1
|
Wang X, Yang J, Ren B, Yang G, Liu X, Xiao R, Ren J, Zhou F, You L, Zhao Y. Comprehensive multi-omics profiling identifies novel molecular subtypes of pancreatic ductal adenocarcinoma. Genes Dis 2024; 11:101143. [PMID: 39253579 PMCID: PMC11382047 DOI: 10.1016/j.gendis.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/11/2024] Open
Abstract
Pancreatic cancer, a highly fatal malignancy, is predicted to rank as the second leading cause of cancer-related death in the next decade. This highlights the urgent need for new insights into personalized diagnosis and treatment. Although molecular subtypes of pancreatic cancer were well established in genomics and transcriptomics, few known molecular classifications are translated to guide clinical strategies and require a paradigm shift. Notably, chronically developing and continuously improving high-throughput technologies and systems serve as an important driving force to further portray the molecular landscape of pancreatic cancer in terms of epigenomics, proteomics, metabonomics, and metagenomics. Therefore, a more comprehensive understanding of molecular classifications at multiple levels using an integrated multi-omics approach holds great promise to exploit more potential therapeutic options. In this review, we recapitulated the molecular spectrum from different omics levels, discussed various subtypes on multi-omics means to move one step forward towards bench-to-beside translation of pancreatic cancer with clinical impact, and proposed some methodological and scientific challenges in store.
Collapse
Affiliation(s)
- Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| |
Collapse
|
2
|
Ntzifa A, Marras T, Kallergi G, Kotsakis A, Georgoulias V, Lianidou E. Comprehensive liquid biopsy analysis for monitoring NSCLC patients under second-line osimertinib treatment. Front Oncol 2024; 14:1435537. [PMID: 39497713 PMCID: PMC11532185 DOI: 10.3389/fonc.2024.1435537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 11/07/2024] Open
Abstract
Background The heterogeneous and complex genetic landscape of NSCLC impacts the clinical outcomes of patients who will eventually develop resistance to osimertinib. Liquid biopsy (LB) analysis as a minimally invasive approach is a key step to efficiently identify resistance mechanisms and adjust to proper subsequent treatments. Materials and methods In the present study, we combined plasma-cfDNA and CTC analysis from 30 NSCLC patients in samples collected before treatment and at the progression of disease (PD). We detected molecular alterations at the DNA mutation (EGFR, PIK3CA, KRAS G12C, BRAF V600E), DNA methylation (RASSF1A, BRMS1, FOXA1, SLFN1, SHISA3, RARβ,, WIF-1, RASSF10 and APC), gene expression (CK-19, CK-18, CK-8, AXL, TWIST-1, PD-L1, PIM-1, Vimentin, ALDH-1, and B2M) and chromosomal level (HER2 and MET amplification) as possible resistance mechanisms and druggable targets. We also studied the expression of PD-L1 in single CTCs using immunofluorescence. Results In some cases, T790M resistance EGFR mutation was detected at baseline in CTCs but not in the corresponding plasma cfDNA. PIK3CA mutations were detected only in plasma-cfDNA but not in corresponding CTCs. KRAS G12C and BRAF V600E mutations were not detected in the samples analyzed. MET amplification was detected in the CTCs of two patients before treatment whereas HER2 amplification was detected in the CTCs of three patients at baseline and in one patient at PD. DNA methylation analysis revealed low concordance between CTCs and cfDNA, indicating the complementary information obtained through parallel LB analysis. Results from gene expression analysis indicated high rates of vimentin-positive CTCs detected at all time points during osimertinib. Moreover, there was an increased number of NSCLC patients at PD harboring CTCs positive in PD-L1. AXL and PIM-1 expression detected in CTCs during treatment suggesting new possible therapeutic strategies. Discussion Our results reveal that comprehensive liquid biopsy analysis can efficiently represent the heterogeneous molecular landscape and provide prominent information on subsequent treatments for NSCLC patients at PD since druggable molecular alterations were detected in CTCs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, General University Hospital of Larissa, Larissa, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Reina C, Šabanović B, Lazzari C, Gregorc V, Heeschen C. Unlocking the future of cancer diagnosis - promises and challenges of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl Res 2024; 272:41-53. [PMID: 38838851 DOI: 10.1016/j.trsl.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The advent of liquid biopsies has brought significant changes to the diagnosis and monitoring of non-small cell lung cancer (NSCLC), presenting both promise and challenges. Molecularly targeted drugs, capable of enhancing survival rates, are now available to around a quarter of NSCLC patients. However, to ensure their effectiveness, precision diagnosis is essential. Circulating tumor DNA (ctDNA) analysis as the most advanced liquid biopsy modality to date offers a non-invasive method for tracking genomic changes in NSCLC. The potential of ctDNA is particularly rooted in its ability to furnish comprehensive (epi-)genetic insights into the tumor, thereby aiding personalized treatment strategies. One of the key advantages of ctDNA-based liquid biopsies in NSCLC is their ability to capture tumor heterogeneity. This capability ensures a more precise depiction of the tumor's (epi-)genomic landscape compared to conventional tissue biopsies. Consequently, it facilitates the identification of (epi-)genetic alterations, enabling informed treatment decisions, disease progression monitoring, and early detection of resistance-causing mutations for timely therapeutic interventions. Here we review the current state-of-the-art in ctDNA-based liquid biopsy technologies for NSCLC, exploring their potential to revolutionize clinical practice. Key advancements in ctDNA detection methods, including PCR-based assays, next-generation sequencing (NGS), and digital PCR (dPCR), are discussed, along with their respective strengths and limitations. Additionally, the clinical utility of ctDNA analysis in guiding treatment decisions, monitoring treatment response, detecting minimal residual disease, and identifying emerging resistance mechanisms is examined. Liquid biopsy analysis bears the potential of transforming NSCLC management by enabling non-invasive monitoring of Minimal Residual Disease and providing early indicators for response to targeted treatments including immunotherapy. Furthermore, considerations regarding sample collection, processing, and data interpretation are highlighted as crucial factors influencing the reliability and reproducibility of ctDNA-based assays. Addressing these challenges will be essential for the widespread adoption of ctDNA-based liquid biopsies in routine clinical practice, ultimately paving the way toward personalized medicine and improved outcomes for patients with NSCLC.
Collapse
Affiliation(s)
- Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Chiara Lazzari
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Christopher Heeschen
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy;.
| |
Collapse
|
4
|
Sasiain I, Nacer D, Aine M, Veerla S, Staaf J. Tumor purity estimated from bulk DNA methylation can be used for adjusting beta values of individual samples to better reflect tumor biology. NAR Genom Bioinform 2024; 6:lqae146. [PMID: 39498434 PMCID: PMC11532792 DOI: 10.1093/nargab/lqae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
Epigenetic deregulation through altered DNA methylation is a fundamental feature of tumorigenesis, but tumor data from bulk tissue samples contain different proportions of malignant and non-malignant cells that may confound the interpretation of DNA methylation values. The adjustment of DNA methylation data based on tumor purity has been proposed to render both genome-wide and gene-specific analyses more precise, but it requires sample purity estimates. Here we present PureBeta, a single-sample statistical framework that uses genome-wide DNA methylation data to first estimate sample purity and then adjust methylation values of individual CpGs to correct for sample impurity. Purity values estimated with the algorithm have high correlation (>0.8) to reference values obtained from DNA sequencing when applied to samples from breast carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Methylation beta values adjusted based on purity estimates have a more binary distribution that better reflects theoretical methylation states, thus facilitating improved biological inference as shown for BRCA1 in breast cancer. PureBeta is a versatile tool that can be used for different Illumina DNA methylation arrays and can be applied to individual samples of different cancer types to enhance biological interpretability of methylation data.
Collapse
Affiliation(s)
- Iñaki Sasiain
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
| | - Deborah F Nacer
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden
| | - Mattias Aine
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden
| | - Srinivas Veerla
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden
| | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund 22381, Sweden
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund 22381, Sweden
| |
Collapse
|
5
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ntzifa A, Marras T, Georgoulias V, Lianidou E. Liquid biopsy for the management of NSCLC patients under osimertinib treatment. Crit Rev Clin Lab Sci 2024; 61:347-369. [PMID: 38305080 DOI: 10.1080/10408363.2024.2302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Therapeutic management of NSCLC patients is quite challenging as they are mainly diagnosed at a late stage of disease, and they present a high heterogeneous molecular profile. Osimertinib changed the paradigm shift in treatment of EGFR mutant NSCLC patients achieving significantly better clinical outcomes. To date, osimertinib is successfully administered not only as first- or second-line treatment, but also as adjuvant treatment while its efficacy is currently investigated during neoadjuvant treatment or in stage III, unresectable EGFR mutant NSCLC patients. However, resistance to osimertinib may occur due to clonal evolution, under the pressure of the targeted therapy. The utilization of liquid biopsy as a minimally invasive tool provides insight into molecular heterogeneity of tumor clonal evolution and potent resistance mechanisms which may help to develop more suitable therapeutic approaches. Longitudinal monitoring of NSCLC patients through ctDNA or CTC analysis could reveal valuable information about clinical outcomes during osimertinib treatment. Therefore, several guidelines suggest that liquid biopsy in addition to tissue biopsy should be considered as a standard of care in the advanced NSCLC setting. This practice could significantly increase the number of NSCLC patients that will eventually benefit from targeted therapies, such as EGFR TKIs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Zakari S, Niels NK, Olagunju GV, Nnaji PC, Ogunniyi O, Tebamifor M, Israel EN, Atawodi SE, Ogunlana OO. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: a systematic review. Front Oncol 2024; 14:1405267. [PMID: 39132504 PMCID: PMC11313249 DOI: 10.3389/fonc.2024.1405267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a global health challenge, necessitating continuous advancements in diagnostic and treatment strategies. This review focuses on the utility of non-invasive biomarkers in cancer diagnosis and treatment, their role in early detection, disease monitoring, and personalized therapeutic interventions. Through a systematic review of the literature, we identified 45 relevant studies that highlight the potential of these biomarkers across various cancer types, such as breast, prostate, lung, and colorectal cancers. The non-invasive biomarkers discussed include liquid biopsies, epigenetic markers, non-coding RNAs, exosomal cargo, and metabolites. Notably, liquid biopsies, particularly those based on circulating tumour DNA (ctDNA), have emerged as the most promising method for early, non-invasive cancer detection due to their ability to provide comprehensive genetic and epigenetic information from easily accessible blood samples. This review demonstrates how non-invasive biomarkers can facilitate early cancer detection, accurate subtyping, and tailored treatment strategies, thereby improving patient outcomes. It underscores the transformative potential of non-invasive biomarkers in oncology, highlighting their application for enhancing early detection, survival rates, and treatment precision in cancer care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474749 PROSPERO, identifier CRD42023474749.
Collapse
Affiliation(s)
- Suleiman Zakari
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Otukpo, Benue State, Nigeria
| | - Nguedia K. Niels
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon
| | - Grace V. Olagunju
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, United States
| | - Precious C. Nnaji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwabusayo Ogunniyi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Mercy Tebamifor
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Emmanuel N. Israel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Sunday E. Atawodi
- Department of Biochemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
8
|
Duan X, Qin W, Hao J, Yu X. Recent advances in the applications of DNA frameworks in liquid biopsy: A review. Anal Chim Acta 2024; 1308:342578. [PMID: 38740462 DOI: 10.1016/j.aca.2024.342578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.
Collapse
Affiliation(s)
- Xueyuan Duan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| | - Jicong Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Sequeira JP, Salta S, Freitas R, López-López R, Díaz-Lagares Á, Henrique R, Jerónimo C. Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers (Basel) 2024; 16:1363. [PMID: 38611041 PMCID: PMC11011064 DOI: 10.3390/cancers16071363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most frequently occurring malignancies. Although most cases are not life-threatening, approximately 20% endure an unfavorable outcome. PSA-based screening reduced mortality but at the cost of an increased overdiagnosis/overtreatment of low-risk (lrPCa) and favorable intermediate-risk (firPCa) PCa. PCa risk-groups are usually identified based on serum Prostate-Specific Antigen (PSA), the Gleason score, and clinical T stage, which have consistent although variable specificity or subjectivity. Thus, more effective and specific tools for risk assessment are needed, ideally making use of minimally invasive methods such as liquid biopsies. In this systematic review we assessed the clinical potential and analytical performance of liquid biopsy-based biomarkers for pre-treatment risk stratification of PCa patients. METHODS Studies that assessed PCa pre-treatment risk were retrieved from PubMed, Scopus, and MedLine. PCa risk biomarkers were analyzed, and the studies' quality was assessed using the QUADAS-2 tool. RESULTS The final analysis comprised 24 full-text articles, in which case-control studies predominated, mostly reporting urine-based biomarkers (54.2%) and biomarker quantification by qPCR (41.7%). Categorization into risk groups was heterogeneous, predominantly making use of the Gleason score. CONCLUSION This systematic review unveils the substantial clinical promise of using circulating biomarkers in assessing the risk for prostate cancer patients. However, the standardization of groups, categories, and biomarker validation are mandatory before this technique can be implemented. Circulating biomarkers might represent a viable alternative to currently available tools, obviating the need for tissue biopsies, and allowing for faster and more cost-effective testing, with superior analytical performance, specificity, and reproducibility.
Collapse
Affiliation(s)
- José Pedro Sequeira
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Doctoral Program in Biomedical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Doctoral Program in Pathology and Molecular Genetics, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Freitas
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Urology & Urology Clinic, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rafael López-López
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Ángel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
10
|
Vaisvila R, Johnson SR, Yan B, Dai N, Bourkia BM, Chen M, Corrêa IR, Yigit E, Sun Z. Discovery of cytosine deaminases enables base-resolution methylome mapping using a single enzyme. Mol Cell 2024; 84:854-866.e7. [PMID: 38402612 DOI: 10.1016/j.molcel.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Deaminases have important uses in modification detection and genome editing. However, the range of applications is limited by the small number of characterized enzymes. To expand the toolkit of deaminases, we developed an in vitro approach that bypasses a major hurdle with their toxicity in cells. We assayed 175 putative cytosine deaminases on a variety of substrates and found a broad range of activity on double- and single-stranded DNA in various sequence contexts, including CpG-specific deaminases and enzymes without sequence preference. We also characterized enzyme selectivity across six DNA modifications and reported enzymes that do not deaminate modified cytosines. The detailed analysis of diverse deaminases opens new avenues for biotechnological and medical applications. As a demonstration, we developed SEM-seq, a non-destructive single-enzyme methylation sequencing method using a modification-sensitive double-stranded DNA deaminase. The streamlined protocol enables accurate, base-resolution methylome mapping of scarce biological material, including cell-free DNA and 10 pg input DNA.
Collapse
Affiliation(s)
| | - Sean R Johnson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Bo Yan
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Nan Dai
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Billal M Bourkia
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Minyong Chen
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Ivan R Corrêa
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Erbay Yigit
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Zhiyi Sun
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
11
|
Xin W, Tu S, Yi S, Xiong Y, Fang K, Sun G, Xiao W. Clinical significance of tumor suppressor genes methylation in circulating tumor DNA of patients with pancreatic cancer. Gene 2024; 897:148078. [PMID: 38097094 DOI: 10.1016/j.gene.2023.148078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a potential diagnostic and prognostic biomarker in various tumors. However, the role of tumor suppressor genes (TSGs) methylation in ctDNA of patients with pancreatic cancer (PC) remains largely unclear. METHODS Patients with PC (n = 43), pancreatic benign diseases (n = 39), and healthy controls (n = 20) were enrolled in the study. Quantitative analysis of methylation pattern of five candidate TSGs including NPTX2, RASSF1A, EYA2, p16, and ppENK in ctDNA was performed by next generation sequencing (NGS). The diagnostic performances of these 5-TSGs methylation were assessed by the operating characteristic (ROC) curve and clinicopathological features correlation analysis. Meanwhile, the changes in methylation levels of these 5-TSGs on the 7th postoperative day were evaluated in 23 PC patients who underwent radical resection. RESULTS The methylation levels of RASSF1A, EYA2, ppENK and p16 genes in patients with PC were significantly higher than those in healthy controls. EYA2, p16 and ppENK genes showed significantly hypermethylation in PC than those in pancreatic benign diseases. NPTX2, RASSF1A, EYA2, p16 and ppENK genes showed significantly hypermethylation in pancreatic benign diseases than those in healthy controls (P < 0.05). The methylation levels of these 5 candidate TSGs were not correlated with the tumor size, nerve invasion, lymph node metastasis and TNM stage of PC. The AUC of these biomarkers for diagnosis of PC ranged from 0.65 to 0.96. The AUC values of these methylated genes and CpG sites for differentiating malignant and benign pancreatic diseases were ranging from 0.68 to 0.92. Combined the hypermethylated genes improved the detective ability of PC than single gene. The methylation levels of NPTX2, EYA2 and ppENK genes were significantly decreased after radical resection of PC. CONCLUSION Quantitative analysis of methylation pattern of NPTX2, RASSF1A, EYA2, p16 and ppENK in ctDNA by NGS could be a valuable non-invasive tool for detection and monitoring of PC.
Collapse
Affiliation(s)
- WanPeng Xin
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Siqing Yi
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Gen Sun
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Digestive Surgery, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
12
|
Galant N, Nicoś M, Kuźnar-Kamińska B, Krawczyk P. Variant Allele Frequency Analysis of Circulating Tumor DNA as a Promising Tool in Assessing the Effectiveness of Treatment in Non-Small Cell Lung Carcinoma Patients. Cancers (Basel) 2024; 16:782. [PMID: 38398173 PMCID: PMC10887123 DOI: 10.3390/cancers16040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the different possible paths of treatment, lung cancer remains one of the leading causes of death in oncological patients. New tools guiding the therapeutic process are under scientific investigation, and one of the promising indicators of the effectiveness of therapy in patients with NSCLC is variant allele frequency (VAF) analysis. VAF is a metric characterized as the measurement of the specific variant allele proportion within a genomic locus, and it can be determined using methods based on NGS or PCR. It can be assessed using not only tissue samples but also ctDNA (circulating tumor DNA) isolated from liquid biopsy. The non-invasive characteristic of liquid biopsy enables a more frequent collection of material and increases the potential of VAF analysis in monitoring therapy. Several studies have been performed on patients with NSCLC to evaluate the possibility of VAF usage. The research carried out so far demonstrates that the evaluation of VAF dynamics may be useful in monitoring tumor progression, remission, and recurrence during or after treatment. Moreover, the use of VAF analysis appears to be beneficial in making treatment decisions. However, several issues require better understanding and standardization before VAF testing can be implemented in clinical practice. In this review, we discuss the difficulties in the application of ctDNA VAF analysis in clinical routine, discussing the diagnostic and methodological challenges in VAF measurement in liquid biopsy. We highlight the possible applications of VAF-based measurements that are under consideration in clinical trials in the monitoring of personalized treatments for patients with NSCLC.
Collapse
Affiliation(s)
- Natalia Galant
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Barbara Kuźnar-Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, 61-710 Poznan, Poland;
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
13
|
Huang Q, Xun Z, Lin J, Xie R, Zhu C, Wang L, Shang H, Wu S, Ou Q, Liu C. A novel microfluidic chip-based digital PCR method for enhanced sensitivity in the early diagnosis of colorectal cancer via mSEPT9. Clin Chim Acta 2024; 554:117781. [PMID: 38224929 DOI: 10.1016/j.cca.2024.117781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND To enhance the sensitivity of plasma methylated Septin9 gene (mSEPT9) detection in colorectal cancer (CRC) screening, we developed a microfluidic chip-based digital PCR (dPCR) method suitable for low-concentration samples, aiming to apply it for mSEPT9 detection in CRC diagnosis. METHODS Our microfluidic chip-based dPCR method utilized specific primers and probes with locked nucleic acids (LNAs) modifications for mSEPT9 detection. We evaluated its performance, including detection limit, specificity, and linear range, comparing it with a commercial qPCR reagent kit using the same samples (95 CRC, 23 non-CRC). RESULTS The LNAs-modified dPCR method showed a linear range of 100-104 copies/μL and a detection limit of 100 copies/μL. Clinical testing revealed that our dPCR method exhibited a sensitivity of 82.11 % and specificity of 95.65 % for CRC diagnosis, outperforming the commercial qPCR kit (sensitivity: 58.95 %, specificity: 91.30 %), particularly in Stage I with a diagnostic sensitivity of 90.91 %. Combining mSEPT9 and carcinoembryonic antigen (CEA) improved diagnostic sensitivity to 91.49 %. CONCLUSIONS Our accurate microfluidic chip-based dPCR method, especially in combination with CEA, holds promise for effective CRC screening and timely interventions, offering enhanced mSEPT9 quantification over conventional qPCR.
Collapse
Affiliation(s)
- Qunfang Huang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Zhen Xun
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Junyu Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Rubing Xie
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Chenggong Zhu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Long Wang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Hongyan Shang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Songhang Wu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Qishui Ou
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China.
| | - Can Liu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China.
| |
Collapse
|
14
|
Faaborg L, Andersen RF, Wen SW, Thomsen CB, Raunkilde L, Hansen TF, Jensen LH, Steffensen KD, Jakobsen A. Prognostic impact of early ctDNA dynamics during chemotherapy of metastatic cancer. Future Oncol 2023; 19:2361-2367. [PMID: 37965794 DOI: 10.2217/fon-2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Aim: Clinical utility of the dynamics of ctDNA is sparse. This study aimed at evaluating the prognostic impact of early ctDNA dynamics in patients with metastatic cancer treated with chemotherapy. Materials & methods: The ctDNA dynamics were evaluated in 595 patients with metastatic cancer using droplet digital PCR. Results: Patients with an increase in ctDNA after one treatment cycle (n = 73; 12.2%) had an overall survival of 5.6 months compared with 8.6 months in patients with stable or decreasing ctDNA (n = 328; 55.1%) and 21.0 months in patients with undetectable ctDNA (p < 0.001; hazard ratio: 0.47; 95% CI: 0.41-0.53). Conclusion: Early ctDNA dynamics hold important prognostic information and have great implications for evaluation with the perspective of a more individualized treatment strategy.
Collapse
Affiliation(s)
- Louise Faaborg
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsløws Vej 19, Odense C, 5000, Denmark
| | - Rikke Fredslund Andersen
- Department of Biochemistry & Immunology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
| | - Sara Wc Wen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsløws Vej 19, Odense C, 5000, Denmark
| | - Caroline B Thomsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
| | - Louise Raunkilde
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsløws Vej 19, Odense C, 5000, Denmark
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsløws Vej 19, Odense C, 5000, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
| | - Karina Dahl Steffensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsløws Vej 19, Odense C, 5000, Denmark
- Center for Shared Decision Making, Lillebælt Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
| | - Anders Jakobsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, Vejle, 7100, Denmark
- Department of Regional Health Research, University of Southern Denmark, J.B. Winsløws Vej 19, Odense C, 5000, Denmark
| |
Collapse
|
15
|
Füllgrabe J, Gosal WS, Creed P, Liu S, Lumby CK, Morley DJ, Ost TWB, Vilella AJ, Yu S, Bignell H, Burns P, Charlesworth T, Fu B, Fordham H, Harding NJ, Gandelman O, Golder P, Hodson C, Li M, Lila M, Liu Y, Mason J, Mellad J, Monahan JM, Nentwich O, Palmer A, Steward M, Taipale M, Vandomme A, San-Bento RS, Singhal A, Vivian J, Wójtowicz N, Williams N, Walker NJ, Wong NCH, Yalloway GN, Holbrook JD, Balasubramanian S. Simultaneous sequencing of genetic and epigenetic bases in DNA. Nat Biotechnol 2023; 41:1457-1464. [PMID: 36747096 PMCID: PMC10567558 DOI: 10.1038/s41587-022-01652-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023]
Abstract
DNA comprises molecular information stored in genetic and epigenetic bases, both of which are vital to our understanding of biology. Most DNA sequencing approaches address either genetics or epigenetics and thus capture incomplete information. Methods widely used to detect epigenetic DNA bases fail to capture common C-to-T mutations or distinguish 5-methylcytosine from 5-hydroxymethylcytosine. We present a single base-resolution sequencing methodology that sequences complete genetics and the two most common cytosine modifications in a single workflow. DNA is copied and bases are enzymatically converted. Coupled decoding of bases across the original and copy strand provides a phased digital readout. Methods are demonstrated on human genomic DNA and cell-free DNA from a blood sample of a patient with cancer. The approach is accurate, requires low DNA input and has a simple workflow and analysis pipeline. Simultaneous, phased reading of genetic and epigenetic bases provides a more complete picture of the information stored in genomes and has applications throughout biomedicine.
Collapse
Affiliation(s)
- Jens Füllgrabe
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Walraj S Gosal
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Páidí Creed
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Sidong Liu
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Casper K Lumby
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - David J Morley
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Tobias W B Ost
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Albert J Vilella
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Shirong Yu
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Helen Bignell
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Philippa Burns
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Tom Charlesworth
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Beiyuan Fu
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Howerd Fordham
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Nicolas J Harding
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Olga Gandelman
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Paula Golder
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Christopher Hodson
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Mengjie Li
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Marjana Lila
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Yang Liu
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Joanne Mason
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Jason Mellad
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Jack M Monahan
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Oliver Nentwich
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Alexandra Palmer
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Michael Steward
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Minna Taipale
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Audrey Vandomme
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Rita Santo San-Bento
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Ankita Singhal
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Julia Vivian
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Natalia Wójtowicz
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Nathan Williams
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Nicolas J Walker
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Nicola C H Wong
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Gary N Yalloway
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Joanna D Holbrook
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK.
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Viswanathan R, Cheruba E, Wong PM, Yi Y, Ngang S, Chong DQ, Loh YH, Tan IB, Cheow LF. DARESOME enables concurrent profiling of multiple DNA modifications with restriction enzymes in single cells and cell-free DNA. SCIENCE ADVANCES 2023; 9:eadi0197. [PMID: 37713482 PMCID: PMC10881072 DOI: 10.1126/sciadv.adi0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the most abundant DNA modifications that have important roles in gene regulation. Detailed studies of these different epigenetic marks aimed at understanding their combined effects and dynamic interconversion are, however, hampered by the inability of current methods to simultaneously measure both modifications, particularly in samples with limited quantities. We present DNA analysis by restriction enzyme for simultaneous detection of multiple epigenomic states (DARESOME), an assay based on modification-sensitive restriction digest and sequential tag ligation that can concurrently perform quantitative profiling of unmodified cytosine, 5mC, and 5hmC in CCGG sites genome-wide. DARESOME reveals the opposing roles of 5mC and 5hmC in gene expression regulation as well as their interconversion during aging in mouse brain. Implementation of DARESOME in single cells demonstrates pronounced 5hmC strand bias that reflects the semiconservative replication of DNA. Last, we showed that DARESOME enables integrative genomic, 5mC, and 5hmC profiling of cell-free DNA that uncovered multiomics cancer signatures in liquid biopsy.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Elsie Cheruba
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Pui-Mun Wong
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yao Yi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Shaun Ngang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Dawn Qingqing Chong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
17
|
Peng S, Zhang X, Wu Y. Potential applications of DNA methylation testing technology in female tumors and screening methods. Biochim Biophys Acta Rev Cancer 2023; 1878:188941. [PMID: 37329994 DOI: 10.1016/j.bbcan.2023.188941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
DNA methylation is a common epigenetic modification, and the current commonly used methods for DNA methylation detection include methylation-specific PCR, methylation-sensitive restriction endonuclease-PCR, and methylation-specific sequencing. DNA methylation plays an important role in genomic and epigenomic studies, and combining DNA methylation with other epigenetic modifications, such as histone modifications, may lead to better DNA methylation. DNA methylation also plays an important role in the development of disease, and analyzing changes in individual DNA methylation patterns can provide individualized diagnostic and therapeutic solutions. Liquid biopsy techniques are also increasingly well established in clinical practice and may provide new methods for early cancer screening. It is important to find new screening methods that are easy to perform, minimally invasive, patient-friendly, and affordable. DNA methylation mechanisms are thought to have an important role in cancer and have potential applications in the diagnosis and treatment of female tumors. This review discussed early detection targets and screening methods for common female tumors such as breast, ovarian, and cervical cancers and discussed advances in the study of DNA methylation in these tumors. Although existing screening, diagnostic, and treatment modalities exist, the high morbidity and mortality rates of these tumors remain challenging.
Collapse
Affiliation(s)
- Shixuan Peng
- Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China
| | - Xinwen Zhang
- Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China
| | - Yongjun Wu
- Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China.
| |
Collapse
|
18
|
Goswami M, Schlom J, Donahue RN. Peripheral surrogates of tumor burden to guide chemotherapeutic and immunotherapeutic strategies for HPV-associated malignancies. Oncotarget 2023; 14:758-774. [PMID: 38958745 PMCID: PMC11221564 DOI: 10.18632/oncotarget.28487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/22/2023] [Indexed: 07/04/2024] Open
Abstract
With the rapid adoption of immunotherapy into clinical practice for HPV-associated malignancies, assessing tumor burden using "liquid biopsies" would further our understanding of clinical outcomes mediated by immunotherapy and allow for tailoring of treatment based on real-time tumor dynamics. In this review, we examine translational studies on peripheral surrogates of tumor burden derived from peripheral blood in HPV-associated malignancies, including levels and methylation of circulating tumor DNA (ctDNA), miRNA derived from extracellular vesicles, circulating tumor cells (CTCs), and HPV-specific antibodies and T cell responses. We review their utility as prognostic and predictive biomarkers of response to chemotherapy and radiation, with a focus on how they may inform and guide immunotherapies to treat locally advanced and metastatic HPV-associated malignancies. We also highlight unanswered questions that must be addressed to translate and integrate these peripheral tumor biomarkers into the clinic.
Collapse
Affiliation(s)
- Meghali Goswami
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renee N. Donahue
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Ma Y, Gan J, Bai Y, Cao D, Jiao Y. Minimal residual disease in solid tumors: an overview. Front Med 2023; 17:649-674. [PMID: 37707677 DOI: 10.1007/s11684-023-1018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/24/2023] [Indexed: 09/15/2023]
Abstract
Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.
Collapse
Affiliation(s)
- Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingbo Gan
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yinlei Bai
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Dandan Cao
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
21
|
Ragavi R, Muthukumaran P, Nandagopal S, Ahirwar DK, Tomo S, Misra S, Guerriero G, Shukla KK. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol 2023:S1078-1439(23)00090-X. [PMID: 37032230 DOI: 10.1016/j.urolonc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. The etiology of most cases of CaP is not understood completely, which makes it imperative to search for the molecular basis of CaP and markers for early diagnosis. Epigenetic modifications, including changes in DNA methylation patterns, histone modifications, miRNAs, and lncRNAs are key drivers of prostate tumorigenesis. These epigenetic defects might be due to deregulated expression of the epigenetic machinery, affecting the expression of several important genes like GSTP1, RASSF1, CDKN2, RARRES1, IGFBP3, RARB, TMPRSS2-ERG, ITGB4, AOX1, HHEX, WT1, HSPE, PLAU, FOXA1, ASC, GPX3, EZH2, LSD1, etc. In this review, we highlighted the most important epigenetic gene alterations and their variations as a diagnostic marker and target for therapeutic intervention of CaP in the future. Characterization of epigenetic changes involved in CaP is obscure and adequate validation studies are still required to corroborate the present results that would be the impending future of transforming basic research settings into clinical practice.
Collapse
Affiliation(s)
- Ravindran Ragavi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Atal Bihari Vajpayee Medical University, Lucknow Uttar Pradesh, India
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
22
|
Liquid biopsy for monitoring of tumor dormancy and early detection of disease recurrence in solid tumors. Cancer Metastasis Rev 2023; 42:161-182. [PMID: 36607507 PMCID: PMC10014694 DOI: 10.1007/s10555-022-10075-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Cancer is one of the three leading causes of death worldwide. Even after successful therapy and achieving remission, the risk of relapse often remains. In this context, dormant residual cancer cells in secondary organs such as the bone marrow constitute the cellular reservoir from which late tumor recurrences arise. This dilemma leads the term of minimal residual disease, which reflects the presence of tumor cells disseminated from the primary lesion to distant organs in patients who lack any clinical or radiological signs of metastasis or residual tumor cells left behind after therapy that eventually lead to local recurrence. Disseminated tumor cells have the ability to survive in a dormant state following treatment and linger unrecognized for more than a decade before emerging as recurrent disease. They are able to breakup their dormant state and to readopt their proliferation under certain circumstances, which can finally lead to distant relapse and cancer-associated death. In recent years, extensive molecular and genetic characterization of disseminated tumor cells and blood-based biomarker has contributed significantly to our understanding of the frequency and prevalence of tumor dormancy. In this article, we describe the clinical relevance of disseminated tumor cells and highlight how latest advances in different liquid biopsy approaches can be used to detect, characterize, and monitor minimal residual disease in breast cancer, prostate cancer, and melanoma patients.
Collapse
|
23
|
de Abreu AR, Op de Beeck K, Laurent-Puig P, Taly V, Benhaim L. The Position of Circulating Tumor DNA in the Clinical Management of Colorectal Cancer. Cancers (Basel) 2023; 15:1284. [PMID: 36831626 PMCID: PMC9954551 DOI: 10.3390/cancers15041284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type worldwide, with over 1.9 million new cases and 935,000 related deaths in 2020. Within the next decade, the incidence of CRC is estimated to increase by 60% and the mortality by 80%. One of the underlying causes of poor prognosis is late detection, with 60 to 70% of the diagnoses occurring at advanced stages. Circulating cell-free DNA (ccfDNA) is probably the most promising tool for screening, diagnosis, prediction of therapeutic response, and prognosis. More specifically, the analysis of the tumor fraction within the ccfDNA (circulating tumor DNA, ctDNA) has great potential to improve the management of CRC. The present review provides an up-to-date and comprehensive overview of the various aspects related to ctDNA detection in CRC.
Collapse
Affiliation(s)
- Ana Regina de Abreu
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Pierre Laurent-Puig
- UMR-S1138, CNRS SNC5096, Équipe labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
| | - Valerie Taly
- UMR-S1138, CNRS SNC5096, Équipe labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
| | - Leonor Benhaim
- UMR-S1138, CNRS SNC5096, Équipe labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
- Department of Visceral and Surgical Oncology, Gustave Roussy, Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif, France
| |
Collapse
|
24
|
Chen G, Zhang J, Fu Q, Taly V, Tan F. Integrative analysis of multi-omics data for liquid biopsy. Br J Cancer 2023; 128:505-518. [PMID: 36357703 PMCID: PMC9938261 DOI: 10.1038/s41416-022-02048-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
The innovation of liquid biopsy holds great potential to revolutionise cancer management through early diagnosis and timely treatment of cancer. Integrative analysis of different tumour-derived omics data (such as genomics, epigenetics, fragmentomics, and proteomics) from body fluids for cancer detection and monitoring could outperform the analysis of single modality data alone. In this review, we focussed on the discussion of early cancer detection and molecular residual disease surveillance based on multi-omics data of blood. We summarised diverse types of tumour-derived components, current popular platforms for profiling cancer-associated signals, machine learning approaches for joint analysis of liquid biopsy data, as well as multi-omics-based early detection of cancers, molecular residual disease monitoring, and treatment response surveillance. We also discussed the challenges and future directions of multi-omics-based liquid biopsy. With the development of both experimental protocols and computational methods dedicated to liquid biopsy, the implementation of multi-omics strategies into the clinical workflow will likely benefit the clinical management of cancers including decision-making guidance and patient outcome improvement.
Collapse
Affiliation(s)
- Geng Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China.
- Center for Bioinformatics and Computational Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| | - Jing Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Qiaoting Fu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, 200443, Shanghai, China
| | - Valerie Taly
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe labélisée Ligue Nationale contre le cancer, Centre de Recherche des Cordeliers, Paris, France.
| | - Fei Tan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China.
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, 200443, Shanghai, China.
| |
Collapse
|
25
|
Koowattanasuchat S, Ngernpimai S, Matulakul P, Thonghlueng J, Phanchai W, Chompoosor A, Panitanarak U, Wanna Y, Intharah T, Chootawiriyasakul K, Anata P, Chaimnee P, Thanan R, Sakonsinsiri C, Puangmali T. Rapid detection of cancer DNA in human blood using cysteamine-capped AuNPs and a machine learning-enabled smartphone. RSC Adv 2023; 13:1301-1311. [PMID: 36686949 PMCID: PMC9814906 DOI: 10.1039/d2ra05725e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
DNA methylation occurs when a methyl group is added to a cytosine (C) residue's fifth carbon atom, forming 5-methylcytosine (5-mC). Cancer genomes have a distinct methylation landscape (Methylscape), which could be used as a universal cancer biomarker. This study developed a simple, low-cost, and straightforward Methylscape sensing platform using cysteamine-decorated gold nanoparticles (Cyst/AuNPs), in which the sensing principle is based on methylation-dependent DNA solvation. Normal and cancer DNAs have distinct methylation profiles; thus, they can be distinguished by observing the dispersion of Cyst/AuNPs adsorbed on these DNA aggregates in MgCl2 solution. After optimising the MgCl2, Cyst/AuNPs, DNA concentration, and incubation time, the optimised conditions were used for leukemia screening, by comparing the relative absorbance (ΔA 650/525). Following the DNA extraction from actual blood samples, this sensor demonstrated effective leukemia screening in 15 minutes with high sensitivity, achieving 95.3% accuracy based on the measurement by an optical spectrophotometer. To further develop for practical realisation, a smartphone assisted by machine learning was used to screen cancer patients, achieving 90.0% accuracy in leukemia screening. This sensing platform can be applied not only for leukemia screening but also for other cancers associated with epigenetic modification.
Collapse
Affiliation(s)
| | - Sawinee Ngernpimai
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Piyaporn Matulakul
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Janpen Thonghlueng
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| | - Uthumporn Panitanarak
- Department of Biostatistics, Faculty of Public Health, Mahidol University Bangkok 10400 Thailand
| | - Yupaporn Wanna
- Department of Statistics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Thanapong Intharah
- Department of Statistics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | | | - Pimjai Anata
- Molecular Diagnosis Unit, Central Laboratory, Srinagarind Hospital, Khon Kaen University Khon Kaen 40002 Thailand
| | - Prajuab Chaimnee
- Molecular Diagnosis Unit, Central Laboratory, Srinagarind Hospital, Khon Kaen University Khon Kaen 40002 Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
26
|
Dholariya S, Singh RD, Sonagra A, Yadav D, Vajaria BN, Parchwani D. Integrating Cutting-Edge Methods to Oral Cancer Screening, Analysis, and Prognosis. Crit Rev Oncog 2023; 28:11-44. [PMID: 37830214 DOI: 10.1615/critrevoncog.2023047772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has become a significant barrier to health worldwide due to its high morbidity and mortality rates. OC is among the most prevalent types of cancer that affect the head and neck region, and the overall survival rate at 5 years is still around 50%. Moreover, it is a multifactorial malignancy instigated by genetic and epigenetic variabilities, and molecular heterogeneity makes it a complex malignancy. Oral potentially malignant disorders (OPMDs) are often the first warning signs of OC, although it is challenging to predict which cases will develop into malignancies. Visual oral examination and histological examination are still the standard initial steps in diagnosing oral lesions; however, these approaches have limitations that might lead to late diagnosis of OC or missed diagnosis of OPMDs in high-risk individuals. The objective of this review is to present a comprehensive overview of the currently used novel techniques viz., liquid biopsy, next-generation sequencing (NGS), microarray, nanotechnology, lab-on-a-chip (LOC) or microfluidics, and artificial intelligence (AI) for the clinical diagnostics and management of this malignancy. The potential of these novel techniques in expanding OC diagnostics and clinical management is also reviewed.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
27
|
DiNatale A, Worrede A, Iqbal W, Marchioli M, Toth A, Sjöström M, Zhu X, Corey E, Feng FY, Zhou W, Fatatis A. IL-1β expression driven by androgen receptor absence or inactivation promotes prostate cancer bone metastasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1545-1557. [PMID: 36561929 PMCID: PMC9770512 DOI: 10.1158/2767-9764.crc-22-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
We report the inverse association between the expression of androgen receptor (AR) and interleukin-1beta (IL-1β) in a cohort of patients with metastatic castration resistant prostate cancer (mCRPC). We also discovered that AR represses the IL-1β gene by binding an androgen response element (ARE) half-site located within the promoter, which explains the IL-1β expression in AR-negative (ARNEG) cancer cells. Consistently, androgen-depletion or AR-pathway inhibitors (ARIs) de-repressed IL-1β in ARPOS cancer cells, both in vitro and in vivo. The AR transcriptional repression is sustained by histone de-acetylation at the H3K27 mark in the IL-1β promoter. Notably, patients' data suggest that DNA methylation prevents IL-1β expression, even if the AR-signaling axis is inactive. Our previous studies show that secreted IL-1β supports metastatic progression in mice by altering the transcriptome of tumor-associated bone stroma. Thus, in prostate cancer patients harboring ARNEG tumor cells or treated with ADT/ARIs, and with the IL-1β gene unmethylated, IL-1β could condition the metastatic microenvironment to sustain disease progression.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Janssen Oncology, Spring House, Pennsylvania
| | - Asurayya Worrede
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- AstraZeneca, Baltimore, Maryland
| | - Waleed Iqbal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Marchioli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Allison Toth
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Martin Sjöström
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Xiaolin Zhu
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Felix Y. Feng
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Mino-Kenudson M, Schalper K, Cooper W, Dacic S, Hirsch FR, Jain D, Lopez-Rios F, Tsao MS, Yatabe Y, Beasley MB, Yu H, Sholl LM, Brambilla E, Chou TY, Connolly C, Wistuba I, Kerr KM, Lantuejoul S. Predictive Biomarkers for Immunotherapy in Lung Cancer: Perspective From the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol 2022; 17:1335-1354. [PMID: 36184066 DOI: 10.1016/j.jtho.2022.09.109] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Immunotherapy including immune checkpoint inhibitors (ICIs) has become the backbone of treatment for most lung cancers with advanced or metastatic disease. In addition, they have increasingly been used for early stage tumors in neoadjuvant and adjuvant settings. Unfortunately, however, only a subset of patients experiences meaningful response to ICIs. Although programmed death-ligand 1 (PD-L1) protein expression by immunohistochemistry (IHC) has played a role as the principal predictive biomarker for immunotherapy, its performance may not be optimal, and it suffers multiple practical issues with different companion diagnostic assays approved. Similarly, tumor mutational burden (TMB) has multiple technical issues as a predictive biomarker for ICIs. Now, ongoing research on tumor- and host immune-specific factors has identified immunotherapy biomarkers that may provide better response and prognosis prediction, in particular in a multimodal approach. This review by the International Association for the Study of Lung Cancer Pathology Committee provides an overview of various immunotherapy biomarkers, including updated data on PD-L1 IHC and TMB, and assessments of neoantigens, genetic and epigenetic signatures, immune microenvironment by IHC and transcriptomics, and microbiome and pathologic response to neoadjuvant immunotherapies. The aim of this review is to underline the efficacy of new individual or combined predictive biomarkers beyond PD-L1 IHC and TMB.
Collapse
Affiliation(s)
- Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts
| | - Kurt Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Wendy Cooper
- Royal Prince Alfred Hospital, NSW Health Pathology and University of Sydney, Camperdown, Australia
| | - Sanja Dacic
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Fred R Hirsch
- Center for Thoracic Oncology, The Tisch Cancer Institute, New York, New York; Icahn School of Medicine, Mount Sinai Health System, New York, New York
| | - Deepali Jain
- All India Institute of Medical Sciences, New Delhi, India
| | - Fernando Lopez-Rios
- Department of Pathology, "Doce de Octubre" University Hospital, Madrid, Spain
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Mary Beth Beasley
- Icahn School of Medicine, Mount Sinai Health System, New York, New York
| | - Hui Yu
- Center for Thoracic Oncology, The Tisch Cancer Institute, New York, New York; Icahn School of Medicine, Mount Sinai Health System, New York, New York
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, Massachusetts
| | | | | | - Casey Connolly
- International Association for the Study of Lung Cancer, Denver, Colorado
| | - Ignacio Wistuba
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith M Kerr
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Sylvie Lantuejoul
- Université Grenoble Alpes, Grenoble, France; Centre Léon Bérard Unicancer, Lyon, France.
| |
Collapse
|
29
|
Ueberroth BE, Jones JC, Bekaii-Saab TS. Circulating tumor DNA (ctDNA) to evaluate minimal residual disease (MRD), treatment response, and posttreatment prognosis in pancreatic adenocarcinoma. Pancreatology 2022; 22:741-748. [PMID: 35725696 DOI: 10.1016/j.pan.2022.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a blood-based test with multiple utilities in oncology. In the past few years, multiple studies of varying designs, methods, and quality have emerged which show promise for ctDNA as a tool to assess response to treatment and detect minimal residual disease (MRD) across various gastrointestinal (GI) malignancies. We aim to review the current literature for ctDNA as it pertains to assessing treatment response, MRD, prognosis, and risk of recurrence for pancreatic adenocarcinoma. METHODS PubMed was queried with a combination of terms regarding pancreatic adenocarcinoma, minimal residual disease, resection, and prognosis. All resultant articles were reviewed by the authors for appropriate fit with scope. RESULTS Fourteen articles were identified that fit with the scope of this review. CONCLUSIONS Detectable ctDNA after definitive resection, specifically mutated KRAS, correlates with shorter recurrence-free survival (RFS), overall survival (OS), and overall prognosis. Limited data also suggests ctDNA may provide a noninvasive means to assess response to chemotherapy. Whether this information is actionable in terms of altering neoadjuvant or postresection treatment regimens remains an open question requiring further study.
Collapse
Affiliation(s)
- Benjamin E Ueberroth
- Department of Internal Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Jeremy C Jones
- Mayo Clinic Comprehensive Cancer Center, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Tanios S Bekaii-Saab
- Mayo Clinic Comprehensive Cancer Center, 5881 E Mayo Blvd, Phoenix, AZ, 85054, USA
| |
Collapse
|
30
|
Liu SY, Liu SYM, Zhong WZ, Wu YL. Targeted Therapy in Early Stage Non-small Cell Lung Cancer. Curr Treat Options Oncol 2022; 23:1169-1184. [PMID: 35876956 DOI: 10.1007/s11864-022-00994-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT Tyrosine kinase inhibitors (TKIs) have dramatically improved tumor response rates and survival benefits in advanced oncogenic non-small-cell lung cancer (NSCLC). Given the impressive success, a renewed interest has been raised in the study of these agents in the perioperative setting. Preliminary data have shown dramatic effectiveness compared to conventional chemotherapy. Given the explicit need to induce durable responses and raise cure rates, we summarize the current progression, identify key challenges, and raise potential opportunities for perioperative targeted therapy that range from precise biomarkers to optimal adjuvant regimens for individual patients. As perioperative treatment indeed provides researchers with a unique platform to address the challenges mentioned above, investigators could obtain a comprehensive analysis of genomic profiling and trace resistance mechanisms. Multidisciplinary collaboration and adaptive clinical trial designs are warranted to integrate translational research into personalized perioperative TKI treatment paradigms.
Collapse
Affiliation(s)
- Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China
| | - Si-Yang Maggie Liu
- Department of Hematology, Jinan University, Guangzhou, 510632, China.,First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
31
|
Bahado-Singh R, Vlachos KT, Aydas B, Gordevicius J, Radhakrishna U, Vishweswaraiah S. Precision Oncology: Artificial Intelligence and DNA Methylation Analysis of Circulating Cell-Free DNA for Lung Cancer Detection. Front Oncol 2022; 12:790645. [PMID: 35600397 PMCID: PMC9114890 DOI: 10.3389/fonc.2022.790645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background Lung cancer (LC) is a leading cause of cancer-deaths globally. Its lethality is due in large part to the paucity of accurate screening markers. Precision Medicine includes the use of omics technology and novel analytic approaches for biomarker development. We combined Artificial Intelligence (AI) and DNA methylation analysis of circulating cell-free tumor DNA (ctDNA), to identify putative biomarkers for and to elucidate the pathogenesis of LC. Methods Illumina Infinium MethylationEPIC BeadChip array analysis was used to measure cytosine (CpG) methylation changes across the genome in LC. Six different AI platforms including support vector machine (SVM) and Deep Learning (DL) were used to identify CpG biomarkers and for LC detection. Training set and validation sets were generated, and 10-fold cross validation performed. Gene enrichment analysis using g:profiler and GREAT enrichment was used to elucidate the LC pathogenesis. Results Using a stringent GWAS significance threshold, p-value <5x10-8, we identified 4389 CpGs (cytosine methylation loci) in coding genes and 1812 CpGs in non-protein coding DNA regions that were differentially methylated in LC. SVM and three other AI platforms achieved an AUC=1.00; 95% CI (0.90-1.00) for LC detection. DL achieved an AUC=1.00; 95% CI (0.95-1.00) and 100% sensitivity and specificity. High diagnostic accuracies were achieved with only intragenic or only intergenic CpG loci. Gene enrichment analysis found dysregulation of molecular pathways involved in the development of small cell and non-small cell LC. Conclusion Using AI and DNA methylation analysis of ctDNA, high LC detection rates were achieved. Further, many of the genes that were epigenetically altered are known to be involved in the biology of neoplasms in general and lung cancer in particular.
Collapse
Affiliation(s)
- Ray Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Kyriacos T Vlachos
- Department of Biomedical Sciences, Wayne State School of Medicine, Basic Medical Sciences, Detroit, MI, United States
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, United States
| | | | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Beaumont Research Institute, Royal Oak, MI, United States
| |
Collapse
|
32
|
Challenges in promoter methylation analysis in the new era of translational oncology: a focus on liquid biopsy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166390. [PMID: 35296416 DOI: 10.1016/j.bbadis.2022.166390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Toward the discovery of novel reliable biomarkers, epigenetic alterations have been repeatedly proposed for the diagnosis and the development of therapeutic strategies against cancer. Indeed, for promoter methylation to actively become a tumor marker for clinical use, it must be combined with a highly informative technology evaluated in an appropriate biospecimen. Methodological standardization related to epigenetic research is, in fact, one of the most challenging tasks. Moreover, tissue-based biopsy is being complemented and, in some cases, replaced by liquid biopsy. This review will highlight the advancements made for both pre-analytical and analytical implementation for the prospective use of methylation biomarkers in clinical settings, with particular emphasis on liquid biopsy.
Collapse
|
33
|
Novel prognostic value and potential utility of opioid receptor gene methylation in liquid biopsy for oral cavity cancer. Curr Probl Cancer 2022; 46:100834. [DOI: 10.1016/j.currproblcancer.2021.100834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/15/2022]
|
34
|
Tserpeli V, Stergiopoulou D, Londra D, Giannopoulou L, Buderath P, Balgkouranidou I, Xenidis N, Grech C, Obermayr E, Zeillinger R, Pavlakis K, Rampias T, Kakolyris S, Kasimir-Bauer S, Lianidou ES. Prognostic Significance of SLFN11 Methylation in Plasma Cell-Free DNA in Advanced High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010004. [PMID: 35008168 PMCID: PMC8750111 DOI: 10.3390/cancers14010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Epigenetic alterations in ctDNA are highly promising as a source of novel potential liquid biopsy biomarkers and comprise a very promising liquid biopsy approach in ovarian cancer, for early diagnosis, prognosis and response to treatment. Methods: In the present study, we examined the methylation status of six gene promoters (BRCA1, CST6, MGMT, RASSF10, SLFN11 and USP44) in high-grade serous ovarian cancer (HGSOC). We evaluated the prognostic significance of DNA methylation of these six gene promoters in primary tumors (FFPEs) and plasma cfDNA samples from patients with early, advanced and metastatic HGSOC. Results: We report for the first time that the DNA methylation of SLFN11 in plasma cfDNA was significantly correlated with worse PFS (p = 0.045) in advanced stage HGSOC. Conclusions: Our results strongly indicate that SLFN11 epigenetic inactivation could be a predictor of resistance to platinum drugs in ovarian cancer. Our results should be further validated in studies based on a larger cohort of patients, in order to further explore whether the DNA methylation of SLFN11 promoter could serve as a potential prognostic DNA methylation biomarker and a predictor of resistance to platinum-based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Victoria Tserpeli
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Dimitra Stergiopoulou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Dora Londra
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Lydia Giannopoulou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany; (P.B.); (S.K.-B.)
| | - Ioanna Balgkouranidou
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Nikolaos Xenidis
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Christina Grech
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Eva Obermayr
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (C.G.); (E.O.); (R.Z.)
| | - Kitty Pavlakis
- Pathology Department, IASO Women’s Hospital, 15123 Athens, Greece;
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Stylianos Kakolyris
- Department of Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.B.); (N.X.); (S.K.)
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany; (P.B.); (S.K.-B.)
| | - Evi S. Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (V.T.); (D.S.); (D.L.); (L.G.)
- Correspondence: ; Tel.: +30-210-7274311
| |
Collapse
|
35
|
Aleotti V, Catoni C, Poggiana C, Rosato A, Facchinetti A, Scaini MC. Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy. Cancers (Basel) 2021; 13:6217. [PMID: 34944843 PMCID: PMC8699653 DOI: 10.3390/cancers13246217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| |
Collapse
|
36
|
Ntzifa A, Londra D, Rampias T, Kotsakis A, Georgoulias V, Lianidou E. DNA Methylation Analysis in Plasma Cell-Free DNA and Paired CTCs of NSCLC Patients before and after Osimertinib Treatment. Cancers (Basel) 2021; 13:cancers13235974. [PMID: 34885084 PMCID: PMC8656722 DOI: 10.3390/cancers13235974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Osimertinib has been an effective second-line treatment in EGFR mutant NSCLC patients; however, resistance inevitably occurs. DNA methylation has been previously implicated in NSCLC progression and often in therapy resistance, however its distinct role in osimertinib resistance is not elucidated as yet. In the present study, we directly compared DNA methylation of nine selected genes (RASSF1A, RASSF10, APC, WIF-1, BRMS1, SLFN11, RARβ, SHISA3, and FOXA1) in plasma-cfDNA and paired CTCs of NSCLC patients who were longitudinally monitored during osimertinib treatment. Peripheral blood (PB) from 42 NSCLC patients was obtained at two time points: (a) baseline: before treatment with osimertinib and (b) at progression of disease (PD). DNA methylation of the selected genes was detected in plasma-cfDNA (n = 80) and in paired CTCs (n = 74). Direct comparison of DNA methylation of six genes between plasma-cfDNA and paired CTC samples (n = 70) revealed a low concordance, indicating that CTCs and cfDNA give complementary information. DNA methylation analysis of plasma-cfDNA and CTCs indicated that when at least one of these genes was methylated there was a statistically significant increase at PD compared to baseline (p = 0.031). For the first time, DNA methylation analysis in plasma-cfDNA and paired CTCs of NSCLC patients during osimertinib therapy indicated that DNA methylation of these genes could be a possible resistance mechanism.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
| | - Dora Londra
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Athanasios Kotsakis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Vassilis Georgoulias
- Department of Medical Oncology, Hellenic Oncology Research Group (HORG), 11471 Athens, Greece;
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.N.); (D.L.)
- Correspondence: ; Tel.: +30-210-727-4311
| |
Collapse
|
37
|
Larribère L, Martens UM. Advantages and Challenges of Using ctDNA NGS to Assess the Presence of Minimal Residual Disease (MRD) in Solid Tumors. Cancers (Basel) 2021; 13:5698. [PMID: 34830853 PMCID: PMC8616165 DOI: 10.3390/cancers13225698] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
The ability to detect minimal residual disease (MRD) after a curative-intent surgery or treatment is of paramount importance, because it offers the possibility to help guide the clinical decisions related adjuvant therapy. Thus, the earlier MRD is detected, the earlier potentially beneficial treatment can be proposed to patients who might need it. Liquid biopsies, and in particular the next-generation sequencing of circulating tumor DNA (ctDNA) in the blood, have been the focus of an increasing amount of research in the past years. The ctDNA detection at advanced cancer stages is practicable for several solid tumors, and complements molecular information on acquired therapy resistance. In the context of MRD, it is by definition more challenging to detect ctDNA, but it is technically achievable and provides information on treatment response and probability of relapse significantly earlier than standard imaging methods. The clinical benefit of implementing this new technique in the routine is being tested in interventional clinical trials at the moment. We propose here an update of the current use of ctDNA detection by NGS as a tool to assess the presence of MRD and improve adjuvant treatment of solid tumors. We also discuss the main limitations and medium-term perspectives of this process in the clinic.
Collapse
Affiliation(s)
- Lionel Larribère
- Department of Hematology and Oncology, Cancer Center Heilbronn-Franken, SLK Clinics Heilbronn GmbH, 74078 Heilbronn, Germany;
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Uwe M. Martens
- Department of Hematology and Oncology, Cancer Center Heilbronn-Franken, SLK Clinics Heilbronn GmbH, 74078 Heilbronn, Germany;
- MOLIT Institute for Personalized Medicine GmbH, 74076 Heilbronn, Germany
| |
Collapse
|
38
|
Passiglia F, Bertaglia V, Reale ML, Delcuratolo MD, Tabbò F, Olmetto E, Capelletto E, Bironzo P, Novello S. Major breakthroughs in lung cancer adjuvant treatment: Looking beyond the horizon. Cancer Treat Rev 2021; 101:102308. [PMID: 34757306 DOI: 10.1016/j.ctrv.2021.102308] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
We are witnessing a silent revolution in the treatment of early stage non-small cell lung cancer (NSCLC), with a series of practice-changing clinical trials enriching the therapeutic perspectives of lung cancer patients with potentially curable disease. The ADAURA study marked the advent of precision medicine and biomarker testing to the early stages setting. The IMPower-010 trial interrupted the negative trend of adjuvant lung cancer immunotherapy, paving the way to the application of immune-checkpoint inhibition in the resected disease. The ITACA trial definitively established no role for tailored adjuvant chemotherapy in NSCLC, while the Lung Art data questioned the efficacy of post-operative radiotherapy for pN2 resected disease. Growing evidence is supporting MRD as effective adjuvant prognostic biomarker to stratify disease's recurrence risk after radical interventions and select best candidates to the adjuvant strategies. This work summarizes the recent major breakthroughs in lung cancer adjuvant treatment, and provides a snapshot of the current real-world scenario, discussing the upcoming challenges and opportunities featuring the clinical management of early stage NSCLC patients.
Collapse
Affiliation(s)
- Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| | - Valentina Bertaglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Maria Lucia Reale
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| | | | - Fabrizio Tabbò
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Emanuela Olmetto
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Enrica Capelletto
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| | - Paolo Bironzo
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy.
| |
Collapse
|
39
|
Londra D, Mastoraki S, Bournakis E, Zavridou M, Thanos A, Rampias T, Lianidou ES. USP44 Promoter Methylation in Plasma Cell-Free DNA in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13184607. [PMID: 34572834 PMCID: PMC8467003 DOI: 10.3390/cancers13184607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of circulating tumor cells (CTCs) and plasma-circulating tumor DNA (ctDNA). USP44 is a member of family proteins deubiquitinases, and plays an important role in cell growth; however, its accurate role in other cellular networks is under research. In this study, we examined for the first time USP44 promoter methylation in plasma cell-free DNA (cfDNA) of patients with prostate cancer (early stage n = 32, metastatic n = 39) and 10 healthy donors (HD). USP44 promoter methylation was detected in plasma cell-free DNA by a newly developed highly specific and sensitive real-time MSP method. We report for the first time that detection of USP44 promoter methylation in plasma cell free DNA provides significant prognostic information in metastatic prostate cancer. Abstract Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of circulating tumor cells (CTCs) and plasma-circulating tumor DNA (ctDNA). USP44 is a critical gene which plays an important role in cell proliferation; however, its accurate role in other cellular networks is under research. USP44 promoter methylation has been so far reported in colorectal neoplasia and metastatic breast cancer. In this study, we examined for the first time USP44 promoter methylation in plasma cell-free DNA (cfDNA) of patients with prostate cancer (early stage n = 32, metastatic n = 39) and 10 healthy donors (HD). USP44 promoter methylation was detected in plasma cell-free DNA by a newly developed highly specific and sensitive real-time MSP method. Our findings indicate that USP44 promoter is methylated in plasma cell-free DNA of metastatic prostate cancer patients and that detection of USP44 promoter methylation is significantly associated with overall survival (OS) (p = 0.008). We report for the first time that detection of USP44 promoter methylation in plasma cell free DNA provides significant prognostic information in metastatic prostate cancer.
Collapse
Affiliation(s)
- Dora Londra
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.L.); (S.M.); (M.Z.)
| | - Sophia Mastoraki
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.L.); (S.M.); (M.Z.)
| | - Evangelos Bournakis
- Oncology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Martha Zavridou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.L.); (S.M.); (M.Z.)
| | - Anastasios Thanos
- Mutual Health Fund of National Bank of Greece Personnel, 11473 Athens, Greece;
| | - Theodoros Rampias
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Evi S. Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.L.); (S.M.); (M.Z.)
- Correspondence: ; Tel.: +30-210-7274-311
| |
Collapse
|
40
|
Cheng AJ, You GR, Lee CJ, Lu YC, Tang SJ, Huang YF, Huang YC, Lee LY, Fan KH, Chen YC, Huang SF, Chang JTC. Systemic Investigation Identifying Salivary miR-196b as a Promising Biomarker for Early Detection of Head-Neck Cancer and Oral Precancer Lesions. Diagnostics (Basel) 2021; 11:diagnostics11081411. [PMID: 34441345 PMCID: PMC8392418 DOI: 10.3390/diagnostics11081411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Liquid biopsy is a rapidly growing field, for it may provide a minimally invasive way to acquire pathological data for personalized medicine. This study developed a systemic strategy to discover an effective salivary biomarker for early detection of patients with head-neck squamous carcinoma (HNSC) and oral precancer lesion (OPC). Methods: A total of 10 miRNAs were examined in parallel with multiple independent cohorts. These included a training set of salivary samples from HNSC patients, the TCGA-HNSC and GSE31277 cohorts to differentiate miRNAs between tumor and normal tissues, and groups of salivary samples from healthy individuals, patients with HNSC and OPC. Results: The combined results from the salivary training set and the TCGA-HNSC cohort showed that four miRNAs (miR-148b, miR-155, miR-196b, and miR-31) consistently increased in HNSC patients. Further integration with the GSE31277 cohort, two miRNAs (miR-31 and miR-196b) maintained at high significances. Further assessment showed that salivary miR-196b was a prominent diagnostic biomarker, as it remarkably discriminated between healthy individuals and patients with HNSC (p < 0.0001, AUC = 0.767, OR = 5.64) or OPC (p < 0.0001, AUC = 0.979, OR = 459). Conclusion: Salivary miR-196b could be an excellent biomarker for diagnosing OPC and early detection of HNSC. This molecule may be used for early screening high-risk groups of HNSC.
Collapse
Affiliation(s)
- Ann-Joy Cheng
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Che-Jui Lee
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Ya-Ching Lu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
| | - Shang-Ju Tang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (C.-J.L.); (Y.-C.L.); (S.-J.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Fang Huang
- Department of General Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Dental and Craniofacial Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chen Huang
- Department of Oral and Maxillofacial Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Li-Yu Lee
- Department of Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Kang-Hsing Fan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City 236017, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Chao Chen
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Shiang-Fu Huang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan; (A.-J.C.); (K.-H.F.); (S.-F.H.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200
| |
Collapse
|
41
|
The Potential Impact of Salivary IL-1 on the Diagnosis of Periodontal Disease: A Pilot Study. Healthcare (Basel) 2021; 9:healthcare9060729. [PMID: 34199256 PMCID: PMC8231867 DOI: 10.3390/healthcare9060729] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to identify inflammatory cytokines as salivary biomarkers for periodontal disease. The subjects were 33 Korean adults aged 23 to 71 years. Using a multiplexed bead immunoassay called Luminex, the levels of inflammatory cytokines related to periodontal disease were evaluated. Oral examination for periodontal disease and gingival bleeding was conducted. With these two independent variables, differences in inflammatory cytokines were analyzed by an independent t-test and age-adjusted ANCOVA. Among the subjects, 21 had periodontal disease and 12 were healthy subjects. The gingival bleeding status was classified into low and high levels. Among 13 inflammatory cytokines in saliva, IL-1α, IL-1β, IL-4, IL-8, CCL2/MCP-1, CCL3/MIP-1α, and TNF-α were found to be significant biomarkers within the standard curve. The quantity of IL-1β was increased in subjects with high levels of gingival bleeding. IL-1α levels were increased in subjects with periodontal disease. After adjusting for age, the significant biomarkers for gingival bleeding and periodontal disease were IL-1β and IL-1α, respectively. Using the receiver operating characteristic (ROC) curve, IL-1β was confirmed as a significant biomarker. The sensitivity and specificity of IL-1β for predicting periodontitis were 88.24% and 62.5%, respectively. Therefore, IL-1 was found to be a significant biomarker for periodontal disease, and it could be used in the diagnosis of periodontal disease using saliva.
Collapse
|
42
|
Alix‐Panabières C, Pantel K. Liquid biopsy: from discovery to clinical implementation. Mol Oncol 2021; 15:1617-1621. [PMID: 34075709 PMCID: PMC8169443 DOI: 10.1002/1878-0261.12997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Catherine Alix‐Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- CREEC/CANECEVMIVEGEC (CREES)University of MontpellierCNRSIRDMontpellierFrance
| | - Klaus Pantel
- Department of Tumor BiologyUniversity Cancer Center HamburgUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|