1
|
Kuo CC, Huang WH, Yang SY, Chang YC, Chang HW, Jeng CR, Lee JJ, Liao AT. Prognostic significance of YKL-40 expression in canine cutaneous mast cell tumors. BMC Vet Res 2024; 20:537. [PMID: 39614259 DOI: 10.1186/s12917-024-04385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND YKL-40, a secretory glycoprotein, is involved in tumor cell proliferation, metastasis, and angiogenesis in human cancers. Its overexpression has been correlated with unfavorable prognosis in many human cancers. In veterinary medicine, elevated YKL-40 levels in the serum of canine cutaneous mast cell tumors (cMCTs) were observed in our previous study. However, the expression pattern of YKL-40 in canine cMCT tissues, along with its association with clinical and pathological features, is still unknown. This study aims to retrospectively investigate the expression level of YKL-40 in the tissues of canine cMCTs and its correlation with clinical features, pathological characteristics, and clinical outcomes. Forty formalin-fixed paraffin-embedded cMCT tissues collected from forty dogs were diagnosed as low-grade (n = 20) or high-grade s(n = 20) MCT according to the Kiupel grading system. The expression level of YKL-40 in cMCT tissues was investigated using immunohistochemical staining and immunoreactivity score (IRS). RESULTS YKL-40 was expressed in all cMCTs at different levels, with significantly stronger expression in low-grade cMCTs compared to high-grade cMCTs. The expression level was also associated with tumor diameter, histological grade, mitotic counts, vessel density, and survival of cMCTs. The overall survival of cMCT dogs showed significant differences (p < 0.01) among mild (n = 15, MST 219 days), moderate (n = 19, MST not reached), and high (n = 6, MST not reached) YKL-40 expression groups. Among low-grade cMCTs, overall survival was significantly different between mild YKL-40 expression (MST 319 days) and moderate to high YKL-40 (MST not reached) expression (p < 0.01). In high-grade cMCTs, overall survival was not correlated with YKL-40 expression (p = 0.6589). CONCLUSIONS This study found that the YKL-40 expression level was significantly stronger in low-grade than in high-grade canine cutaneous mast cell tumors and was associated with various clinical and pathological features. Stronger YKL-40 expression level correlated with longer survival time, especially in low-grade cMCTs. Therefore, YKL-40 could serve as a prognostic marker for cMCTs.
Collapse
Affiliation(s)
- Chien-Chun Kuo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
- Animal Cancer Treatment Center, National Taiwan University Veterinary Hospital, National Taiwan University, No. 153, Sec. 3, Keelung Road, Taipei, 106328, Taiwan (ROC)
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Su-Ya Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Jih-Jong Lee
- Animal Cancer Treatment Center, National Taiwan University Veterinary Hospital, National Taiwan University, No. 153, Sec. 3, Keelung Road, Taipei, 106328, Taiwan (ROC)
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC)
| | - Albert Taiching Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan (ROC).
| |
Collapse
|
2
|
Yu JE, Jeon SH, Kim MJ, Kim DH, Koo JK, Kim TH, Kim B, Yoon JY, Lim YS, Park SR, Yeo IJ, Yun J, Son DJ, Han SB, Lee YS, Hong JT. Anti-chitinase-3-like 1 antibody attenuated atopic dermatitis-like skin inflammation through inhibition of STAT3-dependent CXCL8 expression. Br J Pharmacol 2024; 181:3232-3245. [PMID: 38745399 DOI: 10.1111/bph.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Chitinase-3-like 1 (CHI3L1) causes skin inflammation in the progression of atopic dermatitis. We investigated if anti-CHI3L1 antibody could prevent the development of atopic dermatitis and its mechanisms of action. EXPERIMENTAL APPROACH The effect of CHI3L1 antibody on phthalic anhydride-induced atopic dermatitis animal model and in vitro reconstructed human skin (RHS) model were investigated. Expression and release of atopic dermatitis-related cytokines were determined using an enzyme-linked immunosorbent assay, and RT-qPCR, STAT3 and CXCL8 signalling were measured by western blotting. KEY RESULTS Anti-CHI3L1 antibody suppressed phthalic anhydride-induced epidermal thickening, clinical score, IgE level and infiltration of inflammatory cells, and reduced phthalic anhydride-induced inflammatory cytokines concentration. In addition, CHI3L1 antibody treatment inhibited the expression of STAT3 activity in phthalic anhydride-treated skin. It was also confirmed that CHI3L1 antibody treatment alleviated atopic dermatitis-related inflammation in the RHS model. The inhibitory effects of CHI3L1 antibody was similar or more effective compared with that of the IL-4 antibody. We further found that CHI3L1 is associated with CXCL8 by protein-association network analysis. siRNA of CHI3L1 blocked the mRNA levels of CHI3L1, IL-1β, IL-4, CXCL8, TSLP, and the expression of CHI3L1 and p-STAT, and the level of CXCL8, whereas recombinant level of CXCL8 was elevated. Moreover, siRNA of STAT3 reduced the mRNA level of these cytokines. CHI3L1 and p-STAT3 expression correlated with the reduced CXCL8 level in the RHS in vitro model. CONCLUSION AND IMPLICATIONS Our data demonstrated that CHI3L1 antibody could be a promising effective therapeutic drug for atopic dermatitis.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
- College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | - Seong Hee Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Min Ji Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Ja Keun Koo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Cheongju-si, Chungbuk, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., Songpa-gu, Seoul, Republic of Korea
| | - Ji Yong Yoon
- PRESTI GEBIOLOGICS Co. Ltd., Cheongju-si, Chungbuk, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Cheongju-si, Chungbuk, Republic of Korea
| | - So Ra Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do, Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
- College of Pharmacy, Kyungpook National University, Buk-gu, Daegu, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
3
|
Wang J, Lu Y, Zhang R, Cai Z, Fan Z, Xu Y, Liu Z, Zhang Z. Modulating and Imaging Macrophage Reprogramming for Cancer Immunotherapy. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:401-414. [PMID: 39583310 PMCID: PMC11584841 DOI: 10.1007/s43657-023-00154-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 11/26/2024]
Abstract
Cancer immunotherapy has made great progress in effectively attacking or eliminating cancer. However, the challenges posed by the low reactivity of some solid tumors still remain. Macrophages, as a key component of the tumor microenvironment (TME), play an important role in determining the progression of solid tumors due to their plasticity and heterogeneity. Targeting and reprogramming macrophages in TME to desired phenotypes offers an innovative and promising approach for cancer immunotherapy. Meanwhile, the rapid development of in vivo molecular imaging techniques provides us with powerful tools to study macrophages. In this review, we summarize the current progress in macrophage reprogramming from conceptual roadmaps to therapeutic approaches, including monoclonal antibody drugs, small molecule drugs, gene therapy, and chimeric antigen receptor-engineered macrophages (CAR-M). More importantly, we highlight the significance of molecular imaging in observing and understanding the process of macrophage reprogramming during cancer immunotherapy. Finally, we introduce the therapeutic applications of imaging and reprogramming macrophages in three solid tumors. In the future, the integration of molecular imaging into the development of novel macrophage reprogramming strategies holds great promise for precise clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Yafang Lu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Ren Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Zhenzhen Cai
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zhan Fan
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Yilun Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zheng Liu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| |
Collapse
|
4
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
5
|
Zhou J, Zhao D, Tan H, Lan J, Bao Y. CHI3L1 as a Prognostic Biomarker and Therapeutic Target in Glioma. Int J Mol Sci 2024; 25:7094. [PMID: 39000203 PMCID: PMC11240893 DOI: 10.3390/ijms25137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The role of Chitinase-3-like protein 1 (CHI3L1) in tumor progression has been gradually clarified in different kinds of solid tumors. Hence, we aim to elucidate its prognostic value for glioma. In this study, we analyzed RNA sequencing data combined with corresponding clinical information obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Differentially expressed genes (DEGs) were acquired based on CHI3L1 expression profiles and were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Cox regression, least absolute shrinkage and selection operator (LASSO) regression methods, along with a nomogram, were employed to establish a predictive model. Compared with the corresponding non-tumor tissues, CHI3L1 expression was significantly upregulated in various types of solid tumors, correlating with poor clinical outcomes including glioma. GO analysis identified oxidative stress-related genes (ORGs) that were differentially expressed and modulated by CHI3L1, with 11 genes subsequently identified as potential predictors, using Univariate-Cox regression and LASSO regression. In addition, an index of oxidative stress-related genes (ORGI) was established, demonstrating its prognostic value in conjunction with CHI3L1 expression. The aberrant expression of CHI3L1 was proved in glioma patients through immunohistochemistry (IHC). Meanwhile, the knockdown of CHI3L1 inhibited glioma growth in vitro, and real-time Quantitative PCR (qPCR) confirmed decreased ORG expression upon CHI3L1 knockdown, suggesting the potential prognostic value of CHI3L1 as a therapeutic target for glioma.
Collapse
Affiliation(s)
| | | | | | | | - Yinghui Bao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
6
|
Wang Y, Zhong F, Xiao F, Li J, Liu X, Ni G, Wang T, Zhang W. Host-defence caerin 1.1 and 1.9 peptides suppress glioblastoma U87 and U118 cell proliferation through the modulation of mitochondrial respiration and induce the downregulation of CHI3L1. PLoS One 2024; 19:e0304149. [PMID: 38848430 PMCID: PMC11161062 DOI: 10.1371/journal.pone.0304149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Glioblastoma, the most aggressive form of brain cancer, poses a significant global health challenge with a considerable mortality rate. With the predicted increase in glioblastoma incidence, there is an urgent need for more effective treatment strategies. In this study, we explore the potential of caerin 1.1 and 1.9, host defence peptides derived from an Australian tree frog, in inhibiting glioblastoma U87 and U118 cell growth. Our findings demonstrate the inhibitory impact of caerin 1.1 and 1.9 on cell growth through CCK8 assays. Additionally, these peptides effectively curtail the migration of glioblastoma cells in a cell scratch assay, exhibiting varying inhibitory effects among different cell lines. Notably, the peptides hinder the G0/S phase replication in both U87 and U118 cells, pointing to their impact on the cell cycle. Furthermore, caerin 1.1 and 1.9 show the ability to enter the cytoplasm of glioblastoma cells, influencing the morphology of mitochondria. Proteomics experiments reveal intriguing insights, with a decrease in CHI3L1 expression and an increase in PZP and JUNB expression after peptide treatment. These proteins play roles in cell energy metabolism and inflammatory response, suggesting a multifaceted impact on glioblastoma cells. In conclusion, our study underscores the substantial anticancer potential of caerin 1.1 and 1.9 against glioblastoma cells. These findings propose the peptides as promising candidates for further exploration in the realm of glioblastoma management, offering new avenues for developing effective treatment strategies.
Collapse
Affiliation(s)
- Yichen Wang
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Furong Zhong
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
| | - Fengyun Xiao
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guoying Ni
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Wei Zhang
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center of Stem Cell Therapy for Pituitary Disease, Guangzhou, China
| |
Collapse
|
7
|
Dankner M, Maritan SM, Priego N, Kruck G, Nkili-Meyong A, Nadaf J, Zhuang R, Annis MG, Zuo D, Nowakowski A, Biondini M, Kiepas A, Mourcos C, Le P, Charron F, Inglebert Y, Savage P, Théret L, Guiot MC, McKinney RA, Muller WJ, Park M, Valiente M, Petrecca K, Siegel PM. Invasive growth of brain metastases is linked to CHI3L1 release from pSTAT3-positive astrocytes. Neuro Oncol 2024; 26:1052-1066. [PMID: 38271182 PMCID: PMC11145453 DOI: 10.1093/neuonc/noae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.
Collapse
Affiliation(s)
- Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah M Maritan
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Georgia Kruck
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rebecca Zhuang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew G Annis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marco Biondini
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Kiepas
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Caitlyn Mourcos
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Phuong Le
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - François Charron
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - Yanis Inglebert
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Paul Savage
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Louis Théret
- Research Institute of the University of Montreal (IRIC), Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - R Anne McKinney
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Kevin Petrecca
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Mizoguchi E, Sadanaga T, Nanni L, Wang S, Mizoguchi A. Recently Updated Role of Chitinase 3-like 1 on Various Cell Types as a Major Influencer of Chronic Inflammation. Cells 2024; 13:678. [PMID: 38667293 PMCID: PMC11049018 DOI: 10.3390/cells13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Linda Nanni
- Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Siyuan Wang
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| |
Collapse
|
9
|
Salembier R, De Haes C, Bellemans J, Demeyere K, Van Den Broeck W, Sanders NN, Van Laere S, Lyons TR, Meyer E, Steenbrugge J. Chitin-mediated blockade of chitinase-like proteins reduces tumor immunosuppression, inhibits lymphatic metastasis and enhances anti-PD-1 efficacy in complementary TNBC models. Breast Cancer Res 2024; 26:63. [PMID: 38605414 PMCID: PMC11007917 DOI: 10.1186/s13058-024-01815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.
Collapse
Affiliation(s)
- Robbe Salembier
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Caro De Haes
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Bellemans
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
10
|
Yang Y, Li J, Li D, Zhou W, Yan F, Wang W. Humanized mouse models: A valuable platform for preclinical evaluation of human cancer. Biotechnol Bioeng 2024; 121:835-852. [PMID: 38151887 DOI: 10.1002/bit.28618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023]
Abstract
Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.
Collapse
Affiliation(s)
- Yuening Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Yu JE, Yeo IJ, Han SB, Yun J, Kim B, Yong YJ, Lim YS, Kim TH, Son DJ, Hong JT. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp Mol Med 2024; 56:1-18. [PMID: 38177294 PMCID: PMC10834487 DOI: 10.1038/s12276-023-01131-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 01/06/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., 25, Beobwon-ro 11-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Yoon Ji Yong
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
12
|
Zhao H, Huang M, Jiang L. Potential Roles and Future Perspectives of Chitinase 3-like 1 in Macrophage Polarization and the Development of Diseases. Int J Mol Sci 2023; 24:16149. [PMID: 38003338 PMCID: PMC10671302 DOI: 10.3390/ijms242216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.
Collapse
Affiliation(s)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| |
Collapse
|
13
|
Chen Y, Zhu F, Che X, Li Y, Li N, Jiang Z, Li X. Angelica acutiloba Kitagawa flower induces A549 cell pyroptosis via the NF-κB/NLRP3 pathway for anti-lung cancer effects. Cell Div 2023; 18:19. [PMID: 37907950 PMCID: PMC10619230 DOI: 10.1186/s13008-023-00102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Angelica acutiloba Kitagawa, a traditional medicinal herb of the Umbelliferae family, has been demonstrated to have anticancer activity. In this study, we investigated the anti-lung cancer effects of two compounds extracted from A. acutiloba flowers: kaempferol-3-O-α-L-(4″-E-p-coumaroyl)-rhamnoside (KAE) and platanoside (PLA). MTT, cell colony formation, and cell migration (scratch) assays revealed that both KAE (100 μM) and PLA (50 μM and 100 μM) inhibited the viability, proliferation, and migration of A549 cells. Dichlorodihydrofluorescein diacetate assays showed that KAE and PLA also induced the generation of reactive oxygen species in A549 cells. Morphologically, A549 cells swelled and grew larger under treatment with KAE and PLA, with the most significant changes at 100 μM PLA. Fluorescence staining and measurement of lactate dehydrogenase release showed that the cells underwent pyroptosis with concomitant upregulation of interleukin (IL)-1β and IL-18. Furthermore, both KAE and PLA induced upregulation of NF-κB, PARP, NLRP3, ASC, cleaved-caspase-1, and GSDMD expression in A549 cells. Subsequent investigations unveiled that these compounds interact with NLRP3, augment NLRP3's binding affinity with ASC, and stimulate the assembly of the inflammasome, thereby inducing pyroptosis. In conclusion, KAE and PLA, two active components of A. acutiloba flower extract, had significant anti-lung cancer activities exerted through regulation of proteins related to the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Fangying Zhu
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
- Changchun Institute of Biological Products Co., Ltd, Changchun, 130012, People's Republic of China
| | - Xianhua Che
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yanwei Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
14
|
Ma S, Mi Z, Wang Z, Sun L, Liu T, Shi P, Wang C, Xue X, Chen W, Wang Z, Yu Y, Zhang Y, Bao F, Wang N, Wang H, Xia Q, Liu H, Sun Y, Zhang F. Single-cell sequencing analysis reveals development and differentiation trajectory of Schwann cells manipulated by M. leprae. PLoS Negl Trop Dis 2023; 17:e0011477. [PMID: 37478057 PMCID: PMC10361531 DOI: 10.1371/journal.pntd.0011477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND M. leprae preferentially infects Schwann cells (SCs) in the peripheral nerves leading to nerve damage and irreversible disability. Knowledge of how M. leprae infects and interacts with host SCs is essential for understanding mechanisms of nerve damage and revealing potential new therapeutic strategies. METHODOLOGY/PRINCIPAL FINDINGS We performed a time-course single-cell sequencing analysis of SCs infected with M. leprae at different time points, further analyzed the heterogeneity of SCs, subpopulations associated with M. leprae infection, developmental trajectory of SCs and validated by Western blot or flow cytometry. Different subpopulations of SCs exhibiting distinct genetic features and functional enrichments were present. We observed two subpopulations associated with M. leprae infection, a stem cell-like cell subpopulation increased significantly at 24 h but declined by 72 h after M. leprae infection, and an adipocyte-like cell subpopulation, emerged at 72 h post-infection. The results were validated and confirmed that a stem cell-like cell subpopulation was in the early stage of differentiation and could differentiate into an adipocyte-like cell subpopulation. CONCLUSIONS/SIGNIFICANCE Our results present a systematic time-course analysis of SC heterogeneity after infection by M. leprae at single-cell resolution, provide valuable information to understand the critical biological processes underlying reprogramming and lipid metabolism during M. leprae infection of SCs, and increase understanding of the disease-causing mechanisms at play in leprosy patients as well as revealing potential new therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peidian Shi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjie Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yueqian Yu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Na Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Honglei Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qianqian Xia
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
15
|
Hong DE, Yu JE, Yoo SS, Yeo IJ, Son DJ, Yun J, Han SB, Hong JT. CHI3L1 induces autophagy through the JNK pathway in lung cancer cells. Sci Rep 2023; 13:9964. [PMID: 37340009 DOI: 10.1038/s41598-023-36844-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023] Open
Abstract
CHI3L1 is closely related to the molecular mechanisms of cancer cell migration, growth, and death. According to recent research, autophagy regulates tumor growth during various stages of cancer development. This study examined the association between CHI3L1 and autophagy in human lung cancer cells. In CHI3L1-overexpressing lung cancer cells, the expression of LC3, an autophagosome marker, and the accumulation of LC3 puncta increased. In contrast, CHI3L1 depletion in lung cancer cells decreased the formation of autophagosomes. Additionally, CHI3L1 overexpression promoted the formation of autophagosomes in various cancer cell lines: it also increased the co-localization of LC3 and the lysosome marker protein LAMP-1, indicating an increase in the production of autolysosomes. In mechanism study, CHI3L1 promotes autophagy via activation of JNK signaling. JNK may be crucial for CHI3L1-induced autophagy since pretreatment with the JNK inhibitor reduced the autophagic effect. Consistent with the in vitro model, the expression of autophagy-related proteins was downregulated in the tumor tissues of CHI3L1-knockout mice. Furthermore, the expression of autophagy-related proteins and CHI3L1 increased in lung cancer tissues compared with normal lung tissues. These findings show that CHI3L1-induced autophagy is triggered by JNK signals and that CHI3L1-induced autophagy could be a novel therapeutic approach to lung cancer.
Collapse
Affiliation(s)
- Da Eun Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Seung Sik Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
16
|
Hong DE, Yu JE, Lee JW, Son DJ, Lee HP, Kim Y, Chang JY, Lee DW, Lee WK, Yun J, Han SB, Hwang BY, Hong JT. A Natural CHI3L1-Targeting Compound, Ebractenoid F, Inhibits Lung Cancer Cell Growth and Migration and Induces Apoptosis by Blocking CHI3L1/AKT Signals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010329. [PMID: 36615523 PMCID: PMC9822003 DOI: 10.3390/molecules28010329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
Our previous big data analyses reported a strong association between CHI3L1 expression and lung tumor development. In this present study, we investigated whether a CHI3L1-inhibiting natural compound, ebractenoid F, inhibits lung cancer cell growth and migration and induces apoptosis. Ebractenoid F concentration-dependently (0, 17, 35, 70 µM) and significantly inhibited the proliferation and migration of A549 and H460 lung cancer cells and induced apoptosis. In the mechanism study, we found that ebractenoid F bound to CHI3L1 and suppressed CHI3L1-associated AKT signaling. Combined treatment with an AKT inhibitor, LY294002, and ebractenoid F synergistically decreased the expression of CHI3L1. Moreover, the combination treatment further inhibited the growth and migration of lung cancer cells and further induced apoptosis, as well as the expression levels of apoptosis-related proteins. Thus, our data demonstrate that ebractenoid F may serve as a potential anti-lung cancer compound targeting CHI3L1-associated AKT signaling.
Collapse
Affiliation(s)
- Da Eun Hong
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Ji Eun Yu
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Jin Woo Lee
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Dong Ju Son
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Hee Pom Lee
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Yuri Kim
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Ju Young Chang
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Dong Won Lee
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Won Kyu Lee
- Department of New Drug Development Center, Osong Medical Innovation Foundation (KBio Health), Cheongju 28644, Republic of Korea
| | - Jaesuk Yun
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Sang Bae Han
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Bang Yeon Hwang
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Jin Tae Hong
- Medical Research Center, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, 194-21, Osong-eup, Heungduk-gu, Cheongju 28160, Republic of Korea
- Correspondence: ; Tel.: +82-43-261-2813; Fax: +82-43-268-2732
| |
Collapse
|
17
|
Bee Venom Triggers Autophagy-Induced Apoptosis in Human Lung Cancer Cells via the mTOR Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:8916464. [PMID: 36590307 PMCID: PMC9803572 DOI: 10.1155/2022/8916464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
In oriental medicine, bee venom has long been used as a therapeutic agent against inflammatory diseases. Several studies have reported that isolated and purified bee venom components are effective in treating dementia, arthritis, inflammation, bacterial infections, and cancer. In previous studies, we reported that bee venom inhibits cell growth and induces apoptotic cell death in lung cancer cells. In the present study, we assessed whether bee venom affects autophagy and thereby induces apoptosis. Bee venom treatment increased the levels of autophagy-related proteins (Atg5, Beclin-1, and LC3-II) and the accumulation of LC3 puncta. We found that bee venom could induce autophagy by inhibiting the mTOR signaling pathway. In addition, we found that hydroxychloroquine (HCQ)- or si-ATG5-induced autophagy inhibition further demoted bee venom-induced apoptosis. Bee venom-induced autophagy promotes apoptosis in lung cancer cells and may become a new approach to cancer treatment.
Collapse
|
18
|
hUC-MSCs Attenuate Acute Graft-Versus-Host Disease through Chi3l1 Repression of Th17 Differentiation. Stem Cells Int 2022; 2022:1052166. [PMID: 36277038 PMCID: PMC9582900 DOI: 10.1155/2022/1052166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have already demonstrated definitive evidence of their clinical benefits in acute graft-versus-host disease (aGvHD) and other inflammatory diseases. However, the comprehensive mechanism of MSCs' immunomodulation properties has not been elucidated. To reveal their potential immunosuppressive molecules, we used RNA sequencing to analyze gene expression in different tissue-derived MSCs, including human bone marrow, umbilical cord, amniotic membrane, and placenta, and found that chitinase-3-like protein 1 (Chi3l1) was highly expressed in human umbilical cord mesenchymal stem cells (hUC-MSCs). We found that hUC-MSCs treated with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) exhibited increased expression of Chi3l1 and concurrently repressed T-helper 17 cell (Th17) differentiation through inhibition of signal transducer and activator of transcription 3 (STAT3) activation. Furthermore, Chi3l1 knockdown hUC-MSCs exhibited impaired therapeutic efficacy in aGvHD mice with an increased inflammatory response by promoting Th17 cell differentiation, including an increase in IL-17A in the spleen, intestine, and serum. Collectively, these results reveal a new immunosuppressive molecule, Chi3l1, in hUC-MSCs in the treatment of aGvHD that regulates Th17 differentiation and inhibits STAT3 activation. These novel insights into the mechanisms of hUC-MSC immunoregulation may lead to the consistent production of hUC-MSCs with strong immunosuppressive functions and thus improved clinical utility.
Collapse
|
19
|
Zhao T, Zeng J, Xu Y, Su Z, Chong Y, Ling T, Xu H, Shi H, Zhu M, Mo Q, Huang X, Li Y, Zhang X, Ni H, You Q. Chitinase-3 like-protein-1 promotes glioma progression via the NF-κB signaling pathway and tumor microenvironment reprogramming. Am J Cancer Res 2022; 12:6989-7008. [PMID: 36276655 PMCID: PMC9576612 DOI: 10.7150/thno.75069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Background: Chitinase-3-like protein 1 (CHI3L1) is overexpressed in various types of tumors, especially in glioma, and contributes to tumor progression. However, the definite role of CHI3L1 and involved pathway in glioma progression are not completely understood. Methods: CHI3L1 expression in human gliomas and its association with patient survival was determined using enzyme-linked immunosorbent assay, western blot, immunohistochemistry, and public databases. Single-cell RNA-seq was used to characterize the landscape of tumor and myeloid cells. Human proteome microarray assay was applied to identify the binding partners of CHI3L1. Protein-protein interactions were analyzed by co-immunoprecipitation and cellular co-localization. The roles of CHI3L1 in glioma proliferation and invasion were investigated in tumor cell lines by gain- and loss- of function, as well as in vivo animal experiments. Results: CHI3L1 was up-regulated in all disease stages of glioma, which was closely related with tumor survival, growth, and invasion. CHI3L1 was primarily expressed in glioma cells, followed by neutrophils. Moreover, glioma cells with high expression of CHI3L1 were significantly enriched in NF-κB pathway. Pseudo-time trajectory analysis revealed a gradual transition from CHI3L1low to CHI3L1high glioma cells, along with the NF-κB pathway gradually reversed from inhibition to activation. Intriguingly, CHI3L1 binds to actinin alpha 4 (ACTN4) and NFKB1, and enhances the NF-κB signaling pathway by promoting the NF-κB subunit nuclear translocation in glioma cells. Further, CHI3L1 were released into the tumor microenvironment (TME) and interacted with CD44 expressed on tumor-associated macrophages to activate AKT pathway, thereby contributing to M2 macrophage polarization. In addition, CHI3L1 positively correlated to the expression of immune checkpoints, such as CD274 (PD-L1) and HAVCR2 (LAG3), which then remodeled the TME to an immunosuppressive phenotype. Conclusion: Our research revealed that CHI3L1 facilitated NF-κB pathway activation within glioma cells and reprogramed the TME, thereby serving as a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Ting Zhao
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yujie Xu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Zhongping Su
- Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Yulong Chong
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Tao Ling
- Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Haozhe Xu
- Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Hui Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Minggao Zhu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Qi Mo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Xiaoying Huang
- College of Life Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510630, China
| | - Yingchang Li
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China.,Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China.,Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Qiang You
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China.,Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China.,Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| |
Collapse
|
20
|
Lei R, Zhou M, Zhang S, Luo J, Qu C, Wang Y, Guo P, Huang R. Potential role of PRKCSH in lung cancer: bioinformatics analysis and a case study of Nano ZnO. NANOSCALE 2022; 14:4495-4510. [PMID: 35254362 DOI: 10.1039/d1nr08133k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PRKCSH, also known as glucosidase II beta, functions as a contributor to lung tumorigenesis by regulating the cell cycle in a p53-dependent manner under severe environmental stress. However, the prognostic value and molecular mechanisms by which the level of PRKCSH is significantly increased in cancer cells are not clearly understood. Here, we first generated a biological profile of PRKCSH expression changes in cancers by analysing bioinformatic data from cancer databases. We found that higher PRKCSH expression was correlated with a poorer prognosis and greater infiltration of most immune cell types in patients with lung cancer. In particular, PRKCSH expression showed significant negative correlations with the level of STAT6 (r = -0.31, p < 0.001) in lung cancer tissues. We further found that PRKCSH deficiency promoted G2/M arrest in response to zinc oxide nanoparticle (Nano ZnO) treatment in A549 cells. With regard to the mechanism, PRKCSH deficiency may induce STAT6 translocation to the nucleus to activate p53 expression through binding to the p53 promoter region from -365 bp to +126 bp. Eventually, activated p53 contributed to Nano-ZnO-induced G2/M arrest in lung cancer cells. Taken together, our data provide new insights into immunotherapy target choices and the prognostic value of PRKCSH. Since the G2/M cell cycle checkpoint is crucial for lung cancer prognosis, targeting PRKCSH expression to suppress the activation of the STAT6/p53 pathway is a potential therapeutic strategy for managing lung cancer.
Collapse
Affiliation(s)
- Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Shusheng Zhang
- Changsha Stomatological Hospital, Changsha, Hunan Province, China.
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Peiyu Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|