-regulated expression of IL-1R2 while down-regulated of CD247, IL-2Rβ, TGF-βR3 in sepsis patients. Correspondingly, a ceRNA regulatory network was build based on the core genes, and multiple lncRNAs and miRNAs were identified to have a potential regulatory role in sepsis. CONCLUSION This study identified four core genes, including CD247, IL-1R2, IL-2Rβ and TGF-βR3, with potential to be novel biomarkers for the prognosis of sepsis. In the meantime, a ceRNA network was constructed aiming to guide further study on prognostic mechanism in sepsis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shilin Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Lai W, Liao J, Li X, Liang P, He L, Huang K, Liang X, Wang Y. Characterization of the microenvironment in different immune-metabolism subtypes of cervical cancer with prognostic significance. Front Genet 2023; 14:1067666. [PMID: 36816023 PMCID: PMC9935837 DOI: 10.3389/fgene.2023.1067666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Immune cell infiltration and metabolic reprogramming may have great impact on the tumorigenesis and progression of malignancies. The interaction between these two factors in cervical cancer remains to be clarified. Here we constructed a gene set containing immune and metabolism related genes and we applied this gene set to molecular subtyping of cervical cancer. Methods: Bulk sequencing and single-cell sequencing data were downloaded from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database respectively. Immune and metabolism related genes were collected from Immport and Kyoto encyclopedia of genes and genomes (KEGG) database respectively. Unsupervised consensus clustering was performed to identify the molecular subtypes. Cibersort was applied to evaluate the immune cells infiltration status. Differential expression analysis and Gene set enrichment analysis (GSEA) were performed to characterize the molecular pattern of different subtypes. Multivariate Cox regression analysis was used for prognosis prediction model construction and receiver operating characteristic (ROC) curve was used for performance evaluation. The hub genes in the model were verified in single-cell sequencing dataset and clinical specimens. In vitro experiments were performed to validate the findings in our research. Results: Three subtypes were identified with prognostic implications. C1 subgroup was in an immunosuppressive state with activation of mitochondrial cytochrome P450 metabolism, C2 had poor immune cells infiltration and was characterized by tRNA anabolism, and the C3 subgroup was in an inflammatory state with activation of aromatic amino acid synthesis. The area under the ROC curve of the constructed model was 0.8, which showed better performance than clinical features. IMPDH1 was found to be significantly upregulated in tumor tissue and it was demonstrated that IMPDH1 could be a novel therapeutic target in vitro. Discussion: In summary, our findings suggested novel molecular subtypes of cervical cancer with distinct immunometabolic profiles and uncovered a novel therapeutic target.
Collapse
Affiliation(s)
- Wujiang Lai
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrong Liao
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Li
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peili Liang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqing He
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Keke Huang
- Department of Obstetrics, Shunde Hospital, The First People’s Hospital of Shunde, Southern Medical University, Foshan, Guangdong, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| | - Xiaomei Liang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Keke Huang, ; Xiaomei Liang, ; Yifeng Wang,
| |
Collapse
|
10
|
Wang KH, Ding DC. The Role and Applications of Exosomes in Gynecological Cancer: A Review. Cell Transplant 2023; 32:9636897231195240. [PMID: 37632354 PMCID: PMC10467393 DOI: 10.1177/09636897231195240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023] Open
Abstract
Exosomes are phospholipid bilayer vesicles that are released by all types of cells, containing proteins, lipids, and nucleic acids such as DNAs and RNAs. Exosomes can be transferred between cells and play a variety of physiological and pathological regulatory functions. Noncoding RNAs, including micro RNAs, long noncoding RNAs, and circular RNAs, are the most studied biomolecules from exosomes and more and more studies found that noncoding RNAs play an important role in the diagnosis, prognosis, and treatment of diseases, including various types of cancer. Gynecological malignancies such as ovarian, endometrial, and cervical cancer seriously threaten women's life. Therefore, this article reviews the roles and applications of exosomes in gynecological malignancies, including the promotion or inhibition of tumor progression and regulation of tumor microenvironments, and as potential therapeutic targets for treating gynecological cancers.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, R.O.C
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, R.O.C
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| |
Collapse
|
11
|
Chen CC, Xie XM, Zhao XK, Zuo S, Li HY. Krüppel-like Factor 13 Promotes HCC Progression by Transcriptional Regulation of HMGCS1-mediated Cholesterol Synthesis. J Clin Transl Hepatol 2022; 10:1125-1137. [PMID: 36381108 PMCID: PMC9634771 DOI: 10.14218/jcth.2021.00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Krüppel-like factor (KLF) has a role in the occurrence, development and metabolism of cancer. We aimed to explore the role and potential molecular mechanism of KLF13 in the growth and migration of liver cancer cells. METHODS The expression of KLF13 in hepatocellular carcinoma (HCC) tissues was higher than that in normal tissues according to analysis of The Cancer Genome Atlas (TCGA) database. Lentiviral plasmids were used for overexpression and plasmid knockdown of KLF13. Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to detect mRNA and protein expression in HCC tissues and cells. Cell counting kit-8 (CCK-8), colony formation, cell migration and invasion, and flow cytometry assays were used to assess the in vitro function of KLF13 in HCC cells. The effect of KLF13 on xenograft tumor growth in vivo was evaluated. The cholesterol content of HCC cells was determined by an indicator kit. A dual-luciferase reporter assay and chromatin immunoprecipitation sequencing (ChIP-seq) revealed the binding relationship between KLF13 and HMGCS1. RESULTS The expression of KLF13 was upregulated in HCC tissues and TCGA database. KLF13 knockdown inhibited the proliferation, migration and invasion of HepG2 and Huh7 cells and increased the apoptosis of Huh7 cells. The opposite effects were observed with the overexpression of KLF13 in SK-Hep1 and MHCC-97H cells. The overexpression of KLF13 promoted the growth of HCC in nude mice and KLF13 transcription promoted the expression of HMGCS1 and the biosynthesis of cholesterol. KLF13 knockdown inhibited cholesterol biosynthesis mediated by HMGCS1 and inhibited the growth and metastasis of HCC cells. CONCLUSIONS KLF13 acted as a tumor promoter in HCC by positively regulating HMGCS1-mediated cholesterol biosynthesis.
Collapse
Affiliation(s)
- Chao-Chun Chen
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xing-Ming Xie
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xue-Ke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hai-Yang Li
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Corresponding author: Haiyang Li, Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, China. ORCID: https://orcid.org/0000-0003-0015-5750. Tel/Fax: +86-851-6855119, E-mail:
| |
Collapse
|
12
|
Chen Z, Wang X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet Sci 2022; 9:vetsci9120706. [PMID: 36548867 PMCID: PMC9785507 DOI: 10.3390/vetsci9120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence of the reproductive diseases is increasing year-by-year, leading to abortion or fetal arrest, which seriously affects the reproductive health of human beings and the reproductive efficiency of animals. Exosomes are phospholipid bilayer vesicles that are widely distributed in living organisms and released by the cells of various organs and tissues. Exosomes contain proteins, RNA, lipids, and other components and are important carriers of information transfer between cells, which play a variety of physiological and pathological regulatory functions. More and more studies have found that exosomes and their connotations play an important role in the diagnosis, prognosis and treatment of diseases. A systematic review was conducted in this manuscript and then highlights our knowledge about the diagnostic and therapeutic applications of exosomes to reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis, premature ovarian failure (POF), preeclampsia, polycystic, endometrial cancer, cervical cancer, ovarian cancer, and prostate gland cancer.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
13
|
Zhang R, Zou Y, Luo J. Application of Extracellular Vesicles in Gynecologic Cancer Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120740. [PMID: 36550946 PMCID: PMC9774372 DOI: 10.3390/bioengineering9120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Ovarian, cervical, and endometrial cancer are the three most common gynecological malignancies that seriously threaten women's health. With the development of molecular biology technology, immunotherapy and targeted therapy for gynecologic tumors are being carried out in clinical treatment. Extracellular vesicles are nanosized; they exist in various body fluids and play an essential role in intercellular communication and in the regulation of various biological process. Several studies have shown that extracellular vesicles are important targets in gynecologic cancer treatment as they promote tumor growth, progression, angiogenesis, metastasis, chemoresistance, and immune system escape. This article reviews the progress of research into extracellular vesicles in common gynecologic tumors and discusses the role of extracellular vesicles in gynecologic tumor treatment.
Collapse
Affiliation(s)
- Renwen Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yixing Zou
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
14
|
Lu Y, He X, Fang X, Chai N, Xu F. A novel lipid metabolism-related lncRNA signature predictive of clinical prognosis in cervical cancer. Front Genet 2022; 13:1001347. [PMID: 36324514 PMCID: PMC9621320 DOI: 10.3389/fgene.2022.1001347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Cervical cancer (CC) is a serious threat to women populations worldwide. Lipid metabolism is believed to have modulating functions in cancer. Long non-coding RNAs (lncRNAs) are potential biomarkers for the different tumor prognosis. Our work aims at investigating the prognostic value of lipid metabolism-related lncRNAs in CC. Methods: LncRNA expression profiling was conducted in 291 patients from The Cancer Genome Atlas (TCGA). Patient samples were randomly assigned to the training or testing set in a 3:2 ratio. A novel lipid metabolism-related five-lncRNA signature with prognostic value for CC was built through the univariate Cox regression, least absolute contraction and selection operator (LASSO) regression and multivariate Cox regression analyses, and was further evaluated by the Kaplan-Meier methods. Relevant analyses were also applied to identify the independent clinicopathological factors. GO and KEGG analyses were conducted to investigate the biological functions and molecular pathways. Immune infiltration analysis was included to probe the relationship between lncRNA signature and cancer cell microenvironment. Results: The novel lipid metabolism-related five-lncRNA signature was confirmed to be predictive of overall survival (OS) in CC patients. Risk score, cancer stage, pregnancy, and BMI were validated as independent factors with prognostic value. GO and KEGG indicated that lipid metabolism participated in several tumor associated functions and pathways. Moreover, our results suggested that the five-lncRNA expression has potential link with tumor immune microenvironment. Conclusion: In conclusion, we built an innovative prognostic risk signature based upon lipid metabolism-related lncRNAs. The five-lncRNA signature may be beneficial to provide novel potential therapeutic targets and improve personalized treatment strategies for CC patients in future clinical treatments.
Collapse
Affiliation(s)
- Yanzhen Lu
- Department of Gynaecology, The People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, Ningbo, China
| | - Xiujun He
- Department of Gynaecology, The People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, Ningbo, China
| | - Xia Fang
- Department of Gynaecology, The People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, Ningbo, China
| | - Ningxia Chai
- Department of Gynaecology, The People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, Ningbo, China
| | - Fangfang Xu
- Department of Gynaecology, The People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of Zhejiang University, Ningbo, China
| |
Collapse
|
15
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
16
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Identification of hub genes for adult patients with sepsis via RNA sequencing. Sci Rep 2022; 12:5128. [PMID: 35332254 PMCID: PMC8948204 DOI: 10.1038/s41598-022-09175-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
To screen out potential prognostic hub genes for adult patients with sepsis via RNA sequencing and construction of a microRNA-mRNA-PPI network and investigate the localization of these hub genes in peripheral blood monocytes. The peripheral blood of 33 subjects was subjected to microRNA and mRNA sequencing using high-throughput sequencing, and differentially expressed genes (DEGs) and differentially expressed microRNAs (DEMs) were identified by bioinformatics. Single-cell transcriptome sequencing (10 × Genomics) was further conducted. Among the samples from 23 adult septic patients and 10 healthy individuals, 20,391 genes and 1633 microRNAs were detected by RNA sequencing. In total, 1114 preliminary DEGs and 76 DEMs were obtained using DESeq2, and 454 DEGs were ultimately distinguished. A microRNA-mRNA-PPI network was constructed based on the DEGs and the top 20 DEMs, which included 10 upregulated and 10 downregulated microRNAs. Furthermore, the hub genes TLR5, FCGR1A, ELANE, GNLY, IL2RB and TGFBR3, which may be associated with the prognosis of sepsis, and their negatively correlated microRNAs, were analysed. The genes TLR5, FCGR1A and ELANE were mainly expressed in macrophages, and the genes GNLY, IL2RB and TGFBR3 were expressed specifically in T cells and natural killer cells. Parallel analysis of mRNAs and microRNAs in patients with sepsis was demonstrated to be feasible using RNA-seq. Potential hub genes and microRNAs that may be related to sepsis prognosis were identified, providing new prospects for sepsis treatment. However, further experiments are needed.
Collapse
|
18
|
Xu C, Zhuo Y, Liu Y, Chen H. Itraconazole Inhibits the Growth of Cutaneous Squamous Cell Carcinoma by Targeting HMGCS1/ACSL4 Axis. Front Pharmacol 2022; 13:828983. [PMID: 35242038 PMCID: PMC8886144 DOI: 10.3389/fphar.2022.828983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Cutaneous squamous cell carcinoma (cSCC) is a common cutaneous cancer with increasing incidence. Itraconazole has been identified as a potential anticancer drug candidate. However, the role of itraconazole in cSCC was still unclear. Our objective is exploring the therapeutic potential of itraconazole in cSCC and investigate its molecular mechanism. Methods: The anti-proliferation effect of itraconazole was tested with CCK-8 assay and clone formation assay. Cell cycle distribution and apoptosis rate were detected using flow cytometry and TUNEL assay, respectively. Transcriptomic and proteomic analyses were used to explore the underlying anti-cancer mechanism. Luciferase reporter assay was used for promoter activity. Reactive oxygen species (ROS), lipid peroxidation and iron accumulation were examined. The in vivo efficacy of itraconazole was assessed in a xenograft model. Results: Itraconazole inhibited the cell proliferation, induced apoptosis and blocked cell cycle of cSCC cells. An integrated analysis of transcriptomic and proteomic analyses identified that 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) and acyl-CoA synthetase long-chain family member 4 (ACSL4) were significantly upregulated in A431 cells treated with itraconazole. HMGCS1 silencing reversed the antiproliferative activity of itraconazole in A431 cells. Dual-luciferase assay showed that itraconazole could promote HMGCS1 transcription. HMGCS1 silencing abated the expression of ACSL4 in A431 cells. The level of ROS, lipid peroxidation, as well as iron accumulation were increased by itraconazole. Moreover, treatment with itraconazole impeded tumor growth in A431-bearing mice. Conclusion: We proved itraconazole inhibits the growth of cSCC by regulating HMGCS1/ACSL4 axis.
Collapse
Affiliation(s)
- Congcong Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yating Zhuo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
19
|
Kong X, Gao M, Liu Y, Zhang P, Li M, Ma P, Shang P, Wang W, Liu H, Zhang Q, Feng F. GSDMD-miR-223-NLRP3 axis involved in B(a)P-induced inflammatory injury of alveolar epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113286. [PMID: 35144130 DOI: 10.1016/j.ecoenv.2022.113286] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Benzo(a)pyrene [B(a)P], a ubiquitous environmental pollutant, causes lung inflammatory damage. Pyroptosis,a new inflammation-dependent programmed cell death, happened when pyroptosis-related GSDMD is activated mediated by NLRP3 inflammasome. microRNA-223 (miRNA-223) is involved in inflammatory diseases by regulating NLRP3. However, whether GSDMD regulate NLRP3 inflammasome through miR-223 in B(a)P induced lung inflammatory injury remain unknown. In this study, alveolar epithelial cells (A549) were stimulated with 0, 2, 4, 8 μM B(a)P for 12 h or 24 h. The inflammatory injury and pyroptosis were determined. And the activation of NLRP3 inflammasomes and the level of miRNA-223 were detected. Then, the change of inflammatory injury and activation of NLRP3 inflammasomes in B(a)P-induced A549 cells were detected after inhibiting of GSDMD or miR-223 using siRNA-GSDMD (siGSDMD) or miR-223 inhibitor, respectively. Our results indicated that after B(a)P exposure, TNF-α and IL-6 in the supernatant were increased. Transmission electron microscope (TEM) results showed that A549 cells were obviously swollen and the cell membrane ruptured. Hoechest33342/PI staining showed that pyroptosis occurred. NLRP3, IL-1β, IL-18, GSDMD, GSDMD-N, pro caspase-1 and cleaved caspase-1 were significantly increased. Additionally, after transfecting with siGSDMD in B(a)P-induced A549 cells, the expression level of miR-223 was significantly increased. But IL-6 and TNF-α in the supernatant, the expression of NLRP3, IL-1β, IL-18 and cleaved caspase-1 protein were also decreased. And after inhibiting miR-223 in B(a)P-induced A549 cells, the expression of TNF-α and IL-6 in the supernatant, the protein expression of NLRP3, IL-1β, IL-18 and cleaved caspase-1 were increased. In conclusion, GSDMD may regulate NLRP3 inflammasome through miR-223, which is involved in B(a)P induced inflammatory damage in A549 cells.
Collapse
Affiliation(s)
- Xiangbing Kong
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China
| | - Min Gao
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China
| | - Yitong Liu
- College of Public Health, University of Southern California, Los Angeles, USA
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan Province, China
| | - Mengyuan Li
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China
| | - Pengwei Ma
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNC, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Occupational Medicine, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China
| | - Hong Liu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiao Zhang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China
| | - Feifei Feng
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China.
| |
Collapse
|
20
|
Bhat A, Yadav J, Thakur K, Aggarwal N, Chhokar A, Tripathi T, Singh T, Jadli M, Veerapandian V, Bharti AC. Transcriptome analysis of cervical cancer exosomes and detection of HPVE6*I transcripts in exosomal RNA. BMC Cancer 2022; 22:164. [PMID: 35148692 PMCID: PMC8840784 DOI: 10.1186/s12885-022-09262-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background Exosomes play a key role in cell-to-cell communication and are integral component of the tumor microenvironment. Recent observations suggest transfer of RNA through tumor-derived exosomes that can potentially translate into regulatory proteins in the recipient cells. Role of cervical cancer-derived exosomes and their transcript cargo is poorly understood. Materials and methods The total RNA of exosomes from HPV-positive (SiHa and HeLa) and HPV-negative (C33a) cervical cancer cell lines were extracted and the transcripts were estimated using Illumina HiSeq X. Further, validation of HPV transcripts were performed using RT-PCR. Results 3099 transcripts were found to be differentially-exported in HPV-positive vs. HPV-negative exosomes (p value <0.05). Analysis of top 10 GO terms and KEGG pathways showed enrichment of transcripts belonging to axon guidance and tumor innervation in HPV-positive exosomes. Among top 20 overexpressed transcripts, EVC2, LUZP1 and ANKS1B were the most notable due to their involvement in Hh signaling, cellular migration and invasion, respectively. Further, low levels of HPV-specific reads were detected. RT-PCR validation revealed presence of E6*I splice variant of HPV18 in exosomal RNA of HeLa cells. The E6*I transcripts were consistently retained in exosomes obtained from HeLa cells undergoing 5-FU and cisplatin-induced oxidative stress. Conclusion Our data suggests the enrichment of poly-A RNA transcripts in the exosomal cargo of cervical cancer cells, which includes pro-tumorigenic cellular RNA and viral transcripts such as HPV E6, which may have clinical utility as potential exosomal biomarkers of cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09262-4.
Collapse
Affiliation(s)
- Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India.
| |
Collapse
|
21
|
Zhou C, Wang Z, Cao Y, Zhao L. Pan-cancer analysis reveals the oncogenic role of 3-hydroxy-3-methylglutaryl-CoA synthase 1. Cancer Rep (Hoboken) 2021; 5:e1562. [PMID: 34549901 PMCID: PMC9458500 DOI: 10.1002/cnr2.1562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Emerging studies reveals that 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) plays vital oncogenic roles in a broad spectrum of human cancers, but there is no pan-cancer evidence on the relationship between HMGCS1 and various tumor types. AIM To explore the potential role of HMGCS1 across various tumor types based on big clinical data. METHODS We conducted a pan-cancer analysis across more than 30 tumor types, based on the most comprehensive database available, including TCGA, GSCA, clinical proteomic tumor analysis consortium, Kaplan-Meier Plotter dataset, GEPIA2, TIMER2, STRING, and GDSC dataset. RESULTS HMGCS1 was highly expressed and negatively correlated with the prognosis in most cancer types. The infiltration levels of cancer associated fibroblast and CD8+ T-cell were closely associated with HMGCS1 expression. Amplification was the most common genetic alteration of HMGCS1 in different cancers, while the frequency of mutation was low. Besides, ACAT2 and MVD were closely correlated and bind to HMGCS1. Pathway enrichment analysis indicated that HMGCS1 was actively involved in steroid biosynthesis. Moreover, high HMGCS1 expression could reduce the sensitivity to most drugs in the GDSC dataset. CONCLUSIONS Our study revealed the potential oncogenic role of HMGCS1 in cancers.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqin Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yueqing Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Extracellular Vesicles in Cervical Cancer and HPV Infection. MEMBRANES 2021; 11:membranes11060453. [PMID: 34202942 PMCID: PMC8235012 DOI: 10.3390/membranes11060453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Since their description, extracellular vesicles (EVs) have shown growing relevance in cancer progression. These cell structures contain and transfer molecules such as nucleic acids (including DNA and RNA), proteins, and lipids. Despite the rising information about EVs’ relationship with cancer, there is still scarce evidence about their content and function in cervical cancer. Interestingly, the composition and purposes of some cellular molecules and the expression of oncogenic proteins packaged in EVs seem modified in HPV-infected cells; and, although only the E6 oncogenic protein has been detected in exosomes from HPV-positive cells, both E6/E7 oncogenes mRNA has been identified in EVs; however, their role still needs to be clarified. Given that EVs internalizing into adjacent or distant cells could modify their cellular behavior or promote cancer-associated events like apoptosis, proliferation, migration, or angiogenesis in receptor cells, their comprehensive study will reveal EV-associated mechanisms in cervical cancer. This review summarizes the current knowledge in composition and functions of cervical cancer and HPV Infection-derived EVs.
Collapse
|
23
|
Chen W, Huang L, Liang J, Ye Y, He S, Niu J. RETRACTED: Hepatocellular carcinoma cells-derived exosomal microRNA-378b enhances hepatocellular carcinoma angiogenesis. Life Sci 2021; 273:119184. [PMID: 33577844 DOI: 10.1016/j.lfs.2021.119184] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 2D/G/H, 4C, 5F and 6D, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China.
| | - Li Huang
- Neurology Department, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| | - Junhua Liang
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| | - Yingjian Ye
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| | - Shan He
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| | - Junli Niu
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| |
Collapse
|
24
|
Favero A, Segatto I, Perin T, Belletti B. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1659. [PMID: 33951281 PMCID: PMC8518860 DOI: 10.1002/wrna.1659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Given their intrinsic pleiotropism, microRNAs (miR) play complex biological roles, in both normal and pathological conditions. Often the same miR can act as oncogene or oncosuppressor, depending on the biological process dysregulated in each specific tissue. miR‐223 does not represent an exception to this rule and its functions greatly differ in different contexts. miR‐223 has been widely studied in the hematopoietic compartment, where it plays a central role in innate immune response, regulating myeloid differentiation and granulocytes function. Accordingly, dysregulated expression of miR‐223 has been associated to different inflammatory disorders and tumors arising from the immune compartment. Most carcinomas, breast cancer being the most studied, display loss of miR‐223. However, in gastro‐esophageal cancers miR‐223 is frequently overexpressed and correlates with worse prognosis. A link between miR‐223 and response to CDK4/6‐inhibitors has been recently proposed, suggesting a role as biomarker of therapeutic response. The notion that one of the most commonly mutated protein in cancer, mutant p53, binds the promoter of miR‐223 and suppresses its transcription, adds a further level of complexity to the full understanding of miR‐223 in cancer. In this review, we will summarize the current knowledge on the molecular networks that alter or are altered by miR‐223, in different cancer types. We will discuss if the times are ready for the exploitation of miR‐223 as predictive biomarker of treatment response or, even, as therapeutic target, in specific settings. Finally, we will suggest which could be the next steps to be taken for a realistic clinical application of miR‐223. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Andrea Favero
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
25
|
Zhu J, Han S. Histone deacetylase 10 exerts antitumor effects on cervical cancer via a novel microRNA-223/TXNIP/Wnt/β-catenin pathway. IUBMB Life 2021; 73:690-704. [PMID: 33481334 DOI: 10.1002/iub.2450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022]
Abstract
Dysfunction of histone deacetylase 10 (HDAC10) has been suggested in the carcinogenesis of cervical cancer (CC). However, its association with microRNAs (miRNAs) in CC remains exclusive. Hence, this study aims to probe the role of HDAC10 in regulating CC cell proliferation, migration, and invasion and its correlation with the screened-out miRNA target. Microarray analysis and RT-qPCR revealed that HDAC10 expressed poorly in CC cells relative to human immortalized endocervical cells (End1/E6E7). Moreover, HDAC10 downregulation predicted poor survival for patients with CC. Overexpression of HDAC10 reduced CC cell biological activities in vitro and tumor growth and lung metastases in vivo. miR-223, upregulated in CC, was regulated by HDAC10 through histone acetylation, while miR-223 inhibited the effects of HDAC10 overexpression in CC. miR-223 targeted the 3'-UTR of thioredoxin interacting protein (TXNIP) and suppressed its expression, leading to increased CC development in vitro and in vivo. TXNIP overexpression impaired Wnt/β-catenin pathway activity in CC cells.
Collapse
Affiliation(s)
- Jinming Zhu
- Department of Oncology, Affiliated Zhongshan Hospital, Dalian University, Dalian, P.R. China
| | - Shichao Han
- Department of Gynecology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
26
|
Zhu J, Lv J, Chen J, Zhang X, Ji Y. Down-regulated microRNA-223 or elevated ZIC1 inhibits the development of pancreatic cancer via inhibiting PI3K/Akt/mTOR signaling pathway activation. Cell Cycle 2020; 19:2851-2865. [PMID: 33064959 DOI: 10.1080/15384101.2020.1827189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Objective: MicroRNAs (miRNAs) are known to participate in the progression of human cancers, such as pancreatic cancer (PC), while the mechanisms of miR-223 in PC remain largely unknown. This study was for the investigation of the status of microRNA (miR)-223 in the growth of PC with the involvement of ZIC1 and the PI3K/Akt/mTOR pathway. Methods: MiR-223 and ZIC1 expression in PC tissue and cell lines was detected. PANC-1 cells and SW1990 cells were screened for subsequent experiments. Screened cells were transfected with miR-223- or ZIC1-related oligonucleotides or plasmids, or AZD8055, the dual inhibitor of the PI3K/Akt/mTOR signaling pathway to test the functions of miR-223, ZIC1 or PI3K/Akt/mTOR signaling pathway in the biological functions of PC cells. The expression of miR-223, ZIC1, or PI3K/Akt/mTOR signaling pathway-related proteins was examined. Tumor xenograft in nude mice was conducted for the detection of tumor growth of PC. Results: Up-regulated miR-223 and declined ZIC1 existed in PC tissues of patients and cell lines. ZIC1 was determined to be a target gene of miR-223. Down-regulated miR-223 or up-regulated ZIC1 led to suppressed proliferation, migration, invasion, and cell cycle entry, volume and weight of tumors, while elevated apoptosis in PC cells through declining phosphorylation levels of PI3K, Akt and mTOR. MiR-223 up-regulation or ZIC1 down-regulation induced opposite results on PC cells. Conclusion: This study highlights that down-regulated miR-223 or elevated ZIC1 inhibits the development of PC via restricting activation of the PI3K/Akt/mTOR pathway, which has important meanings for exploring the mechanism of PC.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Gastroenterology, Jingjiang People's Hospital , Jingjiang, Jiangsu, P. R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital , Jingjiang, Jiangsu, P. R. China
| | - Jing Chen
- Department of Pathology, Jingjiang People's Hospital , Jingjiang, Jiangsu, P. R. China
| | - Xuesong Zhang
- Department of Central Laboratory, Jingjiang People's Hospital , Jingjiang, Jiangsu, P. R. China
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital , Jingjiang, Jiangsu, P. R. China
| |
Collapse
|