1
|
Agbaglo DA, Summers TJ, Cheng Q, DeYonker NJ. The influence of model building schemes and molecular dynamics sampling on QM-cluster models: the chorismate mutase case study. Phys Chem Chem Phys 2024; 26:12467-12482. [PMID: 38618904 PMCID: PMC11090134 DOI: 10.1039/d3cp06100k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Most QM-cluster models of enzymes are constructed based on X-ray crystal structures, which limits comparison to in vivo structure and mechanism. The active site of chorismate mutase from Bacillus subtilis and the enzymatic transformation of chorismate to prephenate is used as a case study to guide construction of QM-cluster models built first from the X-ray crystal structure, then from molecular dynamics (MD) simulation snapshots. The Residue Interaction Network ResidUe Selector (RINRUS) software toolkit, developed by our group to simplify and automate the construction of QM-cluster models, is expanded to handle MD to QM-cluster model workflows. Several options, some employing novel topological clustering from residue interaction network (RIN) information, are evaluated for generating conformational clustering from MD simulation. RINRUS then generates a statistical thermodynamic framework for QM-cluster modeling of the chorismate mutase mechanism via refining 250 MD frames with density functional theory (DFT). The 250 QM-cluster models sampled provide a mean ΔG‡ of 10.3 ± 2.6 kcal mol-1 compared to the experimental value of 15.4 kcal mol-1 at 25 °C. While the difference between theory and experiment is consequential, the level of theory used is modest and therefore "chemical" accuracy is unexpected. More important are the comparisons made between QM-cluster models designed from the X-ray crystal structure versus those from MD frames. The large variations in kinetic and thermodynamic properties arise from geometric changes in the ensemble of QM-cluster models, rather from the composition of the QM-cluster models or from the active site-solvent interface. The findings open the way for further quantitative and reproducible calibration in the field of computational enzymology using the model construction framework afforded with the RINRUS software toolkit.
Collapse
Affiliation(s)
- Donatus A Agbaglo
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | - Thomas J Summers
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | - Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | - Nathan J DeYonker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
2
|
Clemente CM, Capece L, Martí MA. Best Practices on QM/MM Simulations of Biological Systems. J Chem Inf Model 2023; 63:2609-2627. [PMID: 37100031 DOI: 10.1021/acs.jcim.2c01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
During the second half of the 20th century, following structural biology hallmark works on DNA and proteins, biochemists shifted their questions from "what does this molecule look like?" to "how does this process work?". Prompted by the theoretical and practical developments in computational chemistry, this led to the emergence of biomolecular simulations and, along with the 2013 Nobel Prize in Chemistry, to the development of hybrid QM/MM methods. QM/MM methods are necessary whenever the problem we want to address involves chemical reactivity and/or a change in the system's electronic structure, with archetypal examples being the studies of an enzyme's reaction mechanism and a metalloprotein's active site. In the last decades QM/MM methods have seen an increasing adoption driven by their incorporation in widely used biomolecular simulation software. However, properly setting up a QM/MM simulation is not an easy task, and several issues need to be properly addressed to obtain meaningful results. In the present work, we describe both the theoretical concepts and practical issues that need to be considered when performing QM/MM simulations. We start with a brief historical perspective on the development of these methods and describe when and why QM/MM methods are mandatory. Then we show how to properly select and analyze the performance of the QM level of theory, the QM system size, and the position and type of the boundaries. We show the relevance of performing prior QM model system (or QM cluster) calculations in a vacuum and how to use the corresponding results to adequately calibrate those derived from QM/MM. We also discuss how to prepare the starting structure and how to select an adequate simulation strategy, including those based on geometry optimizations as well as free energy methods. In particular, we focus on the determination of free energy profiles using multiple steered molecular dynamics (MSMD) combined with Jarzynski's equation. Finally, we describe the results for two illustrative and complementary examples: the reaction performed by chorismate mutase and the study of ligand binding to hemoglobins. Overall, we provide many practical recommendations (or shortcuts) together with important conceptualizations that we hope will encourage more and more researchers to incorporate QM/MM studies into their research projects.
Collapse
Affiliation(s)
- Camila M Clemente
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
3
|
Thorbjørnsrud H, Bressan L, Khatanbaatar T, Carrer M, Würth-Roderer K, Cordara G, Kast P, Cascella M, Krengel U. What Drives Chorismate Mutase to Top Performance? Insights from a Combined In Silico and In Vitro Study. Biochemistry 2023; 62:782-796. [PMID: 36705397 PMCID: PMC9910054 DOI: 10.1021/acs.biochem.2c00635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unlike typical chorismate mutases, the enzyme from Mycobacterium tuberculosis (MtCM) has only low activity on its own. Remarkably, its catalytic efficiency kcat/Km can be boosted more than 100-fold by complex formation with a partner enzyme. Recently, an autonomously fully active MtCM variant was generated using directed evolution, and its structure was solved by X-ray crystallography. However, key residues were involved in crystal contacts, challenging the functional interpretation of the structural changes. Here, we address these challenges by microsecond molecular dynamics simulations, followed up by additional kinetic and structural analyses of selected sets of specifically engineered enzyme variants. A comparison of wild-type MtCM with naturally and artificially activated MtCMs revealed the overall dynamic profiles of these enzymes as well as key interactions between the C-terminus and the active site loop. In the artificially evolved variant of this model enzyme, this loop is preorganized and stabilized by Pro52 and Asp55, two highly conserved residues in typical, highly active chorismate mutases. Asp55 stretches across the active site and helps to appropriately position active site residues Arg18 and Arg46 for catalysis. The role of Asp55 can be taken over by another acidic residue, if introduced at position 88 close to the C-terminus of MtCM, as suggested by molecular dynamics simulations and confirmed by kinetic investigations of engineered variants.
Collapse
Affiliation(s)
- Helen
V. Thorbjørnsrud
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway
| | - Luca Bressan
- Laboratory
of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tamjidmaa Khatanbaatar
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway
| | - Manuel Carrer
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway
| | | | - Gabriele Cordara
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway
| | - Peter Kast
- Laboratory
of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland,
| | - Michele Cascella
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway,
| | - Ute Krengel
- Department
of Chemistry, University of Oslo, Oslo 0315, NO, Norway,Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo 0315, NO, Norway,
| |
Collapse
|
4
|
Hubrich F, Müller M, Andexer JN. Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chem Commun (Camb) 2021; 57:2441-2463. [PMID: 33605953 DOI: 10.1039/d0cc08078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chorismate and isochorismate represent an important branching point connecting primary and secondary metabolism in bacteria, fungi, archaea and plants. Chorismate- and isochorismate-converting enzymes are potential targets for new bioactive compounds, as well as valuable biocatalysts for the in vivo and in vitro synthesis of fine chemicals. The diversity of the products of chorismate- and isochorismate-converting enzymes is reflected in the enzymatic three-dimensional structures and molecular mechanisms. Due to the high reactivity of chorismate and its derivatives, these enzymes have evolved to be accurately tailored to their respective reaction; at the same time, many of them exhibit a fascinating flexibility regarding side reactions and acceptance of alternative substrates. Here, we give an overview of the different (sub)families of chorismate- and isochorismate-converting enzymes, their molecular mechanisms, and three-dimensional structures. In addition, we highlight important results of mutagenetic approaches that generate a broader understanding of the influence of distinct active site residues for product formation and the conversion of one subfamily into another. Based on this, we discuss to what extent the recent advances in the field might influence the general mechanistic understanding of chorismate- and isochorismate-converting enzymes. Recent discoveries of new chorismate-derived products and pathways, as well as biocatalytic conversions of non-physiological substrates, highlight how this vast field is expected to continue developing in the future.
Collapse
Affiliation(s)
- Florian Hubrich
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
5
|
Computational investigations of allostery in aromatic amino acid biosynthetic enzymes. Biochem Soc Trans 2021; 49:415-429. [PMID: 33544132 DOI: 10.1042/bst20200741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Allostery, in which binding of ligands to remote sites causes a functional change in the active sites, is a fascinating phenomenon observed in enzymes. Allostery can occur either with or without significant conformational changes in the enzymes, and the molecular basis of its mechanism can be difficult to decipher using only experimental techniques. Computational tools for analyzing enzyme sequences, structures, and dynamics can provide insights into the allosteric mechanism at the atomic level. Combining computational and experimental methods offers a powerful strategy for the study of enzyme allostery. The aromatic amino acid biosynthesis pathway is essential in microorganisms and plants. Multiple enzymes involved in this pathway are sensitive to feedback regulation by pathway end products and are known to use allostery to control their activities. To date, four enzymes in the aromatic amino acid biosynthesis pathway have been computationally investigated for their allosteric mechanisms, including 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, anthranilate synthase, chorismate mutase, and tryptophan synthase. Here we review the computational studies and findings on the allosteric mechanisms of these four enzymes. Results from these studies demonstrate the capability of computational tools and encourage future computational investigations of allostery in other enzymes of this pathway.
Collapse
|
6
|
Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review. Catalysts 2020. [DOI: 10.3390/catal10060691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unified reaction valley approach (URVA) differs from mainstream mechanistic studies, as it describes a chemical reaction via the reaction path and the surrounding reaction valley on the potential energy surface from the van der Waals region to the transition state and far out into the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting molecules is registered by a change in their normal vibrational modes and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction with curvature minima reflecting minimal change and curvature maxima, the location of important chemical events such as bond breaking/forming, charge polarization and transfer, rehybridization, etc. A unique decomposition of the path curvature into internal coordinate components provides comprehensive insights into the origins of the chemical changes taking place. After presenting the theoretical background of URVA, we discuss its application to four diverse catalytic processes: (i) the Rh catalyzed methanol carbonylation—the Monsanto process; (ii) the Sharpless epoxidation of allylic alcohols—transition to heterogenous catalysis; (iii) Au(I) assisted [3,3]-sigmatropic rearrangement of allyl acetate; and (iv) the Bacillus subtilis chorismate mutase catalyzed Claisen rearrangement—and show how URVA leads to a new protocol for fine-tuning of existing catalysts and the design of new efficient and eco-friendly catalysts. At the end of this article the pURVA software is introduced. The overall goal of this article is to introduce to the chemical community a new protocol for fine-tuning existing catalytic reactions while aiding in the design of modern and environmentally friendly catalysts.
Collapse
|
7
|
Ranaghan KE, Shchepanovska D, Bennie SJ, Lawan N, Macrae SJ, Zurek J, Manby FR, Mulholland AJ. Projector-Based Embedding Eliminates Density Functional Dependence for QM/MM Calculations of Reactions in Enzymes and Solution. J Chem Inf Model 2019; 59:2063-2078. [PMID: 30794388 DOI: 10.1021/acs.jcim.8b00940] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Combined quantum mechanics/molecular mechanics (QM/MM) methods are increasingly widely utilized in studies of reactions in enzymes and other large systems. Here, we apply a range of QM/MM methods to investigate the Claisen rearrangement of chorismate to prephenate, in solution, and in the enzyme chorismate mutase. Using projector-based embedding in a QM/MM framework, we apply treatments up to the CCSD(T) level. We test a range of density functional QM/MM methods and QM region sizes. The results show that the calculated reaction energetics are significantly more sensitive to the choice of density functional than they are to the size of the QM region in these systems. Projector-based embedding of a wave function method in DFT reduced the 13 kcal/mol spread in barrier heights calculated at the DFT/MM level to a spread of just 0.3 kcal/mol, essentially eliminating dependence on the functional. Projector-based embedding of correlated ab initio methods provides a practical method for achieving high accuracy for energy profiles derived from DFT and DFT/MM calculations for reactions in condensed phases.
Collapse
Affiliation(s)
- Kara E Ranaghan
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Darya Shchepanovska
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Simon J Bennie
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Narin Lawan
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Stephen J Macrae
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Jolanta Zurek
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Frederick R Manby
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , U.K. BS8 1TS
| |
Collapse
|
8
|
Freindorf M, Tao Y, Sethio D, Cremer D, Kraka E. New mechanistic insights into the Claisen rearrangement of chorismate – a Unified Reaction Valley Approach study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1530464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Daniel Sethio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
9
|
Burschowsky D, Thorbjørnsrud HV, Heim JB, Fahrig-Kamarauskaitė JR, Würth-Roderer K, Kast P, Krengel U. Inter-Enzyme Allosteric Regulation of Chorismate Mutase in Corynebacterium glutamicum: Structural Basis of Feedback Activation by Trp. Biochemistry 2017; 57:557-573. [PMID: 29178787 DOI: 10.1021/acs.biochem.7b01018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corynebacterium glutamicum is widely used for the industrial production of amino acids, nucleotides, and vitamins. The shikimate pathway enzymes DAHP synthase (CgDS, Cg2391) and chorismate mutase (CgCM, Cgl0853) play a key role in the biosynthesis of aromatic compounds. Here we show that CgCM requires the formation of a complex with CgDS to achieve full activity, and that both CgCM and CgDS are feedback regulated by aromatic amino acids binding to CgDS. Kinetic analysis showed that Phe and Tyr inhibit CgCM activity by inter-enzyme allostery, whereas binding of Trp to CgDS strongly activates CgCM. Mechanistic insights were gained from crystal structures of the CgCM homodimer, tetrameric CgDS, and the heterooctameric CgCM-CgDS complex, refined to 1.1, 2.5, and 2.2 Å resolution, respectively. Structural details from the allosteric binding sites reveal that DAHP synthase is recruited as the dominant regulatory platform to control the shikimate pathway, similar to the corresponding enzyme complex from Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | | | - Joel B Heim
- Department of Chemistry, University of Oslo , NO-0315 Oslo, Norway
| | | | | | - Peter Kast
- Laboratory of Organic Chemistry, ETH Zurich , CH-8093 Zurich, Switzerland
| | - Ute Krengel
- Department of Chemistry, University of Oslo , NO-0315 Oslo, Norway
| |
Collapse
|