1
|
Attard K, Singh RK, Gattuso JP, Filbee-Dexter K, Krause-Jensen D, Kühl M, Sejr MK, Archambault P, Babin M, Bélanger S, Berg P, Glud RN, Hancke K, Jänicke S, Qin J, Rysgaard S, Sørensen EB, Tachon F, Wenzhöfer F, Ardyna M. Seafloor primary production in a changing Arctic Ocean. Proc Natl Acad Sci U S A 2024; 121:e2303366121. [PMID: 38437536 PMCID: PMC10945780 DOI: 10.1073/pnas.2303366121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.
Collapse
Affiliation(s)
- Karl Attard
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense M, Denmark
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Rakesh Kumar Singh
- Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QCG5L 3A1, Canada
- Center for Remote Imaging, Sensing and Processing, National University of Singapore, Singapore119076, Singapore
| | - Jean-Pierre Gattuso
- CNRS-Sorbonne Université, Laboratoire d’Océanographie, Villefranche-sur-Mer06230, France
- Institute for Sustainable Development and International Relations, Paris75337, France
| | - Karen Filbee-Dexter
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
- Benthic Communities Group/Institute of Marine Research, His4817, Norway
- School of Biological Science and Indian Oceans Marine Research Centre, University of Western Australia, Perth6009, WA, Australia
| | - Dorte Krause-Jensen
- Department of Ecoscience, Aarhus University, 8000Aarhus C, Denmark
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, 3000Helsingør, Denmark
| | - Mikael K. Sejr
- Department of Ecoscience, Aarhus University, 8000Aarhus C, Denmark
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
| | - Philippe Archambault
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
- ArcticNet, Department of Biology, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Marcel Babin
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Simon Bélanger
- Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QCG5L 3A1, Canada
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA400123
| | - Ronnie N. Glud
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense M, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 108-8477Tokyo, Japan
| | - Kasper Hancke
- Norwegian Institute for Water Research, 0579Oslo, Norway
| | - Stefan Jänicke
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jing Qin
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Søren Rysgaard
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment Earth, and Resources, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esben B. Sørensen
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Foucaut Tachon
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Frank Wenzhöfer
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Helmholtz - Max Planck Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research, Bremerhaven27515, Germany
- Helmholtz - Max Planck Joint Research Group for Deep Sea Ecology and Technology, Max-Planck-Institute for Marine Microbiology, Bremen28359, Germany
| | - Mathieu Ardyna
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| |
Collapse
|
2
|
Comparison of Pond Depth and Ice Thickness Retrieval Algorithms for Summer Arctic Sea Ice. REMOTE SENSING 2022. [DOI: 10.3390/rs14122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to satisfy the demand of key sea ice parameters, including melt pond depth Hp and underlying ice thickness Hi, in studies of Arctic sea ice change in summer, four algorithms of retrieving Hp and Hi were compared and validated by using optical data of melt ponds from field observations. The Malinka18 algorithm stood out as the most accurate algorithm for the retrieval of Hp. For the retrieval of Hi, Malinka18 and Zhang21 algorithms could also provide reasonable results and both can be applied under clear and overcast sky conditions, while retrievals under clear sky conditions are more accurate. The retrieval results of Hi for Lu18 agreed better with field measurements for thin ice (Hi < 1 m) than that for thick ice, but those results of Hp were not satisfactory. The König20 algorithm was only suitable for clear sky conditions, and underestimated Hp, while showing a good agreement with Hp < 0.15 m. For Arctic applications, Malinka18 and Zhang21 algorithms provided a basis and reference for the satellite optical data such as WoeldView2 to retrieve Hp and Hi. Malimka18 also showed the ability to retrieve Hi, except for the Lu18 algorithm if pond color captured by helicopters and unmanned aerial vehicles were available. This study identifies the optimal algorithm for retrieval of Hp and Hi under different conditions, which have the potential to provide necessary data for numerical simulations of Arctic sea ice changes in summer.
Collapse
|
3
|
Pärn O, Lessin G, Stips A. Effects of sea ice and wind speed on phytoplankton spring bloom in central and southern Baltic Sea. PLoS One 2021; 16:e0242637. [PMID: 33657117 PMCID: PMC7928518 DOI: 10.1371/journal.pone.0242637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/31/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, the effects of sea ice and wind speed on the timing and composition of phytoplankton spring bloom in the central and southern Baltic Sea are investigated by a hydrodynamic-biogeochemical model and observational data. The modelling experiment compared the results of a reference run in the presence of sea ice with those of a run in the absence of sea ice, which confirmed that ecological conditions differed significantly for both the scenarios. It has been found that diatoms dominate the phytoplankton biomass in the absence of sea ice, whereas dinoflagellates dominate the biomass in the presence of thin sea ice. The study concludes that under moderate ice conditions (representing the last few decades), dinoflagellates dominate the spring bloom phytoplankton biomass in the Baltic Sea, whereas diatoms will be dominant in the future as a result of climate change i.e. in the absence of sea ice.
Collapse
Affiliation(s)
- Ove Pärn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- * E-mail:
| | | | - Adolf Stips
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
4
|
Scientific Challenges and Present Capabilities in Underwater Robotic Vehicle Design and Navigation for Oceanographic Exploration Under-Ice. REMOTE SENSING 2020. [DOI: 10.3390/rs12162588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper reviews the scientific motivation and challenges, development, and use of underwater robotic vehicles designed for use in ice-covered waters, with special attention paid to the navigation systems employed for under-ice deployments. Scientific needs for routine access under fixed and moving ice by underwater robotic vehicles are reviewed in the contexts of geology and geophysics, biology, sea ice and climate, ice shelves, and seafloor mapping. The challenges of under-ice vehicle design and navigation are summarized. The paper reviews all known under-ice robotic vehicles and their associated navigation systems, categorizing them by vehicle type (tethered, untethered, hybrid, and glider) and by the type of ice they were designed for (fixed glacial or sea ice and moving sea ice).
Collapse
|
6
|
Estimating Underwater Light Regime under Spatially Heterogeneous Sea Ice in the Arctic. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vertical diffuse attenuation coefficient for downward plane irradiance ( K d ) is an apparent optical property commonly used in primary production models to propagate incident solar radiation in the water column. In open water, estimating K d is relatively straightforward when a vertical profile of measurements of downward irradiance, E d , is available. In the Arctic, the ice pack is characterized by a complex mosaic composed of sea ice with snow, ridges, melt ponds, and leads. Due to the resulting spatially heterogeneous light field in the top meters of the water column, it is difficult to measure at single-point locations meaningful K d values that allow predicting average irradiance at any depth. The main objective of this work is to propose a new method to estimate average irradiance over large spatially heterogeneous area as it would be seen by drifting phytoplankton. Using both in situ data and 3D Monte Carlo numerical simulations of radiative transfer, we show that (1) the large-area average vertical profile of downward irradiance, E d ¯ ( z ) , under heterogeneous sea ice cover can be represented by a single-term exponential function and (2) the vertical attenuation coefficient for upward radiance ( K L u ), which is up to two times less influenced by a heterogeneous incident light field than K d in the vicinity of a melt pond, can be used as a proxy to estimate E d ¯ ( z ) in the water column.
Collapse
|
8
|
Lange BA, Flores H, Michel C, Beckers JF, Bublitz A, Casey JA, Castellani G, Hatam I, Reppchen A, Rudolph SA, Haas C. Pan-Arctic sea ice-algal chl a biomass and suitable habitat are largely underestimated for multiyear ice. GLOBAL CHANGE BIOLOGY 2017; 23:4581-4597. [PMID: 28561343 DOI: 10.1111/gcb.13742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/10/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan-Arctic scale. We sampled sea ice cores from MYI and first-year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m2 , a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice-algal biomass and represent a reliable ice-algal habitat due to the (quasi-) permanent low-snow surface of these features. We identified an ice-algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice-algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan-Arctic CryoSat-2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice-algal habitat within the MYI-covered region of 0.54 million km2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km2 (0.3% of total ice area) determined using the conventional block-model classification, which assigns single-parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice-algal habitat during spring when food is sparse and many organisms depend on ice-algae.
Collapse
Affiliation(s)
- Benjamin A Lange
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Zoological Institute and Zoological Museum, Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | - Hauke Flores
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Zoological Institute and Zoological Museum, Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | - Christine Michel
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada
| | - Justin F Beckers
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anne Bublitz
- Department of Earth and Space Sciences and Engineering, York University, Toronto, ON, Canada
| | - John Alec Casey
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Earth and Space Sciences and Engineering, York University, Toronto, ON, Canada
| | - Giulia Castellani
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Ido Hatam
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anke Reppchen
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada
| | - Svenja A Rudolph
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Institute of Geography, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Haas
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Department of Earth and Space Sciences and Engineering, York University, Toronto, ON, Canada
| |
Collapse
|