1
|
Neo SH, Her Z, Othman R, Tee CA, Ong LC, Wang Y, Tan I, Tan J, Yang Y, Yang Z, Chen Q, Boyer LA. Expansion of human bone marrow-derived mesenchymal stromal cells with enhanced immunomodulatory properties. Stem Cell Res Ther 2023; 14:259. [PMID: 37726837 PMCID: PMC10510228 DOI: 10.1186/s13287-023-03481-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have broad potential as a cell therapy including for the treatment of drug-resistant inflammatory conditions with abnormal T cell proliferation such as graft-versus-host disease (GVHD). Clinical success, however, has been complicated by the heterogeneity of culture-expanded MSCs as well as donor variability. Here, we devise culture conditions that promote expansion of MSCs with enhanced immunomodulatory functions both in vitro and in animal models of GVHD. METHODS Human bone marrow-derived MSCs were expanded at high-confluency (MSCHC) and low-confluency state (MSCLC). Their immunomodulatory properties were evaluated with in vitro co-culture assays based on suppression of activated T cell proliferation and secretion of pro-inflammatory cytokines from activated T cells. Metabolic state of these cells was determined, while RNA sequencing was performed to explore transcriptome of these MSCs. Ex vivo expanded MSCHC or MSCLC was injected into human peripheral blood mononuclear cells (PBMC)-induced GVHD mouse model to determine their in vivo therapeutic efficacy based on clinical grade scoring, human CD45+ blood count and histopathological examination. RESULTS As compared to MSCLC, MSCHC significantly reduced both the proliferation of anti-CD3/CD28-activated T cells and secretion of pro-inflammatory cytokines upon MSCHC co-culture across several donors even in the absence of cytokine priming. Mechanistically, metabolic analysis of MSCHC prior to co-culture with activated T cells showed increased glycolytic metabolism and lactate secretion compared to MSCLC, consistent with their ability to inhibit T cell proliferation. Transcriptome analysis further revealed differential expression of immunomodulatory genes including TRIM29, BPIFB4, MMP3 and SPP1 in MSCHC as well as enriched pathways including cytokine-cytokine receptor interactions, cell adhesion and PI3K-AKT signalling. Lastly, we demonstrate in a human PBMC-induced GVHD mouse model that delivery of MSCHC showed greater suppression of inflammation and improved outcomes compared to MSCLC and saline controls. CONCLUSION Our study provides evidence that ex vivo expansion of MSCs at high confluency alters the metabolic and transcriptomic states of these cells. Importantly, this approach maximizes the production of MSCs with enhanced immunomodulatory functions without priming, thus providing a non-invasive and generalizable strategy for improving the use of MSCs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Shu Hui Neo
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Invivocue Pte Ltd, 51 Science Park Road, #01-11/13 The Aries, Singapore Science Park II, Singapore, 117586, Republic of Singapore
| | - Rashidah Othman
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Ching Ann Tee
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Li Ching Ong
- Invivocue Pte Ltd, 51 Science Park Road, #01-11/13 The Aries, Singapore Science Park II, Singapore, 117586, Republic of Singapore
| | - Yuehua Wang
- Invivocue Pte Ltd, 51 Science Park Road, #01-11/13 The Aries, Singapore Science Park II, Singapore, 117586, Republic of Singapore
| | - Irwin Tan
- Invivocue Pte Ltd, 51 Science Park Road, #01-11/13 The Aries, Singapore Science Park II, Singapore, 117586, Republic of Singapore
| | - Jaylen Tan
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Yanmeng Yang
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Zheng Yang
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- Department of Orthopaedic Surgery, National University of Singapore, NUHS, 1E Kent Ridge RoadTower Block 11, Singapore, 119288, Republic of Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore, 117510, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Republic of Singapore.
| | - Laurie A Boyer
- Critical Analytics for Manufacturing of Personalized Medicine (CAMP), Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Soetjahjo B, Malueka RG, Nurudhin A, Purwoko, Sumardi, Wisaksana R, Adhiputri A, Sudadi, Soeroto AY, Sidharta BRA, Thobari JA, Murni TW, Soewondo W, Herningtyas EH, Sudjud RW, Trisnawati I, Ananda NR, Faried A. Effectiveness and safety of normoxic allogenic umbilical cord mesenchymal stem cells administered as adjunctive treatment in patients with severe COVID-19. Sci Rep 2023; 13:12520. [PMID: 37532730 PMCID: PMC10397314 DOI: 10.1038/s41598-023-39268-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Inflammatory response in COVID-19 contributes greatly to disease severity. Mesenchymal Stem Cells (MSCs) have the potential to alleviate inflammation and reduce mortality and length of stay in COVID-19 patients. We investigated the safety and effectiveness of normoxic-allogenic umbilical cord (NA-UC)-MSCs as an adjunctive treatment in severe COVID-19 patients. A double-blind, multicentric, randomized, placebo-controlled trial involving severe COVID-19 patients was performed from January to June 2021 in three major hospitals across Java, Indonesia. Eligible participants (n = 42) were randomly assigned to two groups (1:1), namely the intervention (n = 21) and control (n = 21) groups. UC-MSCs dose was 1 × 106 /kg body weight on day D0, D3, and D6. The primary outcome was the duration of hospitalization. Meanwhile, the secondary outcomes were radiographical progression (Brixia score), respiratory and oxygenation parameters, and inflammatory markers, in addition to the safety profile of NA-UC-MSCs. NA-UC-MSCs administration did not affect the length of hospital stay of severe COVID-19 patients, nor did it improve the Brixia score or mMRC dyspnoea scale better than placebo. Nevertheless, NA-UC-MSCs led to a better recuperation in oxygenation index (120.80 ± 72.70 baseline vs. 309.63 ± 319.30 D + 22, p = 0.038) and oxygen saturation (97.24 ± 4.10% vs. 96.19 ± 3.75% in placebo, p = 0.028). Additionally, compared to the placebo group, the treatment group had a significantly smaller increase in PCT level at D + 22 (1.43 vs. 12.76, p = 0.011). No adverse effects, including serious ones, were recorded until D + 91. NA-UC-MSCs therapy is a very safe adjunct for COVID-19 patients. It improves the oxygenation profile and carries potential to suppress inflammation.
Collapse
Affiliation(s)
- Bintang Soetjahjo
- Department of Orthopaedics and Traumatology, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Arief Nurudhin
- Department of Internal Medicine, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Purwoko
- Department of Anesthesiology and Intensive Therapy, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Sumardi
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rudi Wisaksana
- Department of Internal Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Artrien Adhiputri
- Department of Pulmonology and Respiratory Medicine, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Sudadi
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Arto Yuwono Soeroto
- Department of Internal Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | | | - Jarir At Thobari
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wahyu Murni
- Department of Surgery, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Widiastuti Soewondo
- Department of Radiology, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Elizabeth Henny Herningtyas
- Department of Clinical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Reza Widianto Sudjud
- Department of Anesthesiology-Intensive Therapy, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ika Trisnawati
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Nur Rahmi Ananda
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Faried
- Department of Neurosurgery, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, 40161, Indonesia.
| |
Collapse
|
3
|
Jaing TH, Chang TY, Chiu CC. Harnessing and honing mesenchymal stem/stromal cells for the amelioration of graft-versus-host disease. World J Stem Cells 2023; 15:221-234. [PMID: 37180998 PMCID: PMC10173808 DOI: 10.4252/wjsc.v15.i4.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency. Despite its increased use, the mortality rate for patients undergoing this procedure remains high, mainly due to the perceived risk of exacerbating graft-versus-host disease (GVHD). However, even with immunosuppressive agents, some patients still develop GVHD. Advanced mesenchymal stem/stromal cell (MSC) strategies have been proposed to achieve better therapeutic outcomes, given their immunosuppressive potential. However, the efficacy and trial designs have varied among the studies, and some research findings appear contradictory due to the challenges in characterizing the in vivo effects of MSCs. This review aims to provide real insights into this clinical entity, emphasizing diagnostic, and therapeutic considerations and generating pathophysiology hypotheses to identify research avenues. The indications and timing for the clinical application of MSCs are still subject to debate.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology, Oncology, Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsung-Yen Chang
- Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Histological Characterization of Class I HLA Molecules in Whole Umbilical Cord Tissue Towards an Inexhaustible Graft Alternative for Reconstructive Surgery. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010110. [PMID: 36671682 PMCID: PMC9855378 DOI: 10.3390/bioengineering10010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Limited graft availability is a constant clinical concern. Hence, the umbilical cord (UC) is an attractive alternative to autologous grafts. The UC is an inexhaustible tissue source, and its removal is harmless and part of standard of care after the birth of the baby. Minimal information exists regarding the immunological profile of a whole UC when it is considered to be used as a tissue graft. We aimed to characterize the localization and levels of class I human leukocyte antigens (HLAs) to understand the allogenicity of the UC. Additionally, HLA-E and HLA-G are putative immunosuppressive antigens that are abundant in placenta, but their profiles in UC whole tissue are unclear. HYPOTHESIS The UC as a whole expresses a relatively low but ubiquitous level of HLA-ABC and significant levels of HLA-G and HLA-E. METHODS Healthy patients with no known pregnancy-related complications were approached for informed consent. UCs at term and between 12 and 19 weeks were collected to compare HLA profiles by gestational age. Formalin-fixed paraffin-embedded tissues were sectioned to 5 µm and immunohistochemically stained with a pan-HLA-ABC, two HLA-G-specific, or an HLA-E-specific antibody. RESULTS HLA-ABC was consistently found present in UCs. HLA-ABC was most concentrated in the UC vessel walls and amniotic epithelium but more dispersed in the Wharton's Jelly. HLA-E had a similar localization pattern to HLA-ABC in whole UC tissues at both gestational ages, but its protein level was lower. HLA-G localization and intensity were poor in all UC tissues analyzed, but additional analyses by Western immunoblot and mass spectrometry revealed a low level of HLA-G in the UC. CONCLUSION The UC may address limitations of graft availability. Rather than the presence of HLA-G, the immunosuppressive properties of the UC are more likely due to the abundance of HLA-E and the interaction known to occur between HLA-E and HLA-ABC. The co-localization of HLA-E and HLA-ABC suggests that HLA-E is likely presenting HLA-ABC leader peptides to immune cells, which is known to have a primarily inhibitory effect.
Collapse
|
5
|
Muñoz-Domínguez N, Carreras-Sánchez I, López-Fernández A, Vives J. Optimisation of processing methods to improve success in the derivation of human multipotent mesenchymal stromal cells from cryopreserved umbilical cord tissue fragments. Cryobiology 2022; 108:34-41. [PMID: 36041506 DOI: 10.1016/j.cryobiol.2022.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022]
Abstract
Wharton's Jelly (WJ)-derived Mesenchymal Stromal Cells (MSC) are currently in the spotlight for the development of innovative MSC-based therapies due to their ease of sourcing, high proliferation capacity and improved immunopotency over MSC from other tissue sources. However, the short time window for derivation from donated fresh umbilical cord (UC) tissue fragments does not allow to consider biological features of the donor beyond serological safety testing. This limits the scope of MSC banking to rapid, prospective derivation of MSC, WJ lines without considering biological and genetic characteristics of the donor that may influence their suitability for clinical use (e.g. HLA type, inherited gene variants). In the present study, we describe a simple, efficient and reproducible approach for the cryopreservation of UC tissue fragments, compatible with established workflows in existing public frameworks for cord blood and tissue collection while guaranteeing pharmaceutical grade of starting materials for further processing under GMP standards. Herein we demonstrated the feasibility of time and cost-saving methods for cryopreservation of unprocessed UC tissue fragments directly at reception of the donated tissues using 10% Me2SO-based cryosolution and a commercial clinical-grade defined cryopreservation medium (Cryostor®), showing the preservation of all Critical Quality Attributes in terms of identity, potency and kinetic parameters. In summary, our study provides evidence that cryopreservation of large unprocessed UC tissue fragments (5-13.5 cm) supports subsequent progenitor cell isolation and derivation of MSC,WJ, preserving their viability, identity, proliferation rates and potency.
Collapse
Affiliation(s)
- Noelia Muñoz-Domínguez
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| | - Irene Carreras-Sánchez
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| | - Alba López-Fernández
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.
| | - Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain; Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.
| |
Collapse
|
6
|
Jang SB, Jin SM, Kim HS, Jeong YY, Lee SJ, Hahn S, Lee H, Lee HS, Kim JH, Lee DY. DAMP-modulating nanoparticle for successful pancreatic islet and stem cell transplantation. Biomaterials 2022; 287:121679. [PMID: 35849998 DOI: 10.1016/j.biomaterials.2022.121679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022]
Abstract
Cell therapy is targeted at many organs, but locally or systemically delivered cells are shortly able to survive resulting from the immune/inflammation reactions and irregular cell targeting. Here we explore the multimodal nanoparticle having anti-inflammation and magnetic guidance for successful cell transplantation. We design magnetic resonance (MR)-active glycyrrhizin-chitosan coated superparamagnetic iron oxide nanoparticle (SPIO@Chitosan-GL) to inhibit release of inflammatory damage-associated molecular pattern (DAMP) protein and to offer noninvasive monitoring after intrahepatic transplantation of pancreatic islets and mesenchymal stem cell (MSC) spheroids. Intracellular delivered SPIO@Chitosan-GL is not cytotoxic to pancreatic islets and MSC spheroids and attenuate DAMP release from them. Also, therapeutic cells labeled with SPIO@Chitosan-GL are magnetically localized to the intended lobe of liver during transplantation procedure. If necessary, partial hepatectomy can be performed to remove the localized therapeutic cells for protection of the remaining liver lobes from systemic inflammation. Therapeutically, the cells selectively localized in the liver can treat blood glucose in diabetic mice to normal levels with DAMP modulation, and are visualized using in vivo MR imaging for over 4 weeks. Collectively, DAMP-modulating SPIO@Chitosan-GL can be used in multimodal nanomedince for attenuating the inflammation reaction by transplanted cells and for noninvasively long-term monitoring of transplanted cells.
Collapse
Affiliation(s)
- Soo Bin Jang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sang Jun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soojung Hahn
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Hyemin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Han Sin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Institute of Nano Science & Technology (INST) & Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea; Elixir Pharmatech Inc., Seoul, 04763, Republic of Korea.
| |
Collapse
|
7
|
Coccini T, Spinillo A, Roccio M, Lenta E, Valsecchi C, De Simone U. Human Umbilical Cord Mesenchymal Stem Cell-Based in vitro Model for Neurotoxicity Testing. Curr Protoc 2022; 2:e423. [PMID: 35471597 DOI: 10.1002/cpz1.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurotoxicity (NT) testing for regulatory purposes is based on in vivo animal testing. There is general consensus, however, about the need for the development of alternative methodologies to allow researchers to more rapidly and cost effectively screen large numbers of chemicals for their potential to cause NT, or to investigate their mode of action. In vitro assays are considered an important source of information for making regulatory decisions, and human cell-based systems are recommended as one of the most relevant models in toxicity testing, to reduce uncertainty in the extrapolation of results from animal-based models. Human neuronal models range from various neuroblastoma cell lines to stem cell-derived systems, including those derived from mesenchymal stem/stromal cells (hMSC). hMSCs exhibit numerous advantages, including the fact that they can be obtained in high yield from healthy human adult tissues, can be cultured with a minimal laboratory setup and without genetic manipulations, are able of continuous and repeated self-renewal, are nontumorigenic, and can form large populations of stably differentiated cells representative of different tissues, including neuronal cells. hMSCs derived from human umbilical cord (hUC) in particular possess several prominent advantages, including a painless, non-invasive, and ethically acceptable collection procedure, simple and convenient preparation, and high proliferation capacity. In addition, hMSCs can be efficiently differentiated into neuron-like cells (hNLCs), which can then be used for the assessment of neuronal toxicity of potential neurotoxic compounds in humans. Here, we describe a step-by-step procedure to use hMSCs from the umbilical cord for in vitro neurotoxicity testing. First, we describe how to isolate, amplify, and store hMSCs derived from the umbilical cord. We then outline the steps to transdifferentiate these cells into hNLCs, and then use the hNLCs for neurotoxicity testing by employing multiple common cytotoxicity assays after treatment with test compounds. The approach follows the most updated guidance on using human cell-based systems. These protocols will allow investigators to implement an alternative system for obtaining primary NLCs of human origin, and support advancement in neurotoxicity research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and maintenance of human mesenchymal stem/stromal cells (hMSCs) obtained from the umbilical cord lining membrane Basic Protocol 2: Transdifferentiation of hMSCs into neuron-like cells (hNLCs) and basic neurotoxicity assessment.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
8
|
Zhang Y, Le X, Zheng S, Zhang K, He J, Liu M, Tu C, Rao W, Du H, Ouyang Y, Li C, Wu D. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res Ther 2022; 13:171. [PMID: 35477552 PMCID: PMC9044847 DOI: 10.1186/s13287-022-02855-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and a common cause of end-stage renal disease (ESRD). Mesenchymal stem cells (MSCs) possess potent anti-inflammatory and immunomodulatory properties, which render them an attractive therapeutic tool for tissue damage and inflammation. Methods This study was designed to determine the protective effects and underlying mechanisms of human umbilical cord-derived MSCs (UC-MSCs) on streptozotocin-induced DN. Renal function and histological staining were used to evaluate kidney damage. RNA high-throughput sequencing on rat kidney and UCMSC-derived exosomes was used to identify the critical miRNAs. Co-cultivation of macrophage cell lines and UC-MSCs-derived conditional medium were used to assess the involvement of macrophage polarization signaling. Results UC-MSC administration significantly improved renal function, reduced the local and systemic inflammatory cytokine levels, and attenuated inflammatory cell infiltration into the kidney tissue in DN rats. Moreover, UC-MSCs shifted macrophage polarization from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype. Mechanistically, miR-146a-5p was significantly downregulated and negatively correlated with renal injury in DN rats as determined through high-throughput RNA sequencing. Importantly, UC-MSCs-derived miR-146a-5p promoted M2 macrophage polarization by inhibiting tumor necrosis factor receptor-associated factor-6 (TRAF6)/signal transducer and activator of transcription (STAT1) signaling pathway. Furthermore, miR-146a-5p modification in UC-MSCs enhanced the efficacy of anti-inflammation and renal function improvement. Conclusions Collectively, our findings demonstrate that UC-MSCs-derived miR-146a-5p have the potential to restore renal function in DN rats through facilitating M2 macrophage polarization by targeting TRAF6. This would pave the way for the use of miRNA-modified cell therapy for kidney diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02855-7.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xi Le
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Mengting Liu
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Chengshu Tu
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Wei Rao
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Hongyuan Du
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China. .,Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China. .,Guangzhou Hamilton Biotechnology Co., Ltd, Wuhan, China.
| |
Collapse
|
9
|
Zoehler B, Fracaro L, Boldrini-Leite LM, da Silva JS, Travers PJ, Brofman PRS, Bicalho MDG, Senegaglia AC. HLA-G and CD152 Expression Levels Encourage the Use of Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells as an Alternative for Immunosuppressive Therapy. Cells 2022; 11:cells11081339. [PMID: 35456019 PMCID: PMC9032010 DOI: 10.3390/cells11081339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been used in immunosuppressive therapy due to their therapeutic effects, with the HLA-G molecule seeming to play a fundamental role. This work evaluated alternative MSC sources to bone marrow (BM), namely, umbilical cord tissue (UC), adipose tissue (AD) and dental pulp tissue (DP), and the influence of interferon-γ (IFN-γ) and hypoxia on the cultivation of these cells for use in immunosuppression therapies. Expression of costimulatory markers CD40, CD80 and CD86 and immunosuppressive molecules CD152 and HLA-G was analyzed. Lymphocyte inhibition assays were also performed. Sequencing of the HLA-G gene from exons 1 to 5 was performed using next-generation sequencing to determine the presence of alleles. UC-derived MSCs (UCMSCs) expressed higher CD152 and HLA-G1 under standard cultivation. UCMSCs and DP-derived MSCs (DPSCs) secreted similar levels of HLA-G5. All MSC sources inhibited the proliferation of peripheral blood mononuclear cells (PBMCs); growth under regular versus hypoxic conditions resulted in similar levels of inhibition. When IFN-γ was added, PBMC growth was inhibited to a lesser extent by UCMSCs. The HLA-G*01:04:01:01 allele appears to generate a more efficient MSC response in inhibiting lymphocyte proliferation. However, the strength of this conclusion was limited by the small sample size. UCMSCs are an excellent alternative to BM in immunosuppressive therapy: they express high concentrations of inhibitory molecules and can be cultivated without stimuli, which minimizes cost.
Collapse
Affiliation(s)
- Bernardo Zoehler
- Immunogenetics and Histocompatibility Laboratory, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba 81530-001, PR, Brazil; (J.S.d.S.); (M.d.G.B.)
- Correspondence: (B.Z.); (A.C.S.)
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80910-215, PR, Brazil; (L.F.); (L.M.B.-L.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lidiane Maria Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80910-215, PR, Brazil; (L.F.); (L.M.B.-L.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-902, RJ, Brazil
| | - José Samuel da Silva
- Immunogenetics and Histocompatibility Laboratory, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba 81530-001, PR, Brazil; (J.S.d.S.); (M.d.G.B.)
| | - Paul J. Travers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80910-215, PR, Brazil; (L.F.); (L.M.B.-L.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-902, RJ, Brazil
| | - Maria da Graça Bicalho
- Immunogenetics and Histocompatibility Laboratory, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba 81530-001, PR, Brazil; (J.S.d.S.); (M.d.G.B.)
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80910-215, PR, Brazil; (L.F.); (L.M.B.-L.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (B.Z.); (A.C.S.)
| |
Collapse
|
10
|
Hulme CH, Perry J, McCarthy HS, Wright KT, Snow M, Mennan C, Roberts S. Cell therapy for cartilage repair. Emerg Top Life Sci 2021; 5:575-589. [PMID: 34423830 PMCID: PMC8589441 DOI: 10.1042/etls20210015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Regenerative medicine, using cells as therapeutic agents for the repair or regeneration of tissues and organs, offers great hope for the future of medicine. Cell therapy for treating defects in articular cartilage has been an exemplar of translating this technology to the clinic, but it is not without its challenges. These include applying regulations, which were designed for pharmaceutical agents, to living cells. In addition, using autologous cells as the therapeutic agent brings additional costs and logistical challenges compared with using allogeneic cells. The main cell types used in treating chondral or osteochondral defects in joints to date are chondrocytes and mesenchymal stromal cells derived from various sources such as bone marrow, adipose tissue or umbilical cord. This review discusses some of their biology and pre-clinical studies before describing the most pertinent clinical trials in this area.
Collapse
Affiliation(s)
- Charlotte H. Hulme
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Jade Perry
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Helen S. McCarthy
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Karina T. Wright
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Martyn Snow
- The Royal Orthopaedic Hospital, Birmingham, U.K
| | - Claire Mennan
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| | - Sally Roberts
- School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, U.K
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, U.K
| |
Collapse
|
11
|
Perry J, Roelofs AJ, Mennan C, McCarthy HS, Richmond A, Clark SM, Riemen AHK, Wright K, De Bari C, Roberts S. Human Mesenchymal Stromal Cells Enhance Cartilage Healing in a Murine Joint Surface Injury Model. Cells 2021; 10:1999. [PMID: 34440768 PMCID: PMC8393840 DOI: 10.3390/cells10081999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023] Open
Abstract
Human umbilical cord (hUC)- or bone marrow (hBM)-derived mesenchymal stromal cells (MSCs) were evaluated as an allogeneic source of cells for cartilage repair. We aimed to determine if they could enhance healing of chondral defects with or without the recruitment of endogenous cells. hMSCs were applied into a focal joint surface injury in knees of adult mice expressing tdTomato fluorescent protein in cells descending from Gdf5-expressing embryonic joint interzone cells. Three experimental groups were used: (i) hUC-MSCs, (ii) hBM-MSCs and (iii) PBS (vehicle) without cells. Cartilage repair was assessed after 8 weeks and tdTomato-expressing cells were detected by immunostaining. Plasma levels of pro-inflammatory mediators and other markers were measured by electrochemiluminescence. Both hUC-MSC (n = 14, p = 0.009) and hBM-MSC (n = 13, p = 0.006) treatment groups had significantly improved cartilage repair compared to controls (n = 18). While hMSCs were not detectable in the repair tissue at 8 weeks post-implantation, increased endogenous Gdf5-lineage cells were detected in repair tissue of hUC-MSC-treated mice. This xenogeneic study indicates that hMSCs enhance intrinsic cartilage repair mechanisms in mice. Hence, hMSCs, particularly the more proliferative hUC-MSCs, could represent an attractive allogeneic cell population for treating patients with chondral defects and perhaps prevent the onset and progression of osteoarthritis.
Collapse
Affiliation(s)
- Jade Perry
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| | - Anke J. Roelofs
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Claire Mennan
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| | - Helen S. McCarthy
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| | - Alison Richmond
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Susan M. Clark
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Anna H. K. Riemen
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Karina Wright
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| | - Cosimo De Bari
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Sally Roberts
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| |
Collapse
|
12
|
Lopez-Santalla M, Bueren JA, Garin MI. Mesenchymal stem/stromal cell-based therapy for the treatment of rheumatoid arthritis: An update on preclinical studies. EBioMedicine 2021; 69:103427. [PMID: 34161884 PMCID: PMC8237294 DOI: 10.1016/j.ebiom.2021.103427] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and progressive joint destruction and is a primary cause of disability worldwide. Despite the existence of numerous anti-rheumatic drugs, a significant number of patients with RA do not respond or are intolerant to current treatments. Mesenchymal stem/stromal cell (MSCs) therapy represents a promising therapeutic tool to treat RA, mainly attributable to the immunomodulatory effects of these cells. This review comprises a comprehensive analysis of the scientific literature related to preclinical studies of MSC-based therapy in RA to analyse key aspects of current protocols as well as novel approaches which aim to improve the efficacy of MSC-based therapy.
Collapse
Affiliation(s)
- Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM).
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM)
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM).
| |
Collapse
|
13
|
Infusion of Mesenchymal Stem Cells to Treat Graft Versus Host Disease: the Role of HLA-G and the Impact of its Polymorphisms. Stem Cell Rev Rep 2021; 16:459-471. [PMID: 32088839 DOI: 10.1007/s12015-020-09960-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem-cell transplantation is widely performed for the treatment of hematologic diseases and is increasingly being used for the experimental treatment of various autoimmune diseases. Despite the rapid evolution of this therapy, the mortality rate of patients undergoing this procedure is still high, mainly due to the development of graft versus host disease (GvHD). Even with the administration of immunosuppressive therapy, some patients manifest the chronic form of the disease. For these cases, infusion of mesenchymal stem cells (MSCs) was proposed as a therapeutic strategy, considering the immunosuppressive potential of these cells. This review describes the main results obtained in cell therapy with MSCs for the treatment of GvHD. Despite the encouraging results found, some points differed among the studies. Although the factors that influence the different results are uncertain, some investigators have suggested that variations in immunosuppressive molecules are responsible for these divergences. We highlight the key role of the HLA-G gene in modulating the immune response, and the importance of the polymorphisms and alleles of this gene associated with the outcome of the transplants. We suggest that the HLA-G gene and its polymorphisms be analyzed as a factor in selecting the MSCs to be used in treating GvHD, given its strong immunosuppressive role.
Collapse
|
14
|
Mankuzhy PD, Ramesh ST, Thirupathi Y, Mohandas PS, Chandra V, Sharma TG. The preclinical and clinical implications of fetal adnexa derived mesenchymal stromal cells in wound healing therapy. Wound Repair Regen 2021; 29:347-369. [PMID: 33721373 DOI: 10.1111/wrr.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy. We also discuss the isolation-culture methods, cell surface marker expression, multi-lineage differentiation abilities, immune-modulatory capabilities and their homing property. Different mechanisms involved in the wound healing process and the role of stromal cells in therapeutic wound healing are highlighted. Further, we summarize the findings of the cell delivery systems in skin lesion models and paracrine functions of their secretome in the wound healing process. Overall, this holistic review outlines the research findings of fetal adnexa derived MSCs, their usefulness in wound healing therapy in human as well as in veterinary medicine.
Collapse
Affiliation(s)
- Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Sreekumar T Ramesh
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Yasotha Thirupathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Ponny S Mohandas
- Consultant Gynecologist, Department of Gynecology and Obstetrics, Meditrina Hospital, Ayathil, Kollam, Kerala, India
| | - Vikash Chandra
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Taru Guttula Sharma
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
15
|
Bagheri-Mohammadi S. Stem cell-based therapy as a promising approach in Alzheimer's disease: current perspectives on novel treatment. Cell Tissue Bank 2021; 22:339-353. [PMID: 33398492 DOI: 10.1007/s10561-020-09896-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neuronal disorder with insidious onset and slow progression, leading to growing global concern with huge implications for individuals and society. The occurrence of AD has been increased and has become an important health issue throughout the world. In recent years, the care of more than 35 million patients with AD costs over $ 600 billion per year, it is approximately 1 percent of the global Gross Domestic Product. Currently, the therapeutic approach is not effective for neurological deficits especially after the development of these major neurological disorders. The discovery of the technique called cell-based therapy has shown promising results and made important conclusions beyond AD using the stem cells approach. Here we review recent progress on stem cell-based therapy in the context of AD.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Zolfaghar M, Mirzaeian L, Beiki B, Naji T, Moini A, Eftekhari-Yazdi P, Akbarinejad V, Vernengo AJ, Fathi R. Wharton's jelly derived mesenchymal stem cells differentiate into oocyte like cells in vitro by follicular fluid and cumulus cells conditioned medium. Heliyon 2020; 6:e04992. [PMID: 33088934 PMCID: PMC7560581 DOI: 10.1016/j.heliyon.2020.e04992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/19/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Wharton's jelly derived-mesenchymal stem cells (WJ-MSCs) have a same developmental origin with primordial germ cells. WJ-MSCs perhaps differentiate into oocyte and germ like-cells (OLCs/GLCs) in the presence of appropriate inducers. Human follicular fluid (FF) and cumulus cells conditioned medium (CCM) are naturally rich sources for oocyte development. The aim of this study was to evaluate WJ-MSCs potential for differentiating into OLCs and GLCs exposed to FF and CCM. WJ-MSCs were cultured in two different induction media (10% FF, 10% CCM) for 21 days. Morphological changes and expression of developmental genes were evaluated on days 0, 7, 14 and 21 of culture. Also, on 21st day of culture, the expression of oocyte and germ cell proteins investigated using immunofluorescence staining. Appearance of round shaped cells from 7th day onwards indicated that WJ-MSCs can differentiate into OLCs when exposed to FF and CCM. The size of produced OLCs and expression of oocyte specific genes and proteins were increased more positively in FF group rather than CCM group. Although, WJ-MSCs could differentiate into OLCs by FF and CCM, however, the induction potential of FF for producing OLCs was better than CCM.
Collapse
Affiliation(s)
- Mona Zolfaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, IAUPS, Tehran, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahareh Beiki
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Naji
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, IAUPS, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Andrea J Vernengo
- Rowan University, Department of Biomedical Engineering, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Al-Jaibaji O, Swioklo S, Shortt A, Figueiredo FC, Connon CJ. Hypothermically Stored Adipose-Derived Mesenchymal Stromal Cell Alginate Bandages Facilitate Use of Paracrine Molecules for Corneal Wound Healing. Int J Mol Sci 2020; 21:ijms21165849. [PMID: 32823996 PMCID: PMC7461547 DOI: 10.3390/ijms21165849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived mesenchymal stromal cells (Ad-MSCs) may alleviate corneal injury through the secretion of therapeutic factors delivered at the injury site. We aimed to investigate the therapeutic factors secreted from hypothermically stored, alginate-encapsulated Ad-MSCs’ bandages in in vitro and in vivo corneal wounds. Ad-MSCs were encapsulated in 1.2% w/v alginate gels to form bandages and stored at 15 °C for 72 h before assessing cell viability and co-culture with corneal scratch wounds. Genes of interest, including HGF, TSG-6, and IGF were identified by qPCR and a human cytokine array kit used to profile the therapeutic factors secreted. In vivo, bandages were applied to adult male mice corneas following epithelial debridement. Bandages were shown to maintain Ad-MSCs viability during storage and able to indirectly improve corneal wound healing in vivo. Soluble protein concentration and paracrine factors such as TSG-6, HGF, IL-8, and MCP-1 release were greatest following hypothermic storage. In vivo, Ad-MSCs bandages-treated groups reduced immune cell infiltration when compared to untreated groups. In conclusion, bandages were shown to maintain Ad-MSCs ability to produce a cocktail of key therapeutic factors following storage and that these soluble factors can improve in vitro and in vivo corneal wound healing.
Collapse
Affiliation(s)
- Olla Al-Jaibaji
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
| | - Stephen Swioklo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Atelerix Ltd., The Biosphere, Newcastle upon Tyne NE4 5BX, UK
| | - Alex Shortt
- UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Francisco C. Figueiredo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Department of Ophthalmology, Royal Victoria Infirmary & Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Che J. Connon
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; (O.A.-J.); (S.S.); (F.C.F.)
- Correspondence: ; Tel.: +44-(0)-191-241-8623
| |
Collapse
|
18
|
Mesenchymal Stem/Stromal Cells for Rheumatoid Arthritis Treatment: An Update on Clinical Applications. Cells 2020; 9:cells9081852. [PMID: 32784608 PMCID: PMC7465092 DOI: 10.3390/cells9081852] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects the lining of the synovial joints leading to stiffness, pain, inflammation, loss of mobility, and erosion of joints. Its pathogenesis is related to aberrant immune responses against the synovium. Dysfunction of innate and adaptive immunity, including dysregulated cytokine networks and immune complex-mediated complement activation, are involved in the progression of RA. At present, drug treatments, including corticosteroids, antirheumatic drugs, and biological agents, are used in order to modulate the altered immune responses. Chronic use of these drugs may cause adverse effects to a significant number of RA patients. Additionally, some RA patients are resistant to these therapies. In recent years, mesenchymal stem/stromal cell (MSCs)-based therapies have been largely proposed as a novel and promising stem cell therapeutic approach in the treatment of RA. MSCs are multipotent progenitor cells that have immunomodulatory properties and can be obtained and expanded easily. Today, nearly one hundred studies in preclinical models of RA have shown promising trends for clinical application. Proof-of-concept clinical studies have demonstrated satisfactory safety profile of MSC therapy in RA patients. The present review discusses MSC-based therapy approaches with a focus on published clinical data, as well as on clinical trials, for treatment of RA that are currently underway.
Collapse
|
19
|
Perry J, McCarthy HS, Bou-Gharios G, van 't Hof R, Milner PI, Mennan C, Roberts S. Injected human umbilical cord-derived mesenchymal stromal cells do not appear to elicit an inflammatory response in a murine model of osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100044. [PMID: 32596691 PMCID: PMC7307639 DOI: 10.1016/j.ocarto.2020.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
Objective This study investigated the effect of hUC-MSCs on osteoarthritis (OA) progression in a xenogeneic model. Design Male, 10 week-old C57BL/6 mice underwent sham surgery (n = 15) or partial medial meniscectomy (PMM; n = 76). 5x105 hUC-MSCs (from 3 donors: D1, D2 and D3) were phenotyped via RT-qPCR and immunoprofiling their response to inflammatory stimuli. They were injected into the mouse joints 3 and 6 weeks post-surgery, harvesting joints at 8 and 12 weeks post-surgery, respectively. A no cell ‘control’ group was also used (n = 29). All knee joints were assessed via micro-computed tomography (μCT) and histology and 10 plasma markers were analysed at 12 weeks. Results PMM resulted in cartilage loss and osteophyte formation resembling human OA at both time-points. Injection of one donor's hUC-MSCs into the joint significantly reduced the loss of joint space at 12 weeks post-operatively compared with the PMM control. This ‘effective’ population of MSCs up-regulated the genes, IDO and TSG6, when stimulated with inflammatory cytokines, more than those from the other two donors. No evidence of an inflammatory response to the injected cells in any animals, either histologically or with plasma biomarkers, arose. Conclusion Beneficial change in a PMM joint was seen with only one hUC-MSC population, perhaps indicating that cell therapy is not appropriate for severely osteoarthritic joints. However, none of the implanted cells appeared to elicit an inflammatory response at the time-points studied. The variability of UC donors suggests some populations may be more therapeutic than others and donor characterisation is essential in developing allogeneic cell therapies.
Collapse
Affiliation(s)
- J Perry
- Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, UK.,School of Pharmacy and Bioengineering (PhaB), Keele University, Keele, ST4 7QB, UK
| | - H S McCarthy
- Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, UK.,School of Pharmacy and Bioengineering (PhaB), Keele University, Keele, ST4 7QB, UK
| | - G Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, UK
| | - R van 't Hof
- Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, UK
| | - P I Milner
- Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, UK
| | - C Mennan
- Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, UK.,School of Pharmacy and Bioengineering (PhaB), Keele University, Keele, ST4 7QB, UK
| | - S Roberts
- Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, SY10 7AG, UK.,School of Pharmacy and Bioengineering (PhaB), Keele University, Keele, ST4 7QB, UK
| |
Collapse
|
20
|
Mekhemar M, Tölle J, Dörfer C, Fawzy El‐Sayed K. TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells. J Clin Periodontol 2020; 47:991-1005. [DOI: 10.1111/jcpe.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Universitätsklinikum SchleswigȐHolstein Ȑ Campus, Kiel
| | - Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
| | - Karim Fawzy El‐Sayed
- Clinic for Conservative Dentistry and Periodontology School of Dental Medicine Christian‐Albrecht’s University Kiel Germany
- Oral Medicine and Periodontology Department Faculty of Oral and Dental Medicine Cairo University Cairo Egypt
| |
Collapse
|
21
|
Chen L, Xiang E, Li C, Han B, Zhang Q, Rao W, Xiao C, Wu D. Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Nephrocyte Injury and Proteinuria in a Diabetic Nephropathy Rat Model. J Diabetes Res 2020; 2020:8035853. [PMID: 32405507 PMCID: PMC7206880 DOI: 10.1155/2020/8035853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are shown to alleviate renal injury of diabetic nephropathy (DN) in rats. However, the underlying mechanism of this beneficial effect is not fully understood. The aims of this study are to evaluate effects of umbilical cord-derived mesenchymal stem cells (UC-MSCs) on renal cell apoptosis in streptozotocin- (STZ-) induced diabetic rats and explore the underlying mechanisms. Characteristics of UC-MSCs were identified by flow cytometry and differentiation capability. Six weeks after DN induction by STZ injection in Sprague-Dawley rats, the DN rats received UC-MSCs once a week for consecutive two weeks. DN-related physical and biochemical parameters were measured at 2 weeks after UC-MSC infusion. Renal histological changes were also assessed. Moreover, the apoptosis of renal cells and expression of apoptosis-related proteins were evaluated. Compared with DN rats, rats treated with UC-MSCs showed suppressed increase in 24-hour urinary total protein, urinary albumin to creatinine ratio, serum creatinine, and blood urea nitrogen. UC-MSC treatment ameliorated pathological abnormalities in the kidney of DN rats as evidenced by H&E, PAS, and Masson Trichrome staining. Furthermore, UC-MSC treatment reduced apoptosis of renal cells in DN rats. UC-MSCs promoted expression of antiapoptosis protein Bcl-xl and suppressed expression of high mobility group protein B1 (HMGB1) in the kidney of DN rats. Most importantly, UC-MSCs suppressed upregulation of thioredoxin-interacting protein (TXNIP), downregulation of thioredoxin 1 (TRX1), and activation of apoptosis signal-regulating kinase 1 (ASK1) and P38 MAPK in the kidney of DN rats. Our results suggest that UC-MSCs could alleviate nephrocyte injury and albuminuria of DN rats through their antiapoptotic property. The protective effects of UC-MSCs may be mediated by inhibiting TXNIP upregulation in part.
Collapse
Affiliation(s)
- Lian Chen
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - E. Xiang
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Bing Han
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Quan Zhang
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Wei Rao
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Cuihong Xiao
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, China
| |
Collapse
|
22
|
Mennan C, Garcia J, McCarthy H, Owen S, Perry J, Wright K, Banerjee R, Richardson JB, Roberts S. Human Articular Chondrocytes Retain Their Phenotype in Sustained Hypoxia While Normoxia Promotes Their Immunomodulatory Potential. Cartilage 2019; 10:467-479. [PMID: 29671342 PMCID: PMC6755872 DOI: 10.1177/1947603518769714] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To assess the phenotype of human articular chondrocytes cultured in normoxia (21% O2) or continuous hypoxia (2% O2). DESIGN Chondrocytes were extracted from patients undergoing total knee replacement (n = 5) and cultured in ~21% (normoxic chondrocytes, NC) and 2% (hypoxic chondrocytes, HC) oxygen in both monolayer and 3-dimensional (3D) pellet culture and compared with freshly isolated chondrocytes (FC). Cells were assessed by flow cytometry for markers indicative of mesenchymal stromal cells (MSCs), chondrogenic-potency and dedifferentiation. Chondrogenic potency and immunomodulatory gene expression was assessed in NC and HC by reverse transcription quantitative polymerase chain reaction. Immunohistochemistry was used to assess collagen II production following 3D pellet culture. RESULTS NC were positive (>97%, n = 5) for MSC markers, CD73, CD90, and CD105, while HC demonstrated <90% positivity (n = 4) and FC (n = 5) less again (CD73 and CD90 <20%; CD105 <40%). The markers CD166 and CD151, indicative of chondrogenic de-differentiation, were significantly higher on NC compared with HC and lowest on FC. NC also produced the highest levels of CD106 and showed the greatest levels of IDO expression, following interferon-γ stimulation, indicating immunomodulatory potential. NC produced the highest levels of CD49c (>60%) compared with HC and FC in which production was <2%. Hypoxic conditions upregulated expression of SOX9, frizzled-related protein (FRZB), fibroblast growth factor receptor 3 (FGFR3), and collagen type II (COL2A1) and downregulated activin receptor-like kinase 1 (ALK1) in 3 out of 4 patients compared with normoxic conditions for monolayer cells. CONCLUSIONS Hypoxic conditions encourage retention of a chondrogenic phenotype with some immunomodulatory potential, whereas normoxia promotes dedifferentiation of chondrocytes toward an MSC phenotype with loss of chondrogenic potency but enhanced immunomodulatory capacity.
Collapse
Affiliation(s)
- Claire Mennan
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | - John Garcia
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Helen McCarthy
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Sharon Owen
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Jade Perry
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Karina Wright
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Robin Banerjee
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
| | - James B. Richardson
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Sally Roberts
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK
- Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
23
|
The Immunomodulatory Potential of Wharton's Jelly Mesenchymal Stem/Stromal Cells. Stem Cells Int 2019; 2019:3548917. [PMID: 31281372 PMCID: PMC6594275 DOI: 10.1155/2019/3548917] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/01/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
The benefits attributed to mesenchymal stem/stromal cells (MSC) in cell therapy applications are mainly attributed to the secretion of factors, which exhibit immunomodulatory and anti-inflammatory effects and stimulate angiogenesis. Despite the desirable features such as high proliferation levels, multipotency, and immune response regulation, there are important variables that must be considered. Although presenting similar morphological aspects, MSC collected from different tissues can form heterogeneous cellular populations and, therefore, manifest functional differences. Thus, the source of MSC should be a factor to be considered in the development of novel therapies. The following text presents an updated review of recent research outcomes related to Wharton's jelly mesenchymal stem/stromal cells (WJ-MSC), harvested from umbilical cords and considered novel and potential candidates for the development of cell-based approaches. This text highlights information on how WJ-MSC affect immune responses in comparison with other sources of MSC.
Collapse
|
24
|
A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2019; 10:99. [PMID: 30885254 PMCID: PMC6421680 DOI: 10.1186/s13287-019-1202-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The manufacture of mesenchymal stem/stromal cells (MSCs) for clinical use needs to be cost effective, safe and scaled up. Current methods of expansion on tissue culture plastic are labour-intensive and involve several 'open' procedures. We have used the closed Quantum® hollow fibre bioreactor to expand four cultures each of MSCs derived from bone marrow (BM) and, for the first time, umbilical cords (UCs) and assessed extensive characterisation profiles for each, compared to parallel cultures grown on tissue culture plastic. METHODS Bone marrow aspirate was directly loaded into the Quantum®, and cells were harvested and characterised at passage (P) 0. Bone marrow cells were re-seeded into the Quantum®, harvested and further characterised at P1. UC-MSCs were isolated enzymatically and cultured once on tissue culture plastic, before loading cells into the Quantum®, harvesting and characterising at P1. Quantum®-derived cultures were phenotyped in terms of immunoprofile, tri-lineage differentiation, response to inflammatory stimulus and telomere length, as were parallel cultures expanded on tissue culture plastic. RESULTS Bone marrow cell harvests from the Quantum® were 23.1 ± 16.2 × 106 in 14 ± 2 days (P0) and 131 ± 84 × 106 BM-MSCs in 13 ± 1 days (P1), whereas UC-MSC harvests from the Quantum® were 168 ± 52 × 106 UC-MSCs after 7 ± 2 days (P1). Quantum®- and tissue culture plastic-expanded cultures at P1 adhered to criteria for MSCs in terms of cell surface markers, multipotency and plastic adherence, whereas the integrins, CD29, CD49c and CD51/61, were found to be elevated on Quantum®-expanded BM-MSCs. Rapid culture expansion in the Quantum® did not cause shortened telomeres when compared to cultures on tissue culture plastic. Immunomodulatory gene expression was variable between donors but showed that all MSCs upregulated indoleamine 2, 3-dioxygenase (IDO). CONCLUSIONS The results presented here demonstrate that the Quantum® can be used to expand large numbers of MSCs from bone marrow and umbilical cord tissues for next-generation large-scale manufacturing, without impacting on many of the properties that are characteristic of MSCs or potentially therapeutic. Using the Quantum®, we can obtain multiple MSC doses from a single manufacturing run to treat many patients. Together, our findings support the development of cheaper cell-based treatments.
Collapse
|
25
|
Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells Int 2019; 2019:8387350. [PMID: 30766607 PMCID: PMC6350586 DOI: 10.1155/2019/8387350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis, as the fundamental pathological process of chronic kidney disease (CKD), is a pathologic extension of the normal wound healing process characterized by endothelium injury, myofibroblast activation, macrophage migration, inflammatory signaling stimulation, matrix deposition, and remodelling. Yet, the current method of treating renal fibrosis is fairly limited, including angiotensin-converting enzyme inhibition, angiotensin receptor blockade, optimal blood pressure control, and sodium bicarbonate for metabolic acidosis. MSCs are pluripotent adult stem cells that can differentiate into various types of tissue lineages, such as the cartilage (chondrocytes), bone (osteoblasts), fat (adipocytes), and muscle (myocytes). Because of their many advantages like ubiquitous sources, convenient procurement and collection, low immunogenicity, and low adverse effects, with their special identification markers, mesenchymal stem MSC-based therapy is getting more and more attention. Based on the mechanism of renal fibrosis, MSCs mostly participate throughout the renal fibrotic process. According to the latest and overall literature reviews, we aim to elucidate the antifibrotic mechanisms and effects of diverse sources of MSCs on renal fibrosis, assess their efficacy and safety in preliminarily clinical application, answer the controversial questions, and provide novel ideas into the MSC cellular therapy of renal fibrosis.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Ruoyu Ma
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yanshuang Yin
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tianhao Lan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Yu
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Yingzi Ming
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
26
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, Wollacott R, Sapp E, Dubuke ML, Li X, Shaffer SA, DiFiglia M, Wang Y, Aronin N, Khvorova A. Exosomes Produced from 3D Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and Improved Activity. Mol Ther 2018; 26:2838-2847. [PMID: 30341012 PMCID: PMC6277553 DOI: 10.1016/j.ymthe.2018.09.015] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Exosomes can deliver therapeutic RNAs to neurons. The composition and the safety profile of exosomes depend on the type of the exosome-producing cell. Mesenchymal stem cells are considered to be an attractive cell type for therapeutic exosome production. However, scalable methods to isolate and manufacture exosomes from mesenchymal stem cells are lacking, a limitation to the clinical translation of exosome technology. We evaluate mesenchymal stem cells from different sources and find that umbilical cord-derived mesenchymal stem cells produce the highest exosome yield. To optimize exosome production, we cultivate umbilical cord-derived mesenchymal stem cells in scalable microcarrier-based three-dimensional (3D) cultures. In combination with the conventional differential ultracentrifugation, 3D culture yields 20-fold more exosomes (3D-UC-exosomes) than two-dimensional cultures (2D-UC-exosomes). Tangential flow filtration (TFF) in combination with 3D mesenchymal stem cell cultures further improves the yield of exosomes (3D-TFF-exosomes) 7-fold over 3D-UC-exosomes. 3D-TFF-exosomes are seven times more potent in small interfering RNA (siRNA) transfer to neurons compared with 2D-UC-exosomes. Microcarrier-based 3D culture and TFF allow scalable production of biologically active exosomes from mesenchymal stem cells. These findings lift a major roadblock for the clinical utility of mesenchymal stem cell exosomes.
Collapse
Affiliation(s)
- Reka Agnes Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rachael Miller
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marie-Cecile Didiot
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Ellen Sapp
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | - Michelle L Dubuke
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Xuni Li
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Marian DiFiglia
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | | | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
28
|
Li H, Rong P, Ma X, Nie W, Chen C, Yang C, Zhang J, Dong Q, Wang W. Paracrine effect of mesenchymal stem cell as a novel therapeutic strategy for diabetic nephropathy. Life Sci 2018; 215:113-118. [PMID: 30399376 DOI: 10.1016/j.lfs.2018.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus (DM) and the main reason for end-stage renal diseases (ESRD). Based on the role of mesenchymal stem cells (MSCs) in regenerative medicine, the MSC therapy has been considered a promising strategy to ameliorate the progression of DN. In this article, we review the therapeutic potential of MSCs in DN, mainly involving MSC paracrine mechanism based on trophic factors and extracellular vesicles. Knowledge of mechanism underlying the therapeutic action of MSCs on DN can provide much needed new drug targets for this disease.
Collapse
Affiliation(s)
- Hongde Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Nie
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cejun Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiong Dong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Han Z, Zhang Y, Gao L, Jiang S, Ruan D. Human Wharton's Jelly Cells Activate Degenerative Nucleus Pulposus Cells In Vitro. Tissue Eng Part A 2018; 24:1035-1043. [PMID: 29279046 DOI: 10.1089/ten.tea.2017.0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To investigate the interaction between human Wharton's jelly cells (WJCs) and degenerative nucleus pulposus cells (NPCs), human WJCs were cocultured with degenerative NPCs with or without direct cell-cell contact. WJCs were isolated from the human umbilical cord and degenerative NPCs were isolated from the surgically obtained degenerative intervertebral disc tissue. The isolated WJCs positively expressed CD73, CD105, CD90, CD29, CD166, and human leukocyte antigen (HLA)-ABC, but negatively expressed CD34, CD45, and HLA-DR. After coculturing with three different WJCs:NPCs ratios for 7 days, the real-time polymerase chain reaction showed that the relative gene expression of nucleus pulposus (NP)-marker genes [aggrecan, type II collagen, and SRY-type HMG box-9 (SOX-9)] was significantly upgraded in all coculture groups (all p < 0.05 compared with control groups). Coculture either with or without cell-cell contact significantly activated the expression of NP-maker genes than controls, but coculture with cell-cell contact yielded a higher gene expression than coculture without cell-cell contact. In coculturing with cell-cell contact and WJCs:NPCs of 25:75, the relative gene expression of aggrecan, type II collagen, SOX-9 for WJCs yielded the highest increase by 721-, 1507-, and 1463-folds, respectively (all p < 0.05 compared with WJCs control). In contrast, the highest relative gene expression of aggrecan, type II collagen, SOX-9 for NPCs was 112-, 84-, and 109-folds, respectively, in coculture with cell-cell contact and in WJCs:NPCs of 75:25 (all p < 0.05 compared with NPCs control). In conclusion, the data indicated that coculturing human WJCs with degenerative NPCs induced the NP-like cell differentiation of WJCs and restored the biological status of degenerative NPCs and coculture WJCs and NPCs with direct cell-cell contact yielded more favorable gene expressions.
Collapse
Affiliation(s)
- Zhihua Han
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China .,2 Experimental Trauma and Orthopedic Surgery, Frankfurt Initiative for Regenerative Medicine, J.W. Goethe-University , Frankfurt, Germany
| | - Yan Zhang
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China .,3 Department of VIP Neurology, Navy General Hospital of PLA , Beijing, China
| | - Liang Gao
- 4 Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Shujun Jiang
- 3 Department of VIP Neurology, Navy General Hospital of PLA , Beijing, China
| | - Dike Ruan
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China
| |
Collapse
|
30
|
Zhao J, Yu G, Cai M, Lei X, Yang Y, Wang Q, Zhai X. Bibliometric analysis of global scientific activity on umbilical cord mesenchymal stem cells: a swiftly expanding and shifting focus. Stem Cell Res Ther 2018; 9:32. [PMID: 29415771 PMCID: PMC5803908 DOI: 10.1186/s13287-018-0785-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Several studies have focused on umbilical cord-derived mesenchymal stem cells (UC-MSCs) due to their potential therapeutic effects in a cluster of diseases. However, there has been no bibliometric analysis evaluating the evolution in UC-MSC research. Therefore, this study aimed to assess scientific activity regarding UC-MSC research. Publications on UC-MSCs were retrieved from the Science Citation Index-Expanded (SCI-E) of the Web of Science (WoS) from 1975 to 2017. Statistical analyses were performed using Excel, GraphPad Prism 5, and VOSviewer software. Comparative analyses were employed to assess contributions between different countries, institutes, and researchers. With 21.26 citations per paper, 1206 papers cited 25,517 times were included. Mainland China contributed the most with 558 papers, with the most citations (6858 times) and the highest H-index (43). South Korea ranked first for number of papers per million people and per trillion gross domestic product (GDP). Keywords were stratified into two clusters by VOSviewer software: cluster 1, "treatments and effects"; and cluster 2, "characteristics". The average appearing years (AAY) of keywords in cluster 1 was more recent than that in cluster 2. For promising hotspots, "TNF-α" showed the latest AAY at 2014.09, followed by "migration", "angiogenesis", and "apoptosis". We conclude that the number of publications has been continuously growing dramatically since 2002 and that mainland China and South Korea are the most productive regions. The focus gradually shifts from "characteristics" to "treatments and effects". Attention should be drawn to the latest hotspots, such as "TNF-α", "migration", "angiogenesis", and "apoptosis". Furthermore, funding agencies might increase investments in exploring the therapeutic potential of UC-MSCs.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guanyu Yu
- Graduate Management Unit, Second Military Medical University, Shanghai, China.,Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mengxi Cai
- Graduate Management Unit, Second Military Medical University, Shanghai, China
| | - Xiao Lei
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Qijin Wang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiao Zhai
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
31
|
Wang H, Yan X, Jiang Y, Wang Z, Li Y, Shao Q. The human umbilical cord stem cells improve the viability of OA degenerated chondrocytes. Mol Med Rep 2018; 17:4474-4482. [PMID: 29328479 PMCID: PMC5802223 DOI: 10.3892/mmr.2018.8413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) affects a large number of patients; however, human umbilical cord stem cells exhibit therapeutic potential for treating OA. The aim of the present study was to explore the interaction between human umbilical cord stem cells and degenerated chondrocytes, and the therapeutic potential of human umbilical cord stem cells on degenerated chondrocytes. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were harvested from human umbilical cords, and flow cytometry was used to analyze the surface antigen markers, in addition, chondrogenic, osteogenic and adipogenic differentiation on the cells was investigated. OA cells at P3 were cocultured with hUC-MSCs in a separated co-culture system, and reverse transcription-polymerase chain reaction and western blot were used to evaluate the mRNA, and protein expression of collagen type II (Col2), SRY-box 9 (sox-9) and aggrecan. The level of inflammatory cytokines, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-10, were analyzed by ELISA in the supernatant. hUC-MSCs grow in a fibroblastic shape with stable proliferation. hUC-MSCs expressed cluster of differentiation 44 (CD44), CD73, CD90, CD105; while did not express CD34, CD45, CD106, CD133. After multi-induction, hUC-MSCs were able to differatiate into adipogenic, osteogenic and chondrogenic lineage. hUC-MSCs inhibited the expression of matrix metalloproteinase-13, collagen type X α1 chain and cyclooxygenase-2 in OA chondrocytes, and enhanced the proliferation of OA chondrocytes, while OA chondrocytes stimulated the production of Col2, sox-9 and aggrecan and promoted hUC-MSCs differentiate into chondrocytes. Flow cytometry analysis demonstrated hUC-MSCs have a predominant expression of stem cell markers, while the hematopoietic and endothelial markers were absent. Osteogenic, chondrogenic and adipogenic differentiation was observed in certain induction conditions. hUC-MSCs improved the proliferation of OA chondrocytes and downregulated the expression of inflammatory cytokines, while OA chondrocytes promoted MSCs to differentiate into chondrocytes. Taken together, the co-culture of hUC-MSCs and OA chondrocytes may provide a therapeutic potential in OA treatment.
Collapse
Affiliation(s)
- Hao Wang
- Teaching Center of Experimental Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xu Yan
- Department of Orthopedics, 455th Hospital of PLA, Shanghai 200052, P.R. China
| | - Yuxin Jiang
- School of Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zheng Wang
- Department of Orthopedics, 455th Hospital of PLA, Shanghai 200052, P.R. China
| | - Yufei Li
- Department of Plastic Surgery, 455th Hospital of PLA, Shanghai 200052, P.R. China
| | - Qingdong Shao
- Department of Orthopedics, 455th Hospital of PLA, Shanghai 200052, P.R. China
| |
Collapse
|
32
|
Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells as a Potential Source for Cartilage and Bone Regeneration: An In Vitro Study. Stem Cells Int 2017; 2017:1732094. [PMID: 29358953 PMCID: PMC5735324 DOI: 10.1155/2017/1732094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord (UC) may represent an attractive cell source for allogeneic mesenchymal stem cell (MSC) therapy. The aim of this in vitro study is to investigate the chondrogenic and osteogenic potential of UC-MSCs grown onto tridimensional scaffolds, to identify a possible clinical relevance for an allogeneic use in cartilage and bone reconstructive surgery. Chondrogenic differentiation on scaffolds was confirmed at 4 weeks by the expression of sox-9 and type II collagen; low oxygen tension improved the expression of these chondrogenic markers. A similar trend was observed in pellet culture in terms of matrix (proteoglycan) production. Osteogenic differentiation on bone-graft-substitute was also confirmed after 30 days of culture by the expression of osteocalcin and RunX-2. Cells grown in the hypertrophic medium showed at 5 weeks safranin o-positive stain and an increased CbFa1 expression, confirming the ability of these cells to undergo hypertrophy. These results suggest that the UC-MSCs isolated from minced umbilical cords may represent a valuable allogeneic cell population, which might have a potential for orthopaedic tissue engineering such as the on-demand cell delivery using chondrogenic, osteogenic, and endochondral scaffold. This study may have a clinical relevance as a future hypothetical option for allogeneic single-stage cartilage repair and bone regeneration.
Collapse
|
33
|
Wang X, Ma S, Yang B, Huang T, Meng N, Xu L, Xing Q, Zhang Y, Zhang K, Li Q, Zhang T, Wu J, Yang GL, Guan F, Wang J. Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer's disease. Behav Brain Res 2017; 339:297-304. [PMID: 29102593 DOI: 10.1016/j.bbr.2017.10.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cell transplantation is a promising therapeutic approach for Alzheimer's disease (AD). However, poor engraftment and limited survival rates are major obstacles for its clinical application. Resveratrol, an activator of silent information regulator 2, homolog 1 (SIRT1), regulates cell destiny and is beneficial for neurodegenerative disorders. The present study is designed to explore whether resveratrol regulates the fate of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and whether hUC-MSCs combined with resveratrol would be efficacious in the treatment of neurodegeneration in a mouse model of AD through SIRT1 signaling. Herein, we report that resveratrol facilitates hUC-MSCs engraftment in the hippocampus of AD mice and resveratrol enhances the therapeutic effects of hUC-MSCs in this model as demonstrated by improved learning and memory in the Morris water maze, enhanced neurogenesis and alleviated neural apoptosis in the hippocampus of the AD mice. Moreover, hUC-MSCs and resveratrol jointly regulate expression of hippocampal SIRT1, PCNA, p53, ac-p53, p21, and p16. These data strongly suggests that hUC-MSCs transplantation combined with resveratrol may be an effective therapy for AD.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Meng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qinghua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Junwei Wu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jian Wang
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD,USA
| |
Collapse
|
34
|
Li X, Song Y, Liu F, Liu D, Miao H, Ren J, Xu J, Ding L, Hu Y, Wang Z, Hou Y, Zhao G. Long Non-Coding RNA MALAT1 Promotes Proliferation, Angiogenesis, and Immunosuppressive Properties of Mesenchymal Stem Cells by Inducing VEGF and IDO. J Cell Biochem 2017; 118:2780-2791. [PMID: 28176360 DOI: 10.1002/jcb.25927] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/03/2017] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) play an important role in regulating angiogenesis and immune balance. The abnormal MSCs in proliferation and function were reported at maternal fetal interface in patients with pre-eclampsia (PE). Long non-coding RNA MALAT1 was known to regulate the function of trophoblast cells. However, it is not clear whether MALAT1 regulates MSCs to be related to PE. In the present study, we found that the expression of MALAT1 was significantly reduced in both umbilical cord tissues and MSCs in patients with severe PE. MALAT1 did not affect the phenotype and differentiation of MSCs. Of note, transfection with MALAT1 plasmid into MSCs drove the cell cycle into G2/M phase and inhibited cell apoptosis. The supernatants from MALAT1-overexpressed MSCs promoted the migration of MSCs, invasion of HTR-8/SVneo and tube formation of HUVEC, while si-MALAT1 had the opposite effects. Moreover, we found that MALAT1-induced VEGF mediated these effects of MALAT1 on MSCs. Furthermore, we found that MALAT1-overexpressed MSCs promoted M2 macrophage polarization and this effect was mediated by MALAT1-induced IDO expression, suggesting that MALAT1 may enhance the immunosuppressive properties of MSCs in vivo. In addition, we also investigated the factors that inhibit MALAT1 expression in PE and found that peroxide was a cause for MALAT1 downregulation. Taken together, our data demonstrate that MALAT1 is an important endogenous regulator in the proliferation, angiogenesis, and immunosuppressive properties of MSCs, suggesting it may be involved in the pathogenesis of PE. J. Cell. Biochem. 118: 2780-2791, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiujun Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuxian Song
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huishuang Miao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jingjing Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Zhiqun Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|