1
|
Liu B, Liu R, Zhang X, Tian L, Li Z, Yu J. Ubiquitin-conjugating enzyme E2T confers chemoresistance of colorectal cancer by enhancing the signal propagation of Wnt/β-catenin pathway in an ERK-dependent manner. Chem Biol Interact 2024; 406:111347. [PMID: 39667421 DOI: 10.1016/j.cbi.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chemotherapy is a major therapeutic option for colorectal cancer; however, the frequently acquired chemoresistance greatly limits the treatment efficacy of chemotherapeutic agents. Ubiquitin-conjugating enzyme E2T (UBE2T) is emerging as a key player in the development of therapy resistance. However, whether UBE2T participates in the acquisition of chemoresistance in colorectal cancer remains undetermined. The present work aimed to specify the role of UBE2T in the development of chemoresistance in colorectal cancer and decipher any potential underlying mechanisms. Significant up-regulation of UBE2T was observed in the clinical specimens of chemoresistant colorectal cancer patients compared with chemosensitive patients. Compared with parental cells, the levels of UBE2T were also dramatically elevated in oxaliplatin (OXA)- and 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Knockout of UBE2T rendered OXA- and 5-FU-resistant cells sensitive to OXA and 5-FU, respectively. Re-expression of UBE2T restored the chemoresistance of UBE2T-knockout OXA- and 5-FU-resistant cells. Mechanistically, phosphorylated GSK-3β, active β-catenin, c-myc and cyclin D1 levels were decreased in UBE2T-knockout OXA- and 5-FU-resistant cells, which were reversed by the re-expression of UBE2T. Moreover, knockout of UBE2T reduced the activation of ERK. The inhibition of ERK reversed the promotion effect of UBE2T on Wnt/β-catenin pathway. In vivo xenograft experiments demonstrated that knockout of UBE2T rendered the subcutaneous tumors formed by OXA-resistant cells sensitive to OXA. To conclude, UBE2T confers chemoresistance of colorectal cancer by boosting the signal propagation of the Wnt/β-catenin pathway in an ERK-dependent manner. Therefore, UBE2T could be a potential target for overcoming chemoresistance in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ultrasound, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China.
| | - Xiaolong Zhang
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| |
Collapse
|
2
|
Štancl P, Gršković P, Držaić S, Vičić A, Karlić R, Korać P. RNA-Sequencing Identification of Genes Supporting HepG2 as a Model Cell Line for Hepatocellular Carcinoma or Hepatocytes. Genes (Basel) 2024; 15:1460. [PMID: 39596661 PMCID: PMC11593409 DOI: 10.3390/genes15111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Cell lines do not faithfully replicate the authentic transcriptomic condition of the disease under study. The HepG2 cell line is widely used for studying hepatocellular carcinoma (HCC), but not all biological processes and genes exhibit congruent expression patterns between cell lines and the actual disease. The objective of this study is to perform a comparative transcriptomic analysis of the HepG2 cell line, HCC, and primary hepatocytes (PH) in order to identify genes suitable for research in HepG2 as a model for PH or HCC research. Methods: We conducted a differential expression analysis between publicly available data from HCC patients, PH, and HepG2. We examined specific overlaps of differentially expressed genes (DEGs) in a pairwise manner between groups in order to obtain a valuable gene list for studying HCC or PH using different parameter filtering. We looked into the function and druggability of these genes. Conclusions: In total, we identified 397 genes for HepG2 as a valuable HCC model and 421 genes for HepG2 as a valuable PH model, and with more stringent criteria, we derived a smaller list of 40 and 21 genes, respectively. The majority of genes identified as a valuable set for the HCC model are involved in DNA repair and protein degradation mechanisms. This research aims to provide detailed guidance on gene selection for studying diseases like hepatocellular carcinoma, primary hepatocytes, or others using cell lines.
Collapse
Affiliation(s)
- Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Paula Gršković
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sara Držaić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Ana Vičić
- Department of Obstetrics and Gynecology, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia;
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Petra Korać
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Ma S, Meng G, Liu T, You J, He R, Zhao X, Cui Y. The Wnt signaling pathway in hepatocellular carcinoma: Regulatory mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 180:117508. [PMID: 39362068 DOI: 10.1016/j.biopha.2024.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that arises from hepatocytes. Multiple signaling pathways play a regulatory role in the occurrence and development of HCC, with the Wnt signaling pathway being one of the primary regulatory pathways. In normal hepatocytes, the Wnt signaling pathway maintains cell regeneration and organ development. However, when aberrant activated, the Wnt pathway is closely associated with invasion, cancer stem cells(CSCs), drug resistance, and immune evasion in HCC. Among these factors, the development of drug resistance is one of the most important factors affecting the efficacy of HCC treatment. These mechanisms form the basis for tumor cell adaptation and evolution within the body, enabling continuous changes in tumor cells, resistance to drugs and immune system attacks, leading to metastasis and recurrence. In recent years, there have been numerous new discoveries regarding these mechanisms. An increasing number of drugs targeting the Wnt signaling pathway have been developed, with some already entering clinical trials. Therefore, this review encompasses the latest research on the role of the Wnt signaling pathway in the onset and progression of HCC, as well as advancements in its therapeutic strategies.
Collapse
Affiliation(s)
- Shihui Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guorui Meng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Tong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Junqi You
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Risheng He
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Xudong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yunfu Cui
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
4
|
Huang T, Ge S, Huang W, Ma T, Sheng Y, Chen J, Wu S, Liu Z, Lu C. AIBP promotes cell proliferation and migration through the ERK1/2-MAPK signaling pathway in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4028-4041. [PMID: 39262469 PMCID: PMC11384315 DOI: 10.21037/tcr-23-2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/09/2024] [Indexed: 09/13/2024]
Abstract
Background As a highly aggressive cancer, hepatocellular carcinoma (HCC) is often found at an advanced stage and has a poor prognosis. Therefore, in addition to the surgical treatment of HCC, the drug therapy for HCC is still under continuous exploration. The primary apolipoprotein of high-density lipoproteins (HDLs) is apolipoprotein A-I binding protein (AIBP), which has a significant impact on cholesterol metabolism, angiogenesis, and a wide range of inflammatory disorders, including cancer. The AIBP function in HCC is, however, yet unknown. This study aims to reveal the underlying mechanisms of AIBP influencing HCC proliferation and migration through mitogen-activated protein kinase (MAPK) pathways. Methods AIBP expression and its clinical prognostic association were investigated using The Cancer Genome Atlas (TCGA) data. The AIBP expression was studied in human HCC tissues using immunohistochemistry (IHC) and western blotting. Colony formation assays (CFAs) and cell counting kit-8 (CCK-8) were used to determine in vitro cell proliferation. Cell migration and invasion were evaluated using wound-healing and transwell assays. A xenograft tumor model was employed to investigate HCC cell proliferation in nude mice. Results Tissues from HCC patients had much increased AIBP expression compared to nearby normal tissues. The prognosis for patients was bleak when AIBP expression was high. When AIBP was overexpressed in SMMC-7721 cells, the cells may become more proliferative, migrative, and invasive. In contrast, the HCC-LM3 cells' ability to proliferate, migrate, and invade was drastically decreased once AIBP was knocked down in vitro. Furthermore, in vivo research showed that AIBP overexpression may enhance cell proliferation in HCC. Finally, we discovered that AIBP could control the MAPK signaling pathway-involved genes expression, including P-MEK, MEK, c-Myc, P-ERK1/2, and ERK1/2, and that GDC-0994, a specific ERK1/2 inhibitor, could suppress the AIBP overexpression induced cell migration and proliferation abilities. Conclusions These findings demonstrated that the ERK/MAPK signaling pathway might be stimulated by AIBP in HCC tissues, leading to increased cell invasion, migration, and proliferation. It was hypothesized that AIBP might act as a useful prognostic and diagnostic marker for HCC.
Collapse
Affiliation(s)
- Tianxin Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Sijia Ge
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yu Sheng
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Shuzhen Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhaoxiu Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Zhang M, Wei T, Guo D. The role of abnormal ubiquitination in hepatocellular carcinoma pathology. Cell Signal 2024; 114:110994. [PMID: 38036196 DOI: 10.1016/j.cellsig.2023.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Primary liver cancer is known for its high incidence and fatality rate. Over the years, therapeutic strategies for primary liver cancer have advanced significantly. Nonetheless, a substantial number of patients have not benefited from these methods, underscoring the pressing need for new and effective treatments for primary liver cancer. Ubiquitination is a critical post-translational modification that enables proteins to fulfill their normal biological functions and maintain their expression stability within cells. Importantly, increasing evidence suggests that the progression of liver cancer cells is often accompanied by disruptions in protein ubiquitination and deubiquitination processes. In this comprehensive review, we have compiled pertinent research about dysregulated ubiquitination in hepatocellular carcinoma (HCC) to broaden our understanding in this field. We elucidate the connections between the ubiquitination proteasome system, deubiquitination, and HCC. Furthermore, we shed light on the role of ubiquitination in cells situated within the tumor microenvironment of HCC including its involvement in mediating the activation of oncogenic pathways, reprogramming metabolic processes, and perturbing normal cellular functions. In conclusion, targeting the dysregulation of ubiquitination in HCC holds promise as a prospective and complementary therapeutic approach to existing treatments.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
6
|
Fonseca Teixeira A, Wu S, Luwor R, Zhu HJ. A New Era of Integration between Multiomics and Spatio-Temporal Analysis for the Translation of EMT towards Clinical Applications in Cancer. Cells 2023; 12:2740. [PMID: 38067168 PMCID: PMC10706093 DOI: 10.3390/cells12232740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is crucial to metastasis by increasing cancer cell migration and invasion. At the cellular level, EMT-related morphological and functional changes are well established. At the molecular level, critical signaling pathways able to drive EMT have been described. Yet, the translation of EMT into efficient diagnostic methods and anti-metastatic therapies is still missing. This highlights a gap in our understanding of the precise mechanisms governing EMT. Here, we discuss evidence suggesting that overcoming this limitation requires the integration of multiple omics, a hitherto neglected strategy in the EMT field. More specifically, this work summarizes results that were independently obtained through epigenomics/transcriptomics while comprehensively reviewing the achievements of proteomics in cancer research. Additionally, we prospect gains to be obtained by applying spatio-temporal multiomics in the investigation of EMT-driven metastasis. Along with the development of more sensitive technologies, the integration of currently available omics, and a look at dynamic alterations that regulate EMT at the subcellular level will lead to a deeper understanding of this process. Further, considering the significance of EMT to cancer progression, this integrative strategy may enable the development of new and improved biomarkers and therapeutics capable of increasing the survival and quality of life of cancer patients.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Siqi Wu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Rodney Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, VIC 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| |
Collapse
|
7
|
Shi J, Zhang H, Han G, Wang J, Han X, Zhao M, Duan X, Mi L, Li N, Yin X, Li C, Yin F. Matrine improves the hepatic microenvironment and reverses epithelial-mesenchymal transition in hepatocellular carcinoma by inhibiting the Wnt-1/β-catenin signaling pathway. Am J Transl Res 2023; 15:5047-5070. [PMID: 37692966 PMCID: PMC10492086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/11/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality. Despite rapid progress in targeted therapy and immunotherapy for HCC over the past 10 years, the overall efficacy remains unsatisfactory. This is mainly due to the presence of an intrahepatic microenvironment of cirrhosis in HCC patients, leading to cancer recurrence and drug resistance. METHODS In this study, we investigated the correlations between the Wnt-1/β-catenin signaling pathway and the prognosis as well as liver function of HCC patients. Additionally, we conducted in vitro experiments using different concentrations of matrine on HuH-7 cells. Furthermore, we verified the associations between the Wnt-1/β-catenin signaling pathway, inflammation, and epithelial-mesenchymal transition (EMT) in a rat model of pre-hepatocellular carcinoma. Finally, matrine was employed to treat pre-hepatocellular carcinoma in rats and patients with advanced hepatocellular carcinoma. RESULTS The results demonstrated the activation of the Wnt-1/β-catenin signaling pathway, the occurrence of EMT, and exacerbated inflammation in human HCC tissues. In HuH-7 cell experiments, matrine effectively downregulated the Wnt-1/β-catenin pathway, reversed EMT, and suppressed migration and invasion of HCC cells. In the rat model of pre-hepatocellular carcinoma, matrine dose-dependently inhibited the activation of the Wnt-1/β-catenin signaling pathway, reversed the occurrence of EMT, and alleviated liver inflammation. Matrine analogues exhibited promising hepatoprotective effects in patients with advanced HCC. CONCLUSIONS Matrine can reverse EMT, alleviate intrahepatic inflammation, and counteract immune depletion by inhibiting the Wnt-1/β-catenin signaling pathway in HCC.
Collapse
Affiliation(s)
- Jianfei Shi
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Hua Zhang
- Department of Infectious Diseases, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Guangjie Han
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Jinfeng Wang
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Xin Han
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Man Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Xiaoling Duan
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Lili Mi
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Ning Li
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Xiaolei Yin
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Cuizhen Li
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| | - Fei Yin
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical UniversityShijiazhuang 050019, Hebei, P. R. China
| |
Collapse
|
8
|
Wang Y, Gao G, Wei X, Zhang Y, Yu J. UBE2T Promotes Temozolomide Resistance of Glioblastoma Through Regulating the Wnt/β-Catenin Signaling Pathway. Drug Des Devel Ther 2023; 17:1357-1369. [PMID: 37181827 PMCID: PMC10168001 DOI: 10.2147/dddt.s405450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose Patients with glioblastoma (GBM) have poor prognosis and limited therapeutic options, largely because of chemoresistance to temozolomide (TMZ) treatment. Ubiquitin conjugating enzyme E2 T (UBE2T) plays a key role in regulating the malignancy of various tumors, including GBM; however, its role in TMZ resistance of GBM has not been elucidated. The purpose of this study was to clarify the role of UBE2T in mediating TMZ resistance and investigate the specific underlying mechanism. Methods Western blotting was used to detect the protein levels of UBE2T and Wnt/β-catenin-related factors. CCK-8, flow cytometry, and colony formation assays were used to examine the effect of UBE2T on TMZ resistance. Wnt/β-catenin signaling pathway activation was inhibited using XAV-939, and a xenograft mouse model was generated to clarify the function of TMZ in vivo. Results UBE2T knockdown sensitized GBM cells to TMZ treatment, whereas UBE2T overexpression promoted TMZ resistance. The specific UBE2T inhibitor, M435-1279, increased the sensitivity of GBM cells to TMZ. Mechanistically, our results demonstrated that UBE2T induces β-catenin nuclear translocation and increases the protein levels of downstream molecules, including survivin and c-Myc. Inhibition of Wnt/β-catenin signaling using XAV-939 blocked TMZ resistance due to UBE2T overexpression in GBM cells. In addition, UBE2T was shown to facilitate TMZ resistance by inducing Wnt/β-catenin signaling pathway activation in a mouse xenograft model. Combined treatment with TMZ and UBE2T inhibitor achieved superior tumor growth suppression relative to TMZ treatment alone. Conclusion Our data reveal a novel role of UBE2T in mediating TMZ resistance of GBM cells via regulating Wnt/β-catenin signaling. These findings indicate that targeting UBE2T has promising potential to overcome TMZ resistance of GBM.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Xiangpin Wei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
9
|
Ma N, Li Z, Yan J, Liu X, He L, Xie R, Lu X. Diverse roles of UBE2T in cancer (Review). Oncol Rep 2023; 49:69. [PMID: 36825587 PMCID: PMC9996685 DOI: 10.3892/or.2023.8506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
As a leading cause of mortalities worldwide, cancer results from accumulation of both genetic and epigenetic alterations. Disruption of epigenetic regulation in cancer, particularly aberrant ubiquitination, has drawn increasing interest in recent years. The present study aimed to review the roles of ubiquitin‑conjugating enzyme E2 T (UBE2T) and its associated pathways in the pathogenesis of pan‑cancer, and the development of small‑molecule modulators to regulate ubiquitination for treatment strategies. The current study comprehensively investigated the expression landscape and functional significance of UBE2T, as well as its correlation with cancer cell sensitivity to chemotherapy/radiotherapy. Multiple levels of evidence suggested that aberrant UBE2T played important roles in pan‑cancer. Information was collected from 16 clinical trials on ubiquitin enzymes, and it was found that these molecules had an important role in the ubiquitin‑proteasome system. Further studies are necessary to explore their feasibility and effectiveness as diagnostic and prognostic biomarkers, or as up/down‑stream and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Nengqian Ma
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Zhangzhan Li
- Radiotherapy Center, Department of Oncology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Jingting Yan
- Department of Ultrasound Medicine, Hengyang Central Hospital, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Xianrong Liu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Liyan He
- Department of Pain Rehabilitation, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Ruijie Xie
- Department of Hand and Microsurgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Xianzhou Lu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| |
Collapse
|
10
|
Dutta R, Guruvaiah P, Reddi KK, Bugide S, Reddy Bandi D, Edwards YJK, Singh K, Gupta R. UBE2T promotes breast cancer tumor growth by suppressing DNA replication stress. NAR Cancer 2022; 4:zcac035. [PMID: 36338541 PMCID: PMC9629447 DOI: 10.1093/narcan/zcac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths among women, and current therapies benefit only a subset of these patients. Here, we show that ubiquitin-conjugating enzyme E2T (UBE2T) is overexpressed in patient-derived breast cancer samples, and UBE2T overexpression predicts poor prognosis. We demonstrate that the transcription factor AP-2 alpha (TFAP2A) is necessary for the overexpression of UBE2T in breast cancer cells, and UBE2T inhibition suppresses breast cancer tumor growth in cell culture and in mice. RNA sequencing analysis identified interferon alpha-inducible protein 6 (IFI6) as a key downstream mediator of UBE2T function in breast cancer cells. Consistently, UBE2T inhibition downregulated IFI6 expression, promoting DNA replication stress, cell cycle arrest, and apoptosis and suppressing breast cancer cell growth. Breast cancer cells with IFI6 inhibition displayed similar phenotypes as those with UBE2T inhibition, and ectopic IFI6 expression in UBE2T-knockdown breast cancer cells prevented DNA replication stress and apoptosis and partly restored breast cancer cell growth. Furthermore, UBE2T inhibition enhanced the growth-suppressive effects of DNA replication stress inducers. Taken together, our study identifies UBE2T as a facilitator of breast cancer tumor growth and provide a rationale for targeting UBE2T for breast cancer therapies.
Collapse
Affiliation(s)
- Roshan Dutta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Praveen Guruvaiah
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kiran Kumar Reddi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Dhana Sekhar Reddy Bandi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kamaljeet Singh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
11
|
Homeobox B9 Promotes the Progression of Hepatocellular Carcinoma via TGF-β1/Smad and ERK1/2 Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1080315. [PMID: 36158877 PMCID: PMC9507699 DOI: 10.1155/2022/1080315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Objectives Homeobox B9 (HOXB9), a homeodomain-containing transcription factor, may play a role in hepatocellular carcinoma (HCC) progression. However, the exact mechanisms underlying its action remain unclear. Materials and methods. Immunohistochemistry was used to investigate the expression of HOBX9 and its prognostic values in HCC patients. HCC cells were transfected with pBabe-HOXB9 and shHOXB9 plasmids, and MTT assay, Transwell assays, and xenograft mouse models were employed to determine the effects of HOXB9 on HCC cell proliferation, migration, and invasion in vitro and in vivo. The biological mechanisms involved in the role of HOXB9 were determined with Western blot and RT-qPCR methods. Results HOXB9 expression was significantly increased in HCC tissues and cell lines. Patients with higher HOXB9 levels were associated with poor prognosis. Overexpression of HOXB9 in BEL-7405 cells promoted proliferation, migration, and invasion, whereas knockdown of HOXB9 in HepG2 cells significantly reduced cell proliferation, migration, and invasion abilities. Mechanically, a positive correlation was found between HOXB9 expression and transforming growth factor-β1 (TGF-β1) and extracellular signal-regulated kinase (ERK)1/2 pathway in HCC tissues. HOXB9 overexpression stimulated TGF-β1/Smads signaling pathway in BEL-7405 cells. In contrast, HOXB9 knockdown inhibited the TGF-β1/Smads signaling pathway in HepG2 cells. In addition, the treatment with TGF-β1 inhibitor, LY364947, significantly reserved HOXB9 overexpression-induced cell proliferation, migration, and invasion abilities. Conclusions These findings validated that HOXB9 promoted proliferation, migration, and invasion in HCC cells by stimulating the TGF-β1/Smads and ERK1/2 signaling pathway. HOXB9 could be a promising prognostic biomarker and a potential therapeutic target in HCC.
Collapse
|
12
|
Cui P, Li H, Wang C, Liu Y, Zhang M, Yin Y, Sun Z, Wang Y, Chen X. UBE2T regulates epithelial–mesenchymal transition through the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. J Ovarian Res 2022; 15:103. [PMID: 36088429 PMCID: PMC9464398 DOI: 10.1186/s13048-022-01034-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Ubiquitin-binding enzyme E2T (UBE2T), a member of the E2 family of the ubiquitin–proteasome pathway, is associated with tumorigenesis of varioustumours; however, its role and mechanism in ovarian cancer remain unclear. Results Our study revealed that UBE2T is highly expressed in ovarian cancer; this high expression was closely related to poor prognosis. Immunohistochemistry was used to validate the high expression of UBE2T in ovarian cancer. This is the first study to demonstrate that UBE2T expression is higher in ovarian cancer with BRCA mutation. Moreover, we demonstrated that UBE2T gene silencing significantly inhibited ovarian cancer cell proliferation and invasion. The epithelial–mesenchymal transition (EMT) of ovarian cancer cells and phosphatidylinositol 3 kinase/protein kinase B (PI3K-AKT) pathway were significantly inhibited. Adding the mechanistic target of rapamycin activator MHY1485 activated the PI3K-AKT pathway and significantly restored the proliferative and invasive ability of ovarian cancer cells. Furthermore, a tumorigenesis experiment in nude mice revealed that tumour growth on mice body surface and tumour tissue EMT were significantly inhibited after UBE2T gene silencing. Conclusions This study demonstrated that UBE2T regulates EMT via the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. Moreover, UBE2T may interact with BRCA to affect ovarian cancer occurrence and development. Hence, UBE2T may be a valuable novel biomarker for the early diagnosis and prognosis and treatment of ovarian cancer. Further, UBE2T inhibition may be effective for treating ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01034-9.
Collapse
|
13
|
Zhang J, Wang J, Wu J, Huang J, Lin Z, Lin X. UBE2T regulates FANCI monoubiquitination to promote NSCLC progression by activating EMT. Oncol Rep 2022; 48:139. [PMID: 35703356 PMCID: PMC9245069 DOI: 10.3892/or.2022.8350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia complementation group I (FANCI) is a critical protein for maintaining DNA stability. However, the exact role of FANCI in tumors remains to be elucidated. The present study aimed to explore the role and potential mechanism of action of FANCI in non-small cell lung cancer (NSCLC). To quantify the expression levels of FANCI and ubiquitin-conjugating enzyme E2T (UBE2T) in NSCLC tissues, reverse-transcription quantitative PCR and western blotting were employed. Cell Counting Kit-8, wound healing and Transwell assays along with flow cytometry analysis and tumor xenograft were used to investigate the biological effects of FANCI in NSCLC in vitro and in vivo. The binding of FANCI with UBE2T was confirmed using a co-immunoprecipitation assay. Epithelial-to-mesenchymal transition (EMT) protein markers were quantified via western blotting. The results showed that FANCI expression level was higher in NSCLC tumor tissues, compared with adjacent tissues. In A549 and H1299 cells, knockdown of FANCI inhibited cell proliferation, migration, invasion, cell cycle and EMT in vitro. Tumor growth was repressed in vitro, upon downregulation of FANCI expression. UBE2T was observed to directly bind to FANCI and regulate its monoubiquitination. Overexpression of UBE2T reversed the effects induced by FANCI knockdown in NSCLC cells. Furthermore, it was noted that FANCI interacted with WD repeat domain 48 (WDR48). Overexpression of WDR48 reversed the effects of FANCI on cell proliferation, migration and EMT. In conclusion, FANCI was identified to be a putative oncogene in NSCLC, wherein FANCI was monouniubiquitinated by UBE2T to regulate cell growth, migration and EMT through WDR48. The findings suggested that FANCI could be used as a prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jiguang Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jingdong Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jincheng Wu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jianyuan Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhaoxian Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xing Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
14
|
Wang Z, Chen N, Liu C, Cao G, Ji Y, Yang W, Jiang Q. UBE2T is a prognostic biomarker and correlated with Th2 cell infiltrates in retinoblastoma. Biochem Biophys Res Commun 2022; 614:138-144. [PMID: 35594577 DOI: 10.1016/j.bbrc.2022.04.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to screen anaplasia-related genes that influence the progression of retinoblastoma (RB) and to identify immune cells associated with the poor prognosis. METHODS Differentially expressed genes (DEGs) between retina and RB samples were acquired from gene expression omnibus (GEO) database. Candidate hub genes were screened by taking intersections among the co-expressed genes, the hub nodes, and DEGs of the validation set. The hub genes were identified by receiver operating characteristic (ROC) and quantitative real-time PCR (qPCR). Immune infiltration levels of RB tissues were estimated using single-sample gene set enrichment analysis (ssGSEA). The functions of RB cells were detected by CCK8, EDU and flow cytometry assays. RESULTS 665 DEGs involved in the genesis and progression of RB were acquired from GEO database. 29 candidate hub genes were screened by examining 43 co-expressed genes and 63 hub nodes. 9 hub genes (CHEK1, EXO1, FANCI, GTSE1, MELK, MKI67, NCAPH, PRC1, and UBE2T) strongly related to the anaplastic grades were validated by ROC curve analysis (AUC >0.8). Based on the ssGSEA scores, the immune infiltration levels of Th2 cells were positively associated with anaplastic grade. qPCR assay showed that 9 hub genes were upregulated in RB cells, and UBE2T expressed remarkably high. CCK 8, EDU, and flow cytometry assays revealed that UBE2T silencing inhibited the proliferation of RB cells and incited apoptosis. CONCLUSIONS The increased infiltration of Th2 cells and upregulated expression of 9 hub genes predict a poor prognosis of RB. UBE2T can be a therapeutic target for RB treatment.
Collapse
Affiliation(s)
- Zhenzhen Wang
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Nan Chen
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Shanghai Medical College, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Guofan Cao
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Yuke Ji
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Weihua Yang
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
| | - Qin Jiang
- The Fourth School of Clinical Medicine, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|